ASHP BEST PRACTICES AWARD

Real-world Clinical Impact of an In-house Dihydropyrimidine Dehydrogenase (*DPYD*) Genotyping Test on Fluoropyrimidine Dosing and Toxicity at a Multisite Cancer Center

Sarah A. Morris, PharmD; D. Grace Nguyen, PharmD, BCPS; Donald C. Moore, PharmD, BCPS, BCOP, DPLA, FCCP; Sarah L. Hanson, PharmD, BCOP; Chris Larck, PharmD, BCOP, CPP; Karine Eboli Lopes, MS; Alicia Hamilton, BS; Simeon Owuor Kwange, MS; Nury Steuerwald, PhD, HCLD (ABB); James Symanowski, PhD; Laura Musselwhite, MD; Kunal C. Kadakia, MD; Brinda Koya, MD; Seungjean Chai, MD; Kwabena Osei-Boateng, MD; Sini Kalapurakal, MD; Jimmy Hwang, MD; Jai N. Patel, PharmD, BCOP, CPP

> Atrium Health Levine Cancer Charlotte, North Carolina

Authors of this presentation disclose the following relationships with commercial interests related to the subject of this poster:

Authors have nothing to disclose.

Introduction

Center

Department of Cancer Pharmacology & Pharmacogenomics (PGx)

DPYD Testing Program Purpose

- and capecitabine

DPYD Testing Program Goal

Levine Cancer

Community-Academic Hybrid Model Cancer

 Care locations across North Carolina and South Carolina

 >18,000 new patients with cancer treated/year

Department of Pharmacy

 60 full time outpatient hematology/oncology pharmacists embedded in most clinic locations

 3 pharmacists with fellowship/residency PGx training

• PGx laboratory with director (PhD), molecular biologists, research associates, and technicians

 One-third of patients develop severe toxicities with fluoropyrimidines (FPs), including 5-fluorouracil (5-FU)

Toxicities can be partly due to genetic variations in DPYD, which encodes for DPD, the catabolic enzyme responsible for the inactivation of FPs

DPYD variant carriers had a 4-fold higher risk of FPrelated toxicity and a 25-fold higher risk of treatmentrelated mortality compared to non-carriers

• Improve patient safety by mitigating FP-related toxicities through identification of DPYD variant carriers and genotype-guided dose reductions

Figure 1. Key barriers identified by stakeholders DPYD genotyping and actions taken by Levine Ca

Phase 2: Pilot *DPYD* testing program

• Clinical *DPYD* genotyping test established and available to those starting (pre-treatment testing) or continuing (reactive testing) FP-based chemotherapy

Figure 2. Multidisciplinary *DPYD* genotyping workflow

Phase 3: Expansion to all clinics and clinical decision support (CDS) integration

- Test results entered as discrete data in electronic medical record (EMR)
- Alerts embedded within chemotherapy order sets • Pre-test alerts: prompt test ordering for patients without DPYD results
- Post-test alerts: prompt dose modification for DPYD variant carriers

Actions
Presentations at section meetings specific presentations (e.g. nurse, pharmacists)
versal testing SOP supported by LCI leadership /data from international organizations (e.g. EMA)
ed in-house genotype test using buccal swab and OP for rapid turnaround of results to clinic
ained institutional and external grant funding
e dose recommendations directly to oncologist Develop interruptive alerts in the EMR
to implementing universal ancer to address these barriers

- fluoropyrimidine-containing regime PharmD educates patient on regimen, rationale
- for DPYD testing, and how it will be used to make therapy decision
- RN collects buccal swab PharmD/RN ships buccal swab and communicates anticipated treatment start date with PGx team

	Step 2: Specimen Received
•	DNA extracted and genotyped
•	Samples are batched and run
	twice weekly
•	Lab sends genotype results to
	PGx team

Experience with the Program

Table 1. Demographics	Total (N=757)	
Age (median, range)	63 (22-94)	
Sex, male (N, %)	410 (54.2%)	
Race (N, %)		
White	559 (73.8%)	
Black	146 (19.3%)	
Other/Unknown	52 (6.9%)	
Hispanic/Latino	32 (4.2%)	
Cancer type (N, %)		
Colorectal	348 (46.0%)	
Non-colorectal GI	320 (42.3%)	
Non-GI/unknown	89 (11.7%)	
Stage (N, %)		
0-11	129 (17%)	
III	225 (29.7%)	
IV	338 (44.6%)	
Unknown	65 (8.6%)	
ECOG performance status		
0	194 (25.6%)	
1	327 (43.2%)	
<u>></u> 2	102 (13.4%)	
Unknown	134 (17.7%)	
Treatment (N, %)		
5-FU based	415 (54.8%)	
Capecitabine-based	256 (33.8%)	
Monotherapy	225 (29.7%)	
Combination regimen	446 (58.9%)	
Did not start FP	86 (11.4%)	
DPYD genotype (N, %)		
Wild type (*1/*1)	712 (94.1%)	
Heterozygous	45 (5.9%)	
*1/c.1236G>A (HapB3)	23 (3.0%)	
*1/c.2846A>T	8 (1.1%)	
*1/c.557A>G	7 (0.9%)	
*1/c.1905+1G>A (*2A)	5 (0.7%)	
*1/c.1679T>G (*13)	2 (0.3%)	

Figure 4. Consort diagram

Table 2. Implementation metrics			
Turnaround time (TAT)	Days		
Overall TAT (median, IQR)	6 (3-7)		
Time from collection-receipt	1 (1-2)		
Time from receipt-report	3 (2-6)		
Timing of testing	Patients (N=4		
Pre-treatment testing (N, %)	621 (82.0%		
DPYD variant carrier rate	32 (5.2%)		
Resulted by treatment start	561 (90.3%		
Reactive testing (N, %)	136 (18.0%		
DPYD variant carrier rate	13 (9.6%)		
Collected on start date	59 (43.4%		
FP modifications in carriers	Carriers (N=		
Pre-treatment testing (N, %)	32 (71.1%		
Dose reduced	27 (89.5%		
Not started	5 (15.6%)		
Reactive testing (N, %)	13 (28.9%		
Dose reduced	9 (69.2%)		
Discontinued	1 (7.7%)		
No change	3 (23.1%)		

Figure 5. Cumulative Incidence of A) Grade 3+ toxicities and B) Hospitalizations

Table 3. Dose intensity, toxicity and hospitalization rates

All patients DPYD wild- testing testing (N=442) type (N=415) carriers carrier (N=16) (N=1	ive ng p ers value 1)
Dose intensity, first dose93.0%94.3%56.9%96.8(mean, range)[25.9-120.5%][25.9-120.5%][41.9-89.5%][84.9-10	% 2.1%] ⁻
Dose intensity, all cycles90.3%91.9%58.1%78.2%(mean, range)1[34.5-120.1%][34.5-120.1%][40.7-90.1%][56.6-98]	% 9.4%] ⁻
FP-related grade 3+ toxicity, N (%)138 (31.2%)126 (30.4%)5 (31.3%)7 (63.6%)	6%) 0.085
Hematological toxicity66 (14.9%)62 (14.9%)1 (6.3%)3 (27.3%)	3%) 0.277
Gastrointestinal toxicity 77 (17.4%) 67 (16.1%) 4 (25%) 6 (54.5	5%) 0.006
Hand-foot syndrome 7 (1.6%) 7 (1.7%) 0 0 0 0	>0.999
Other ² 2 (0.5%) 2 (0.5%) 0 0	>0.999
FP-related hospitalization, N (%)64 (14.5%)53 (12.8%)4 (25%)7 (63.6%)	6%) <0.001
FP-related discontinuation, N (%)41 (9.3%)37 (8.9%)3 (18.8%)1 (9.1	%) 0.281

Discussion / Conclusion

Key Findings

- Median TAT: 3 days from sample received to results
- 6% identified as heterozygous carriers • Pre-treatment: 5% carrier rate • Reactive: 10% carrier rate
- FP dose modified in 100% of pre-treatment carriers who started FP
- DPYD genotype-guided dosing
- Reduced FP-related grade 3+ toxicities in pretreatment carriers (31%) compared to reactive carriers in the present study (64%) and historical carriers receiving full dose FP (70-75%)
- Reduced FP-related hospitalizations in pre-treatment carriers (25%) compared to reactive carriers (64%).

Conclusion

- Implementation of a novel pharmacist-led DPYD testing program with CDS integration is feasible
- Pre-treatment *DPYD* testing with genotype-guided fluoropyrimidine dosing improves patient safety by mitigating severe toxicities and hospitalizations in DPYD variant carriers

Future Directions

- Integrate test ordering in the EMR
- Establish a billing process
- Expand testing across the Advocate Health enterprise
- Conduct a cost-effectiveness analysis
- Discover/validate novel DPYD variants using banked samples and further research maximum tolerated doses for each variant

Acknowledgements

Funded in part by the Heineman Foundation of New York

References

- Morris SA, Moore DC, Musselwhite LW, et al. Addressing barriers to increased adoption of DPYD genotyping at a large multisite cancer center. Am J Health Syst Pharm. 2023;80(19):1342-1349.
- Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018;103(2):210-216. Hertz DL. Assessment of the Clinical Utility of Pretreatment DPYD Testing for Patients
- Receiving Fluoropyrimidine Chemotherapy. J Clin Oncol. 2022;40(33):3882-3892.
- Deenan MJ, Meulendiiks D, Cats A et al. Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J Clin Oncol. 2016;34(3):227-34.
- Henricks LM, Lunenburg CATC, de Man FM et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459-67.
- Henricks LM, van Merendonk LN, Meulendijks D et al. Effectiveness and safety of reduced-dose fluoropyrimidine therapy in patients carrying the DPYD*2A variant: A matched pair analysis. Int J Cancer. 2019;144(9):2347-54.