Concepts in Clinical Pharmacokinetics

SIXTH EDITION

William J. Spruill, PharmD, FASHP, FCCP
Associate Professor
Department of Clinical and Administrative Sciences
University of Georgia, College of Pharmacy
Athens, Georgia

William E. Wade, PharmD, FASHP, FCCP
Professor
Department of Clinical and Administrative Sciences
University of Georgia, College of Pharmacy
Athens, Georgia

Joseph T. DiPiro, PharmD
Executive Dean
South Carolina College of Pharmacy
Charleston, South Carolina

Robert A. Blouin, PharmD
Professor and Dean
UNC Eshelman School of Pharmacy
The University of North Carolina at Chapel Hill
Chapel Hill, North Carolina

Jane M. Pruemer, PharmD, BCOP, FASHP
Professor of Clinical Pharmacy Practice
James L. Winkle College of Pharmacy,
University of Cincinnati
Cincinnati, Ohio

American Society of Health-System Pharmacists®
Bethesda, Maryland
Preface
Acknowledgments
A Note from the Authors on Using This Edition
Abbreviations

Lessons and Practice Sets
Lesson 1. Introduction to Pharmacokinetics and Pharmacodynamics
Lesson 2. Basic Pharmacokinetics
Lesson 3. Half-Life, Elimination Rate, and AUC

Practice Set 1
Lesson 4. Intravenous Bolus Administration, Multiple Drug Administration, and Steady-State Average Concentrations
Lesson 5. Relationships of Pharmacokinetic Parameters and Intravenous Intermittent and Continuous Infusions
Lesson 6. Two-Compartment Models

Practice Set 2
Lesson 7. Biopharmaceutics: Absorption
Lesson 8. Drug Distribution and Protein Binding
Lesson 9. Drug Elimination Processes
Lesson 10. Nonlinear Processes
Lesson 11. Pharmacokinetic Variation and Model-Independent Relationships

Practice Set 3
Lesson 12. Aminoglycosides
Lesson 13. Vancomycin
Lesson 14. Theophylline
Lesson 15. Phenytoin and Digoxin

Appendix A. Basic and Drug-Specific Pharmacokinetic Equations
Appendix B. Supplemental Problems
Appendix C. Glossary
Index
For students just entering the world of pharmacy or seasoned practitioners, the study of pharmacokinetics and the mathematical equations required for drug dosing can be quite intimidating. Combined with the terminology of the science, this may make a course in pharmacokinetics a considerable challenge. In this sixth edition of *Concepts in Clinical Pharmacokinetics*, we continue to focus on the fundamental pharmacokinetic concepts. These concepts, along with the mathematical equations, are broken down to their simplest forms, and a step-by-step approach is adopted to explain the “how to” of the discipline. We believe that such an approach allows the student to gain greater comprehension of the subject matter, which allows adaptation of concepts to specific clinical drug dosing situations.

Pharmacokinetic concepts are further illustrated by application to clinical dosing cases, including aminoglycosides, vancomycin, theophylline, digoxin, and phenytoin. These cases are designed to show the easily understandable, step-by-step approach for performing appropriate clinical dosing consults. All cases provide the complete mathematical solutions for each calculation, allowing readers to “check their math.” Equations are explained in detail, and all similar equations used throughout the text are cross-referenced to the basic concept. In addition there is a valuable appendix containing basic and drug-specific pharmacokinetic equations.

This edition expands on several concepts including proper estimation of renal function, extended-interval aminoglycoside dosing, pharmacogenomic effects on drug metabolism, a phenytoin “cheat sheet” to help you through the calculations maze, and new vancomycin cases based on higher desired vancomycin levels and trough-only dose estimations. As with past editions the reader will find numerous clinical correlates throughout the text to further highlight specific clinical or mathematical explanations.

The goal for this edition, as with the previous five editions, remains the same—to provide the student or practitioner with the concepts and clinical applications needed for a better understanding of this complicated, yet vital, subject.

*William J. Spruill*  
*William E. Wade*  
*Joseph T. DiPiro*  
*Robert A. Blouin*  
*Jane E. Pruemer*  

December 2013
Acknowledgments

We are indebted to our wives Paula Spruill, Theresa Wade, and Cecily DiPiro for their love and patience during the preparation of this sixth edition.

A Note from the Authors on Using This Edition

This book teaches the basic biopharmaceutic concepts, mathematical models, and clinical applications needed to determine such values as dose, interval, steady-state concentration, etc. Specific conceptual and mathematical formulas are combined to solve more complex dosing situations. Eleven chapters contain a practice quiz to chart your progress, and there are three practice sets of questions with answers. The last four chapters are completely devoted to clinical cases that fully explain, step-by-step, how to dose several drugs that generally require serum drug concentrations. We strongly encourage you to attempt to solve these cases without looking at the step-by-step answers, and then when finished, check to see if you got them right.

—WS, WW, JD

A complete online course based on this book with four enrollment options is available through the University of Georgia Center for Continuing Education.
To learn more go to:
http://www.georgiacenter.uga.edu/courses/healthcare-pharmacy
Abbreviations

\( \alpha \): distribution rate constant for two-compartment model

\textbf{AUC} : area under plasma drug concentration versus time curve

\textbf{AUMC} : area under the (drug concentration \times time) versus time (moment) curve

\( \beta \): terminal elimination rate constant

\( C \): concentration

\( \bar{C} \): average steady-state concentration

\( C_{0}, C_{1}, C_{2} \): initial (just after infusion), first, second concentrations

\( C_{\text{in}} \): concentration in blood on entering organ

\( C_{\text{last}} \): last measured concentration

\( C_{\text{max}} \): maximum concentration

\( C_{\text{max}1}, C_{\text{max}2} \): first, second maximum concentrations

\( C_{\text{max( steady state)}} \): steady-state maximum concentration

\( C_{\text{min( steady state)}} \): steady-state minimum concentration

\( C_{\text{min}} \): minimum concentration

\( C_{\text{out}} \): concentration in blood on leaving organ

\( C_{\text{peak}} \): peak concentration

\( C_{\text{ss}} \): steady-state concentration

\( C_{t} \): concentration at time \( t \)

\( C_{\text{trough}} \): trough concentration

\( \textbf{Cl} \): clearance

\( \text{Cl}_{b} \): biliary clearance

\( \text{Cl}_{h} \): hepatic (liver) clearance

\( \text{Cl}_{i} \): intrinsic clearance

\( \text{Cl}_{m} \): clearance by metabolism (mainly liver)

\( \text{Cl}_{\text{other organs}} \): clearance by other organs

\( \text{Cl}_{P \rightarrow mX} \): formation clearance for a given metabolite \( X \)

\( \text{Cl}_{P \rightarrow m1} \): fractional clearance of parent drug (\( P \)) to form metabolite 1 (\( m_1 \))

\( \text{Cl}_{r} \): renal clearance

\( \text{Cl}_{t} \): total body clearance

\textbf{conc} : concentration

\( \Delta \): change in

\( E \): extraction ratio

continued on next page
Abbreviations

- **e**: base of natural logarithm
- **F**: fraction of drug absorbed that reaches systemic circulation (bioavailability)
  - \( F_{m1} \): fraction of \( m_1 \), formed from a single dose of the parent drug
  - \( F_p \): fraction of unbound drug in plasma
  - \( F_t \): fraction of unbound drug in tissue
- **GFR**: glomerular filtration rate
- **GI**: gastrointestinal
- **K**: elimination rate constant
  - \( K_0 \): rate of drug infusion
  - \( K_{12} \): rate constant for transfer of drug from compartment 1 to compartment 2
  - \( K_{21} \): rate constant for transfer of drug from compartment 2 to compartment 1
  - \( K_a \): absorption rate constant
  - \( K_m \): Michaelis–Menten constant (drug concentration at which elimination rate = \( \frac{1}{2} \) \( V_{\text{max}} \))
- **λ**: terminal elimination rate constant
- **m_1, m_2, m_3**: metabolites 1, 2, and 3
- **m_{1,u}, m_{2,u}, m_{3,u}**: amount of \( m_1 \), \( m_2 \), or \( m_3 \) excreted in the urine
- **MRT**: mean residence time
- **n**: number of doses
- **Q**: bloodflow
  - \( Q_h \): hepatic bloodflow
- **S**: salt form of drug
- **SST**: serum separator tube
- **τ**: dosing interval
- **t**: time (after dose)
  - \( t' \): time after end of infusion (\( t' = \tau - t \) for trough concentration)
  - \( t'' \): time (duration) of loading infusion
  - \( t_0 \): time zero
  - \( T^{\frac{1}{2}} \): half-life
  - \( t_{90\%} \): time required to reach 90% of steady-state concentration
- **V**: volume; volume of distribution
  - \( V_{\text{area}} \): volume of distribution by area
  - \( V_c \): volume of central compartment
  - \( V_{\text{extrap}} \): extrapolated volume of distribution
  - \( V_p \): plasma volume
  - \( V_{ss} \): steady-state volume of distribution
  - \( V_t \): tissue volume
  - \( V_{\text{max}} \): maximum rate of the elimination process
- **X**: amount of drug
  - \( X_0 \): dose (or initial dose) of drug
  - \( X_1, X_2 \): amount of drug at different times
  - \( X_c \): amount of drug in central compartment
  - \( X_d \): daily dose of drug
  - \( X_p \): amount of drug in peripheral compartment

QU: Add MDRP and MIC?