Assessment of Evidence for COVID-19-Related Treatments: Updated 3/24/2020

The information contained in this evidence table is emerging and rapidly evolving because of ongoing research and is subject to the professional judgment and interpretation of the practitioner due to the uniqueness of each medical facility’s approach to the care of patients with COVID-19 and the needs of individual patients. ASHP provides this evidence table to help practitioners better understand current approaches related to treatment and care. ASHP has made reasonable efforts to ensure the accuracy and appropriateness of the information presented. However, any reader of this information is advised ASHP is not responsible for the continued currency of the information, for any errors or omissions, and/or for any consequences arising from the use of the information in the evidence table in any and all practice settings. Any reader of this document is cautioned that ASHP makes no representation, guarantee, or warranty, express or implied, as to the accuracy and appropriateness of the information contained in this evidence table and will bear no responsibility or liability for the results or consequences of its use.

Public access to AHFS Drug Information® (https://www.ahfscdi.com/login) is available for the next 60 days with the username “ahfs@ashp.org" and password "covid-19." ASHP’s patient medication information is available at http://www.safemedication.com/.

Select entries were updated on 3/24/2020; these can be identified by the date that appears in the Drug(s) column.

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baloxavir</td>
<td>8:18.92</td>
<td>Antiviral active against influenza viruses</td>
<td>Currently no known published clinical trial data regarding efficacy or safety in the treatment of COVID-19 China: Two randomized clinical trials registered, but not yet recruiting. Chinese Clinical Trial Registry links ¹: ChICTR2000029544 ChICTR2000029548</td>
<td></td>
<td>Protocol in one registered Chinese trial (2000029548) specifies a baloxavir marboxil dosage of 80 mg orally on day 1, 80 mg orally on day 4, and 80 mg orally on day 7 as needed, not to exceed 3 total doses. ¹</td>
</tr>
<tr>
<td>Chloroquine Phosphate</td>
<td>8:30.08</td>
<td>Antimalarial</td>
<td>In vitro activity against some viruses, including coronaviruses ¹ ³ ⁴</td>
<td>Various dosages recommended or being investigated</td>
<td>Various dosages recommended or being investigated</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td></td>
<td>In vitro activity against SARS-CoV-2 in infected Vero E6 cells reported; some evidence it may block infection in Vero E6 cells exposed to SARS-CoV-2 ¹ ³ ⁴</td>
<td>Multiple clinical trials initiated using various dosages in pts with COVID-19 in China and other countries ³ ⁴ ¹⁰</td>
<td>Oral chloroquine phosphate: 500 mg twice daily for 10 days ⁴</td>
<td>Oral chloroquine phosphate: 500 mg twice daily for 7 days (adults 18-65 years weighing >50 kg); 500 mg twice daily on days 1 and 2, then 500 mg once daily on days 3-7 (adults weighing <50 kg) ¹¹</td>
</tr>
<tr>
<td>Updated 3/24/2020</td>
<td></td>
<td>Chloroquine: Active in vitro against SARS-CoV and MERS-CoV ² ³ ⁵ ⁹</td>
<td>Clinical experience in pts with COVID-19 accumulating; reports of possible clinical benefits, including decrease in viral load and duration of illness; only limited data available to date to support efficacy and identify possible safety concerns in pts with COVID-19 ² ⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage<sup>a</sup></td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Hydroxychloroquine with Azithromycin: Preliminary data from an ongoing study in France in hospitalized pts with confirmed COVID-19 was used to assess efficacy of hydroxychloroquine used alone or with azithromycin; untreated pts were used as a negative control. The primary end point was negative PCR results in nasopharyngeal samples at day 6. Data from 14 pts treated with hydroxychloroquine (200 mg 3 times daily for 10 days), 6 pts treated with hydroxychloroquine and azithromycin (500 mg on day 1, then 250 mg daily on days 2-5), and 16 pts in the control group were analyzed. At day 6, 8/14 (57%) in the hydroxychloroquine group, 6/6 (100%) in the hydroxychloroquine and azithromycin group, and 2/16 (12.5%) in the control group had negative PCR results. At day 8, a positive PCR was reported in a pt treated with both drugs who had tested negative at day 6.7 This was a small nonrandomized study that didn’t appear to be designed to compare hydroxychloroquine vs hydroxychloroquine and azithromycin (pts received antibiotics to prevent bacterial superinfection based on clinical judgment). Data on disease severity was unclear (some asymptomatic pts were included when study initiated) and information on disease progression and clinical outcomes was not presented. Although it provides some evidence of the effects of hydroxychloroquine in pts with COVID-19, additional data needed before any conclusions can be made regarding possible benefits of using hydroxychloroquine with azithromycin. (See Azithromycin in this Evidence Table.)</td>
<td>Oral chloroquine phosphate: Initial dose of 600 mg (of chloroquine) followed by 300 mg (of chloroquine) 12 hours later on day 1, then 300 mg (of chloroquine) twice daily on days 2-5<sup>4</sup></td>
<td>Chloroquine and hydroxychloroquine are suggested as possible options and are included in some guidelines for treatment of COVID-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both drugs have immuno-modulatory activity that theoretically could contribute to an anti-inflammatory response in patients with viral infections<sup>1-3</sup></td>
<td></td>
<td></td>
<td></td>
<td>Consider: 500 mg of chloroquine phosphate is equivalent to 300 mg of chloroquine base</td>
<td></td>
</tr>
<tr>
<td>Known pharmacokinetics and toxicity profile</td>
<td></td>
<td></td>
<td></td>
<td>Oral hydroxychloroquine: 400 mg twice daily on day 1, then 200 mg twice daily on days 2-5<sup>8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral hydroxychloroquine: 400 mg daily for 5 days<sup>5,10</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral hydroxychloroquine: 100-200 mg twice daily for 5-14 days<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral hydroxychloroquine: 200 mg 3 times daily for 10 days<sup>7</sup></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Lopinavir and Ritonavir (LPV/RTV; Kaletra®)</td>
<td>8:18.08 HIV Protease Inhibitor</td>
<td>Antiretroviral with in vitro activity against SARS-CoV and MERS-CoV; some evidence of benefit in animal studies for treatment of MERS-CoV; published data currently lacking on in vitro activity against SARS-CoV-2.</td>
<td>COVID-19 Randomized, open-label trial in hospitalized adults with severe COVID-19 compared LPV/RTV in conjunction with standard of care (99 pts) vs standard of care alone (100 pts). Primary end point: time to clinical improvement (time from randomization to improvement of two points on a seven-category ordinal scale or hospital discharge, whichever came first). In ITT population, time to clinical improvement was not shorter with LPV/RTV compared with standard of care (median time to clinical improvement 16 days in both groups); in modified ITT population, median time to clinical improvement 15 days in LPV/RTV group and 16 days in standard of care only group. The 28-day mortality rate was numerically lower in LPV/RTV group (19.2% vs 25% in ITT population; 16.7% vs 25% in modified ITT population). Some evidence that LPV/RTV initiation within 12 days after symptom onset is associated with shorter time to clinical improvement. No significant differences in reduction of viral RNA load, duration of viral RNA detectability, duration of oxygen therapy, duration of hospitalization, or time from randomization to death. LPV/RTV stopped early in 13 pts because of adverse effects. COVID-19 Retrospective cohort study in adults evaluated use of LPV/RTV with or without Arbidol (influenza antiviral not licensed in US). Primary end point was negative conversion rate of coronavirus and progression or improvement of pneumonia. At 7 days, SARS-CoV-2 undetectable in nasopharyngeal specimens in 6/17 pts treated with LPV/RTV alone vs 12/16 pts treated with both drugs; at 14 days, undetectable in 9/17 pts (53%) vs 15/16 pts (94%).</td>
<td>COVID-19: LPV 400 mg/RTV 100 mg orally twice daily for 14 days.</td>
<td>Efficacy for treatment of COVID-19 not definitely established. Additional study needed to evaluate possible clinical benefits of early use of LPV/RTV in COVID-19. Additional study needed to evaluate benefits of concomitant use of LPV/RTV with other antivirals for COVID-19; usually used in conjunction with other antivirals (e.g., ribavirin with or without an interferon) for SARS and MERS.</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosagea</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Neuraminidase inhibitors (e.g., oseltamivir)</td>
<td>8:18.28</td>
<td>Antivirals active against influenza viruses</td>
<td>In a retrospective case series of 99 patients with COVID-19 at single center in Wuhan from 1/1/20 to 1/20/20, 76% of patients received antiviral treatment, including oseltamivir (75 mg orally every 12 hours). At the time of evaluation, 58% of patients remained hospitalized, 31% had been discharged, and 11% had died.</td>
<td>Dosage of oseltamivir in the case series of 99 patients was 75 mg orally every 12 hours.</td>
<td>No data to date support use in the treatment of COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>While oseltamivir is noted to have been widely used for confirmed or suspected COVID-19 cases in hospitals in China, there has been no exact evidence to date that oseltamivir is effective in the treatment of COVID-19. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neither oseltamivir nor zanamivir has demonstrated inhibition of cytopathic effect against SARS-CoV in in vitro cell culture. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinicaltrials.gov trials for COVID-19 that include oseltamivir5: NCT04303299 (not yet recruiting) NCT04261270 (recruiting) NCT04255017 (recruiting)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COVID-19 trials at Clinicaltrials.gov that include LPV/RTV 15: NCT04307693 (LPV/RTV vs hydroxychloroquine in pts with mild disease) NCT04276688 (LPV/RTV with ribavirin and interferon β-1B vs LPV/RTV alone) | | |

COVID-19 Clinical Experience: Data accumulating on LPV/RTV used with or without interferon in pts with COVID-19 outside of clinical trials. 5, 12, 14

SARS and MERS Clinical Experience: Evidence of some clinical benefit when used in conjunction with ribavirin and/or interferon. 1, 8, 9, 10, 11

Neuraminidase inhibitors (e.g., oseltamivir):

Neuraminidase inhibitors (e.g., oseltamivir) are antivirals active against influenza viruses. Oseltamivir is not known to have in vitro activity against SARS-CoV, MERS-CoV, or SARS-CoV-2. 4

Clinicaltrials.gov trials for COVID-19 that include oseltamivir5: NCT04303299 (not yet recruiting) NCT04261270 (recruiting) NCT04255017 (recruiting)

Dosage of oseltamivir in the case series of 99 patients was 75 mg orally every 12 hours. 1

Dosages of oseltamivir from registered trials (either recruiting, or not yet recruiting) vary, but include 300 mg orally daily, 75 mg orally once or twice daily, and 4–6 mg/kg orally (frequency not specified). 5
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Remdesivir | 8:18.92 | Broad-spectrum antiviral with activity against coronaviruses | **Phase 3 randomized, open-label trial** *(NCT04292899)* initiated by the manufacturer (Gilead) to evaluate safety and antiviral activity of 5- and 10-day regimens of Remdesivir in conjunction with standard of care in pts with severe COVID-19.**

Phase 3 randomized, open-label trial *(NCT04292730)* initiated by the manufacturer (Gilead) to evaluate safety and antiviral activity of 5- or 10-day regimens of remdesivir in conjunction with standard of care in pts with moderate COVID-19 compared with standard of care alone.

Phase 2 randomized, placebo-controlled trial *(NCT04280705)* sponsored by NIAID initiated to evaluate safety and efficacy of remdesivir in hospitalized pts with laboratory-confirmed COVID-19.

Expanded access and compassionate use access: The manufacturer (Gilead) is transitioning from individual compassionate use requests to an expanded access program for emergency access to the drug for severely ill pts with confirmed COVID-19. During this transition, new individual compassionate use requests cannot be accepted, with the possible exception of requests for pregnant women and children <18 years of age with confirmed infections and severe manifestations of the disease. https://rdvcu.gilead.com/

Compassionate use access (NCT04302766): May be available for DoD personnel through treatment IND protocol sponsored by US Army Medical Research and Development Command.

Phase 3 trial protocol (severe COVID-19): 200 mg IV on day 1, then 100 mg IV daily on days 2-5 (arm 1) or 200 mg IV on day 1, then 100 mg IV daily on days 2-10 (arm 2).

Phase 3 trial protocol (moderate COVID-19): 200 mg IV on day 1, then 100 mg IV on days 2-5 (arm 1) or 200 mg IV on day 1, then 100 mg IV daily on days 2-10 (arm 2).

NIAID study protocol: 200 mg IV on day 1, then 100 mg IV for duration of hospitalization up to 10 days.

Not commercially available; most promising antiviral currently being investigated for COVID-19.

Safety and efficacy not established; additional data needed.

Updated 3/24/2020

Ahfsclass
SUPPORTING AGENTS

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Ascorbic acid | 88:12 (Vitamin C) | Antioxidant and cofactor for numerous physiologic reactions; may support host defenses against infection and protect host cells against infection-induced oxidative stress. Presence of infection may decrease vitamin C concentrations. | Phase 2 randomized, placebo-controlled trial (NCT04264533) initiated in China to evaluate high-dose IV ascorbic acid in ICU patients with severe COVID-19-associated pneumonia.*
Other infections: Sepsis: Meta-analysis of several small studies suggested beneficial effects from IV ascorbic acid; however, primary end points not improved in CITRIS-ALI study (NCT02106975) in patients with sepsis and ARDS receiving high-dose IV ascorbic acid; additional studies under way.
Pneumonia: Limited study data available regarding ascorbic acid (oral) in hospitalized patients with pneumonia.*
Common cold: Effect of oral supplementation studied extensively; decreases duration of symptoms, may decrease incidence of common cold in individuals under heavy physical stress but not in overall population. | Phase 2 trial protocol (NCT04264533): Ascorbic acid 12 g IV every 12 hours for 7 days (12 g of drug diluted in sterile water for injection to total volume of 50 mL and infused IV at rate of 12 mL/hour).*
Various dosages of IV ascorbic acid used in sepsis studies; 50 mg/kg every 6 hours for 4 days used in CITRIS-ALI study.* | Current data not specific to COVID-19; additional study needed.* |
| Azithromycin | 8:12.12 Macrolides | Antibacterial with some in vitro activity against some viruses (e.g., influenza A H1N1, Zika).
No data to date on in vitro activity against coronaviruses, including SARS-CoV-2.
Has immunomodulatory and anti-inflammatory effects, including effects on proinflammatory cytokines; precise mechanisms of such effects not fully elucidated. | **Adjunctive therapy in certain respiratory viral infections:** Although contradictory results reported, some evidence of beneficial immunomodulatory or anti-inflammatory effects when used in pts with some viral infections (e.g., influenza).
However, in a retrospective cohort study in critically ill pts with laboratory-confirmed MERS, there was no statistically significant difference in 90-day mortality rates or clearance of MERS-CoV RNA between those who received macrolide therapy and those who did not.
Adjunctive therapy in certain respiratory conditions: Some evidence of beneficial immunomodulatory or anti-inflammatory effects when used in pts with certain | **Adjunctive treatment in certain viral infections:** 500 mg once daily has been used.*
Current data insufficient to establish pros and cons of adjunctive use of azithromycin in management of COVID-19.
Additional data needed before any conclusions can be made regarding possible benefits of using a combined regimen of hydroxychloroquine and azithromycin in pts with COVID-19.
Because both azithromycin and hydroxychloroquine are associated with QT prolongation, caution is advised if considering use of both drugs in pts who have chronic medical conditions (e.g., renal failure, hepatic disease) or are receiving other drugs that cause arrhythmias.* |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids (general)</td>
<td>68:04 Adrenals</td>
<td>Potent anti-inflammatory and antifibrotic properties; low doses of corticosteroids may prevent an extended cytokine response and may accelerate resolution of pulmonary and systemic inflammation in pneumonia</td>
<td>Respiratory conditions (e.g., ARDS). In a retrospective cohort study in pts with moderate or severe ARDS, a statistically significant improvement in 90-day survival was reported in those who received adjunctive azithromycin.</td>
<td>Adjunctive treatment in certain viral infections: 500 mg once daily has been used.</td>
<td>Current data insufficient to establish pros and cons of adjunctive use of azithromycin in management of COVID-19. Additional data needed before any conclusions can be made regarding possible benefits of using a combined regimen of hydroxychloroquine and azithromycin in pts with COVID-19. Because both azithromycin and hydroxychloroquine are associated with QT prolongation, caution is advised if considering use of both drugs in pts who have chronic medical conditions (e.g., renal failure, hepatic disease) and are receiving other drugs that cause arrhythmias.</td>
</tr>
<tr>
<td>Has been used as adjunctive therapy to provide antibacterial coverage and potential immunomodulatory and anti-inflammatory effects in the treatment of some viral respiratory tract infections (e.g., influenza). Has been used as adjunctive therapy to provide antibacterial coverage and potential immunomodulatory and anti-inflammatory effects in the management of certain respiratory conditions (e.g., bronchiectasis, bronchiolitis, cystic fibrosis, COPD exacerbations, ARDS).</td>
<td>Observational studies: Evidence suggests that corticosteroids in patients with SARS and MERS showed no survival benefit and possible harm (e.g., delayed viral clearance, avascular necrosis, psychosis, diabetes).</td>
<td>Adverse effects related to corticosteroids (e.g., dexamethasone) have been studied for the treatment of acute respiratory distress syndrome (ARDS). Conflicting results reported for use of corticosteroids (e.g., hydrocortisone) for treatment of sepsis.</td>
<td>WHO and CDC recommend that corticosteroids not be routinely used in patients with COVID-19 for treatment of viral pneumonia or ARDS unless indicated for another reason (e.g., asthma or COPD exacerbation, septic shock). Existing evidence is inconclusive for treatment of COVID-19 patients. Prudent use with low-to-moderate doses and short courses of treatment advised. WHO and expert consensus statement from Chinese Thoracic Society: Basic principles should be followed when using corticosteroids: (1) benefits and risks should be carefully weighed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corticosteroids</th>
<th>68:04</th>
<th>Adrenals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potent anti-inflammatory and antifibrotic properties; low doses of corticosteroids may prevent an extended cytokine response and may accelerate resolution of pulmonary and systemic inflammation in pneumonia.</td>
<td>Observational studies: Evidence suggests that corticosteroids in patients with SARS and MERS showed no survival benefit and possible harm (e.g., delayed viral clearance, avascular necrosis, psychosis, diabetes).</td>
<td>Conflicting results reported for use of corticosteroids (e.g., hydrocortisone) for treatment of sepsis.</td>
</tr>
</tbody>
</table>
Before using corticosteroids

(2) corticosteroids should be used prudently in critically ill patients with 2019-nCoV pneumonia; (3) for patients with hypoxemia due to underlying diseases or who regularly use corticosteroids for chronic diseases, further use of corticosteroids should be cautious and (4) dosage should be low to moderate (≤ 0.5–1 mg/kg daily of methylprednisolone or equivalent) and duration should be short (≤7 days).

Chinese health authority states that corticosteroids can be used in patients with COVID-19 who experience progressive deterioration for a short period of time (3-5 days) and at dosages not exceeding methylprednisolone 1-2 mg/kg daily or equivalent.

International clinical practice guidelines make a weak recommendation for use of corticosteroids in patients with sepsis. Recommendation applies to all patients with sepsis with no meaningful difference in efficacy of corticosteroids in different patient populations, including those with septic shock, pneumonia, or ARDS. For treatment of sepsis, clinicians considering corticosteroids for patients with COVID-19 should balance the potential small reduction in mortality with potential effects of prolonged coronavirus shedding. If corticosteroids prescribed, monitor and treat adverse effects including hyperglycemia, hypernatremia, and hypokalemia.

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>before using corticosteroids</td>
</tr>
</tbody>
</table>

(2) corticosteroids should be used prudently in critically ill patients with 2019-nCoV pneumonia; (3) for patients with hypoxemia due to underlying diseases or who regularly use corticosteroids for chronic diseases, further use of corticosteroids should be cautious and (4) dosage should be low to moderate (≤ 0.5–1 mg/kg daily of methylprednisolone or equivalent) and duration should be short (≤7 days).

Chinese health authority states that corticosteroids can be used in patients with COVID-19 who experience progressive deterioration for a short period of time (3-5 days) and at dosages not exceeding methylprednisolone 1-2 mg/kg daily or equivalent.

International clinical practice guidelines make a weak recommendation for use of corticosteroids in patients with sepsis. Recommendation applies to all patients with sepsis with no meaningful difference in efficacy of corticosteroids in different patient populations, including those with septic shock, pneumonia, or ARDS. For treatment of sepsis, clinicians considering corticosteroids for patients with COVID-19 should balance the potential small reduction in mortality with potential effects of prolonged coronavirus shedding. If corticosteroids prescribed, monitor and treat adverse effects including hyperglycemia, hypernatremia, and hypokalemia.

1, 4
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylprednisolone (DEPO-Medrol®, SOLU-Medrol®)</td>
<td>68:04 Adrenal</td>
<td>Potent anti-inflammatory and antifibrotic properties; low doses of corticosteroids may prevent an extended cytokine response and may accelerate resolution of pulmonary and systemic inflammation in pneumonia</td>
<td>Retrospective, observational, single-center study: In 201 patients with confirmed COVID-19 pneumonia who developed ARDS, methylprednisolone appeared to reduce the risk of death. Among patients with ARDS, of those who received methylprednisolone treatment, 23 of 50 (46%) patients died, while of those who did not receive methylprednisolone, 21 of 34 (61.8%) died.</td>
<td>Dosage used in this retrospective study not provided. Based on expert consensus statement from Chinese Thoracic Society, dosage of methylprednisolone should be low to moderate (i.e., ≤ 0.5 to 1 mg/kg daily or equivalent). Regimens used in China were typically methylprednisolone 40-80 mg IV daily for a course of 3-6 days.</td>
<td>Findings suggest that for patients with COVID-19 pneumonia who progressed to ARDS, methylprednisolone treatment may be beneficial. Results should be interpreted with caution because of potential bias (drug used in sickest patients) and small sample size. Randomized controlled studies are needed.</td>
</tr>
<tr>
<td>Nitric oxide (inhaled) Updated 3/24/20</td>
<td>48:48 Vasodilator agent</td>
<td>Selective pulmonary vasodilator; may be useful in the treatment of acute respiratory distress syndrome (ARDS), a potential complication of COVID-19. In vitro evidence of direct antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV); genetic similarity between SARS-CoV and COVID-19 suggests potential effectiveness for COVID-19</td>
<td>In a small pilot study conducted in China during the 2003 SARS-CoV outbreak, treatment with inhaled nitric oxide reversed pulmonary hypertension, improved severe hypoxia, and shortened the duration of ventilatory support. Randomized controlled studies of inhaled nitric oxide in ARDS patients generally demonstrated modest improvements in oxygenation, but no effect on mortality and possible harm (e.g., renal impairment).</td>
<td>Inhaled nitric oxide therapy was given for ≥3 days (30 ppm on day 1, followed by 20 and 10 ppm on days 2 and 3, respectively, then weaned on day 4; therapy was resumed at 10 ppm if deteriorating oxygenation occurred) in a pilot study in SARS-CoV patients.</td>
<td>Therapeutic guidelines state that inhaled nitric oxide may be considered in ARDS patients with severe hypoxemia; however, routine use not recommended. Although no data specifically on treatment of COVID-19, a clinical trial evaluating inhaled nitric oxide as a potential treatment for mild/moderate COVID-19 is underway (NCT04305457). On March 20th, 2020, Bellerophon Therapeutics announced that the FDA granted emergency expanded access allowing its inhaled nitric oxide delivery system (INOpulse®) to be immediately used for the treatment of COVID-19.</td>
</tr>
<tr>
<td>Sarilumab (Kefzara*)</td>
<td>92:36 Disease-modifying Anti-rheumatic Drug</td>
<td>Recombinant humanized monoclonal antibody specific for the interleukin-6 (IL-6) receptor; may potentially combat cytokine release syndrome (CRS) symptoms (e.g., fever, organ failure, death) in severely ill patients</td>
<td>Currently no known published clinical trial evidence supporting efficacy or safety against Coronavirus. However, based on encouraging results in China with a similar drug, tocilizumab, a U.S.-based, phase 2/3, randomized, double-blind, placebo-controlled study evaluating efficacy and safety of sarilumab in patients hospitalized with severe COVID-19 is currently under way. Clinicaltrials.gov link: https://clinicaltrials.gov/ct2/show/NCT04315298?term=sarilumab&draw=2&rank=4</td>
<td>Not available (see Trials or Clinical Experience)</td>
<td></td>
</tr>
</tbody>
</table>

*Updated 03-24-2020

Copyright © 2020, American Society of Health-System Pharmacists, Inc. All rights reserved.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage⁸</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Sirolimus | 92:44 | mTOR complex 1 (mTORC1) is involved in the replication of various viruses, including coronavirus¹, ², ³ | In vitro studies demonstrated inhibitory activity against MER-CoV infection²
In an open-label prospective randomized study in 38 patients with confirmed H1N1 pneumonia, treatment with sirolimus 2 mg daily in conjunction with corticosteroids for 14 days was associated with improved patient outcomes (e.g., shortened duration of mechanical ventilation, improved hypoxia and multiorgan function)³
Currently a registered clinical trial (NCT03901001 not yet recruiting) designed to evaluate adjunctive use of sirolimus and oseltamivir in patients hospitalized with influenza⁴, ⁶ | Dosage of sirolimus in the open-label trial was 2 mg daily orally, administered in conjunction with oral prednisolone 20 mg daily for 14 days; patients also received oseltamivir 75 mg twice daily for 10 days³ | Although possible clinical application, current data not specific to 2019-nCoV/SARS-CoV2-2; additional study needed⁵ |
| Tocilizumab (Actemra®) | 92:36 | Recombinant humanized monoclonal antibody specific for the interleukin-6 (IL-6) receptor; may potentially combat cytokine release syndrome (CRS) symptoms (e.g., fever, organ failure, death) in severely ill patients¹, ², ³ | Case study/series describing use of tocilizumab in patients with COVID-19 reported from various areas of the world¹, ³
In preliminary data from a non-peer-reviewed, single-arm Chinese trial involving 21 patients with severe or critical COVID-19 infection, patients demonstrated rapid fever reduction and a reduced need for supplemental oxygen within several days after receiving tocilizumab (initially given as a single 400-mg dose by IV infusion; this dose was repeated within 12 hours in 3 patients because of continued fever)³
Currently no other known clinical trial evidence supporting efficacy and safety of tocilizumab against Coronavirus¹
China: Randomized, multicenter, controlled clinical trial evaluating efficacy & safety in 188 patients with COVID-19 under way through 5/10/20. Results not yet available.
Chinese Clinical Trial Registry link: http://www.chictr.org.cn/showprojen.aspx?proj=49409 | IV infusion: China recommends an initial dose of 4–8 mg/kg infused over more than 60 minutes. If initial dose not effective, may administer second dose (in same dosage as initial dose) after 12 hours. No more than 2 doses should be given; maximum single dose is 800 mg² | In China, tocilizumab can be used to treat severely or critically ill COVID-19 patients with extensive lung lesions and high IL-6 levels²
Published data to support use currently are limited¹ |
OTHER

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE Inhibitors, Angiotensin II Receptor Blockers (ARBs)</td>
<td>24:32</td>
<td>Hypothetical harm: Human pathogenic coronaviruses bind to their target cells through angiotensin-converting enzyme 2 (ACE2). Expression of ACE2 is increased in patients treated with ACE inhibitors or ARBs. Increased expression of ACE2 may potentially facilitate COVID-19 infections. Hypothetical benefit: ACE inhibitors or ARBs may have a protective effect against lung damage or may have paradoxical effect in terms of virus binding.</td>
<td>Data are lacking; no evidence of harm or benefit with regards to COVID-19 infection. Clinical trial underway: Initiation of losartan in adult patients with COVID-19 requiring hospitalization; primary outcome measure: sequential organ failure assessment (SOFA) respiratory score. (NCT04312009)</td>
<td></td>
<td>American Heart Association (AHA), American College of Cardiology (ACC), Heart Failure Society of America (HFSA), European Society of Cardiology (ESC) recommend to continue treatment with renin-angiotensin-aldosterone system (RAAS) antagonists in those patients who are currently prescribed such agents. Patients with cardiovascular disease are at an increased risk of serious COVID-19 infections.</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>28:08.04</td>
<td>Speculative link between ibuprofen and increased ACE2 expression leading to worse outcomes in COVID-19 patients, and should NOT be used in patients with COVID-19</td>
<td>None; anecdotal</td>
<td></td>
<td>A letter published in The Lancet Respir Med [1] stated that increased expression of ACE2 could facilitate infection with COVID-19. The letter states that thiazolidinediones and ibuprofen can increase ACE2. No sources have been cited for this. A statement attributed to WHO spokesperson Christian Lindmeier recommending paracetamol and avoiding ibuprofen as a self-medication was widely circulated in the media; however, such a position could not be found on the WHO website or other official sources. WHO has stated "after a rapid review of the literature, is not aware of published clinical or population-based data on this topic.” As of 3/18/20 (via Twitter) “WHO does not recommend against the use of ibuprofen.” https://twitter.com/WHO/status/1240409217997189128</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosagea</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In addition, there have been unsubstan- tiated reports of younger, healthy pa- tients who took ibuprofen and suffered severe outcomes with COVID-19. Official case reports are lacking.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On March 19, 2020, FDA issued a state- ment that it is not aware of scientific evidence connecting the use of NSAIAs, such as ibuprofen, with worsening COVID-19 symptoms. FDA stated that it is investigating this issue further and will communicate publicly when more information is available. FDA also noted that all prescription NSAIA labels warn that by reducing inflammation, and possibly fever, these drugs may diminish the utility of diagnostic signs in de- tecting infections. https://www.fda.gov/drugs/drug-safety-and-availability/fda-advises-patients-use-non-steroidal-anti-inflammatory-drugs-nsaids-covid-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Therefore, currently no compelling evidence to support an association between ibuprofen and negative out- comes in patients with COVID-19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td>28:08.04</td>
<td>Nonsteroidal Anti- inflammatory Agents (NSAIA)</td>
<td>Possible antiviral activity against other coronaviru- ses SARS-CoV & CanineCoV (interferes with viral RNA synthesis) ¹ Speculative; one in vitro & animal model study with other coronaviruses SARS-CoV & CanineCoV ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niclosamide</td>
<td>8:08</td>
<td>Anthelmintic</td>
<td>Broad antiviral activity In vitro evidence of activity against SARS-CoV and MERS-CoV ¹,²</td>
<td>Currently no known published clinical trial data regarding efficacy or safety in the treatment of COVID-19 In drug repurposing screens, was found to inhibit replication and antigen synthesis of SARS-CoV; did not interfere with virion’s attachment into cells ¹,²</td>
<td>Not commercially available in the US No data to date support use in treat- ment of COVID-19</td>
</tr>
</tbody>
</table>

a See US prescribing information for additional information on dosage and administration of drugs commercially available in the US for other labeled indications.
ACE Inhibitors and Angiotensin II Receptor Blockers (ARBs)

Ascorbic acid:

Azithromycin:

Baloxavir:

Chloroquine and Hydroxychloroquine:

Corticosteroids, including methylprednisolone:

Ibuprofen:

Indomethacin:

Lopinavir and Ritonavir:

Neuraminidase Inhibitors (e.g., oseltamivir):

Niclosamide:

Nitric Oxide (inhaled):

Remdesivir:

Sarilumab:

Sirolimus:

Tocilizumab:
