

Prevention and Management of Drug-Induced QT Interval Prolongation and Torsades de Pointes

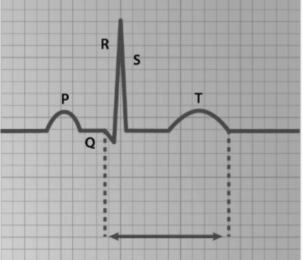
Katy E. Trinkley, Pharm.D., BCACP, FCCPJames E. Tisdale, Pharm.D., BCPS, FACC,Associate ProfessorFAHA, FAPhA, FCCP, FNAPUniversity of ColoradoProfessorPurdue UniversityPurdue University

Disclosures

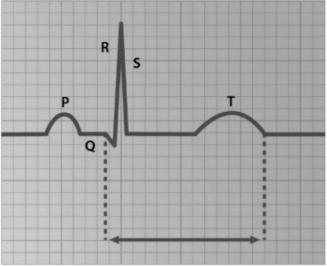
All planners, presenters, reviewers, and ASHP staff of this session report no financial relationships relevant to this activity.

LEARNING OBJECTIVES

- Given a patient with drug-induced torsades de pointes (TdP), distinguish risk factors for drug-induced QTc interval prolongation and TdP and their contribution to the occurrence of TdP.
- Given a patient with drug-induced TdP, describe how this arrhythmia could have been prevented.
- Assess the influence of emerging predictive analytics (validated QT interval prolongation risk scores, clinical decision support systems) on the risk of drug-induced QT interval prolongation.
- Given a patient with drug-induced TdP, develop a patientspecific treatment regimen.



Drug-Induced QT Interval Prolongation and Torsades de Pointes — Culprits, Risk Factors, and Consequences

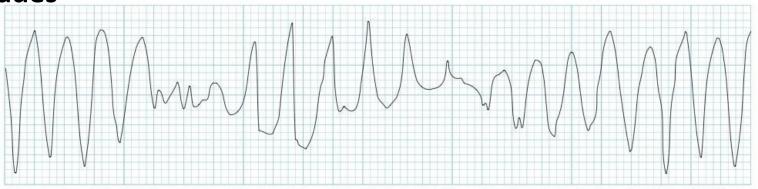

Katy E. Trinkley, Pharm.D., BCACP, FCCP Associate Professor Skaggs School of Pharmacy and Pharmaceutical Sciences School of Medicine University of Colorado

QT Interval Prolongation

Normal QT Interval

Prolonged QT Interval

Bazett's Formula=
$$QT_c = \frac{QT}{\sqrt{RR}}$$



TdP

Normal

Torsades

QTc Interval Prolongation

- QTc interval prolongation
 - -> 480 ms for females
 - -> 470 ms for males
- Increased risk of TdP
 - −QTc ≥ 500 ms
 - QTc increases ≥ 60 ms
 - 5-7% for every 10 ms increase

Circ. 2010;121:1047-60

QT Interval Prolongation and TdP

- Congenital long QT syndrome
 - 1 in 2000 births
- 22% of admissions have prolonged QT intervals
 51% prescribed QT prolonging drugs
- ~13,000 TdP events in the US annually

Intern Med J. 2012;42:933-40 Can Pharm J (Ott). 2016;149:139-52 Eur Heart J Supplements 2001; 3 (Suppl K): K70–K80

TdP

- Rare outcome
 - Big data needed
 - Rely on QT interval prolongation

• Most often studied in hospitalized patients

Self-Assessment

Ernie is a 52 YOF admitted for heart failure who develops TdP

PMH: Heart failure with reduced ejection fraction, chronic back pain, hypertension, GERD, generalized anxiety **Current meds:** Omeprazole, citalopram, lisinopril, tramadol, bisoprolol

Which of the following accurately describes her risk factors for QT interval prolongation?

- Age, citalopram, hypertension
- Hypertension, omeprazole, tramadol
- Bisoprolol, citalopram, heart failure
- Tramadol, heart failure, female

Risk Factors

Risk Factors

- Mechanisms
 - Delayed rectifier potassium current inhibition (I_{KR})
 - Late sodium current enhancement (I_{NaL})
- Modifiable and non-modifiable

Cardiovascular Disease

- Bradycardia
- Stress-related cardiomyopathy
- Acute MI
- Stroke
- Heart failure and reduced ejection fraction

Electrolytes

- Hypokalemia
- Hypomagnesemia
- Hypocalcemia
- Excess licorice
- Apheresis
- Gitelman Syndrome

Endocrine

- Hypothyroidism
- Panhypopituitarism

Autonomic Nervous System

- Pheochromocytoma
- Head-up tilt
- Pure autonomic failure

Emerging Risk Factors

- Environmental
 - Hypothermia
- Inflammatory/Immunity
 - Celiac disease
 - Mechanism
 - CRP, TNF-alpha, IL-6, IL-1

Heart. 2017; 103:1821-9 PloS One. 2014;9:e95994

Other Risk Factors

- Female sex
- Older age
- Genetic
- Propionic acidemia
- Liquid protein diet
- Sickle cell disease
- Drugs

QT Prolonging Drugs

- > 130
- 23% of all outpatients
 -55% of geriatrics
- 3-fold increased risk of sudden cardiac death

Eur Heart J. 2005;26:2007-12 PLoS One. 2016;11:e0155649 Am J Med. 2003;114:135–41

Crediblemeds Risk Categories

Risk Category	Defined		
Known	Prolong QT <u>AND</u> Known TdP risk		
Possible	Prolong QT <u>BUT</u> Lack evidence for TdP risk when taken as recommended		
Conditional	Known TdP risk <u>BUT</u> Only under certain conditions <u>OR</u> By creating conditions that increase TdP risk		
Avoid in LQTS	High TdP risk for congenital LQTS Includes all categories above plus drugs that do not prolong QT but have special risk because of other actions		

Newer Drugs of Concern

- Tramadol
- Memantine
- Cimetidine
- Aclarubicin
- Apalutamide
- Abarelix
- Amsacrine

- Maprotiline
- Zuclopenthixol
- Clotiapine
- Lacidipine
- Metolazone
- Propafenone
- Eperisone

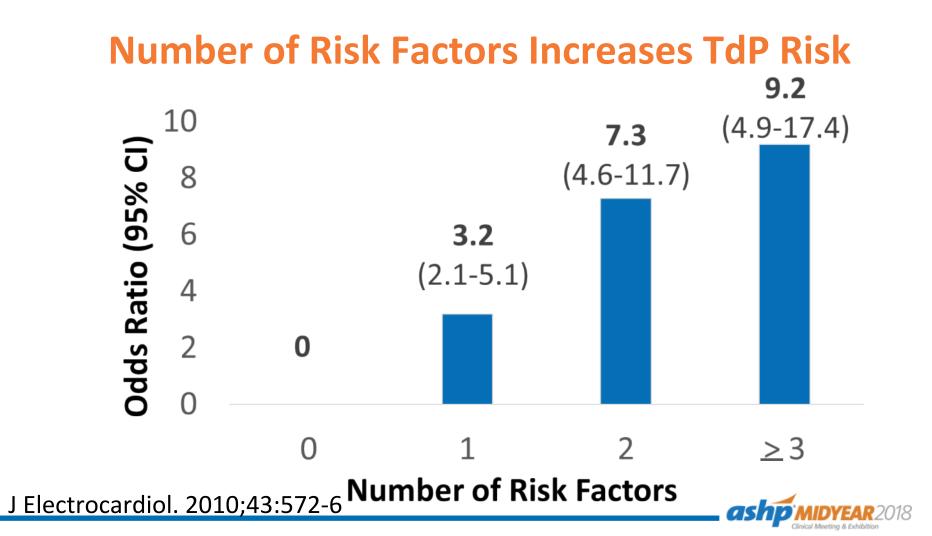
Increased Risk of Drug-Induced TdP

- Higher serum concentrations
 - IV administration
 - Inadequate renal dose adjustment
 - Drug interactions
- > 1 QT interval prolonging drug
- Presence of other risk factors

Can Pharm J (Ott). 2016;149:139-52

Drug Induced TdP

- Review of 249 drug-induced TdP events
 - -~100% \geq 1 risk factor -71% \geq 2 risk factors


Weighing the Risk

Risk factor	Change in QTc Interval (ms)	
	Inpatients	Outpatients
Baseline QT interval >450ms	N/A	28
Hypokalemia	14.7-24.1	N/A
Hypocalcemia	8.1-20.4	N/A
Female sex	13.9	12
QT prolonging drug	11.1	5
Loop diuretic	10.1	N/A
Older age	>10	3

J Eval Clin Pract. 2017;23:1274-80

Eur J Clin Pharmacol. 2018;74:183-91

Case Study

Betty is a 52 YOF admitted for heart failure who develops TdP

PMH: Heart failure with reduced ejection fraction, chronic back pain, hypertension, GERD, generalized anxiety **Current meds:** Omeprazole, citalopram, lisinopril, tramadol, bisoprolol

Which of the following accurately describes her risk factors for QT interval prolongation?

- Age, citalopram, hypertension
- Hypertension, omeprazole, tramadol
- Bisoprolol, citalopram, heart failure
- Tramadol, heart failure, female

Which of the following could have decreased the risk of Betty developing TdP?

- Give potassium prophylactically on admission
- Use alternatives to citalopram and tramadol
- Use pantoprazole instead of omeprazole
- Use ranitidine instead of omeprazole

After Discharge: Primary Care Considerations

- Does GERD require a PPI?
- Are alternative PPIs affordable?
- Benefit vs risk of switching/stopping antidepressant?
- Alternatives to tramadol?

KEY TAKEAWAYS

1) KEY TAKEAWAY

There are many known and emerging risk factors for drug-induced TdP

2) KEY TAKEAWAY

Some drugs and risk factors convey greater risk of TdP than others

3) KEY TAKEAWAY

Nearly all instances of drug-induced TdP are associated with at least one other risk factor and the risk can often can be mitigated

Reducing the Risk of Drug-Induced QT Interval Prolongation and Torsades de Pointes

James E. Tisdale, Pharm.D., BCPS, FCCP, FAPhA, FNAP, FAHA, FACC Professor, Purdue University, College of Pharmacy and Adjunct Professor, Indiana University, School of Medicine

Financial Relationships and Disclosures

- No industry relationships or other financial disclosures
- Volunteer (unpaid) member, Advisory Board, QT Drugs list, www.crediblemeds.org

PATIENT CASE

• Chief complaint:

- 65 year-old woman presents to ED with weakness, diminished urine production, and diarrhea
- Admitted to hospital with:
 - Acute kidney injury
 Urinary tract infection

PATIENT CASE

- History of Present Illness:
 - Discharged from hospital 8 days prior to this admission after receiving treatment for osteomyelitis of the left hip

• Past Medical History:

- \circ Hypertension
- Chronic stable angina
- $\,\circ\,$ Systemic lupus erythematosus
- Allergies:
 - Penicillin (reaction not documented)

Clin Pharmacol Ther 2004;75:242-7.

PATIENT CASE

• Medications Prior to Admission:

- \circ Ciprofloxacin 500 mg orally twice daily
- Vancomycin 1g IV every 8 hours
- $\,\circ\,$ Ranitidine 150 mg orally twice daily
- Lisinopril 40 mg orally once daily
- $\,\circ\,$ Metoprolol XL 100 mg orally once daily
- $\circ\,$ HCTZ 25 mg orally once daily
- $\,\circ\,$ Fexofenadine 60 mg orally twice daily

- Select Laboratory Values on Admission:
 - Na⁺⁺ = 143 mEq/L
 - \circ K⁺ = 2.9 mEq/L
 - \circ Mg⁺⁺ = 1.4 mg/dL
 - Serum creatinine = 7.9 mg/dL
 - \circ BUN = 34 mg/dL

Clin Pharmacol Ther 2004;75:242-7.

- Medications Initiated in the Hospital:
 - $\,\circ\,$ Ciprofloxacin and vancomycin discontinued
 - Potassium supplementation
 - \circ Hydroxyzine 200 mg orally twice daily
 - \circ Metoprolol 100 mg orally twice daily
 - \circ Ranitidine 150 mg orally twice daily
 - $\odot\,$ Clonidine intermittently for hypertensive urgency
 - Hydroxychloroquine 200 mg orally twice daily
 - \circ Levofloxacin 250 mg orally once daily

Clin Pharmacol Ther 2004;75:242-7.

- On Day #3 of Hospitalization:
 - $\circ\,$ ECG in the morning:
 - ✤QTc interval = 605 ms
 - **12:50 pm:**
 - Patient found unresponsive
 - Placed on telemetry monitor Torsades de pointes
 - \circ Received MgS04 2g IV:
 - Arrhythmia terminated, patient regained consciousness

Which one of the following drugs is the most likely culprit in causing drug-induced torsades de pointes in this patient?

Clonidine

- Levofloxacin
- Metoprolol
- Ranitidine

- On Day #3 of Hospitalization:
 - \circ 2:30 pm
 - Telemetry monitor alarm sounded: Torsades de pointes
 - Patient found pulseless
 - TdP terminated spontaneously
 - Patient was intubated and transferred to ICU

- On Day #3 of Hospitalization:
 - \circ 3:50 pm

Telemetry monitor alarm sounded: Torsades de pointes
Patient found pulseless

Patient underwent defibrillation, sinus rhythm restored

Which one of the following is therapies is most likely to facilitate termination of TdP in this patient?

- Synchronized direct current cardioversion
- Isoproterenol 2-10 mcg/min continuous IV infusion
- Lidocaine 1-1.5 mg/kg IV, then 3 mg/min IV infusion
- Magnesium sulfate 1-2 g IV over 15 minutes

- On Day #3 of Hospitalization:
 - **3:55 pm**
 - Telemetry monitor alarm sounded: Ventricular fibrillation
 - Patient underwent defibrillation x 3
 - MgSO4 2g IV administered
 - Sinus rhythm restored

COULD THIS CASE HAVE BEEN PREVENTED? COULD IT HAVE BEEN PREDICTED?

This patient's TdP risk factors:

- \circ Female
- \circ 65 years old
- o Hypokalemia
- o Hypomagnesemia
- Multiple QT-prolonging drugs
 - Hydroxychloroquine
 - Hydroxyzine
 - Levofloxacin

 Inadequate dose adjustment of levofloxacin for acute kidney injury

PREDICTIVE ANALYTICS

- Generates predictions using techniques including data mining, modeling, machine learning, and others
- Can be used to develop methods of risk quantification and prediction of QT interval prolongation and/or TdP
- Predictive analytics have also been incorporated into clinical decision support (CDS) tools to alert clinicians regarding patients at increased risk of developing QTc interval prolongation

Pediatr Clin North Am 2016;63:357-366 Pharmacotherapy 2018;38:813-821.

Pro-QTC Score - Mayo Clinic

- Institution-wide computer-based QT alert system was implemented at Mayo Clinic
- System screens all ECGs and alerts clinicians if QTc interval is 500 ms
- A "pro-QTc" score was developed

Diagnoses/Conditions Included in Mayo Clinic Pro-QTc Risk Score

Acute coronary syndrome	Hypoglycemia	Post-syncope or seizure	
Anorexia nervosa/starvation	Intoxication with QT- prolonging drugs	Stroke, SAH, head trauma	
Bradycardia (HR < 45 bpm)	Congenital long QT syndrome	Hypokalemia	
HFrEF	Pheochromocytoma	Hypomagnesemia	
Diabetes mellitus	Kidney dialysis	Hypocalcemia	
Female sex	Post-conversion of AF to sinus rhythm	≥ 1 drug from crediblemeds list within ≤ 7 days	
Hypertrophic cardiomyopathy	Post-cardiac arrest		
Each factor assigned a score of 1			

Mayo Clin Proc 2013;88:315-325.

Mayo Clinic Pro-QTc Risk Score

- 99% of n=470 patients with QTc ≥ 500 ms had ≥ 1 risk factor (excluding female sex)
- In patients with with QTc \geq 500 ms, mean pro-QTc risk score = 3.1 ± 16
- Score > 4 predicted mortality
 - Hazard ratio 1.72 (95% CI 1.11-2.66, p< 0.001)
- Components of the risk score significantly associated with death;
 - # of QTc-prolonging medications
 - o Electrolyte abnormalities

Mayo Clin Proc 2013;88:315-325.

Development and Validation of a Risk Score to Predict QT Interval Prolongation in Hospitalized Patients

James E. Tisdale, Heather A. Jaynes, Joanna R. Kingery, Noha A. Mourad, Tate N. Trujillo, Brian R. Overholser and Richard J. Kovacs

- Objective:
 - Develop and validate a risk score to identify hospitalized patients at highest risk of QT_c interval prolongation

Development and Validation of a Risk Score to Predict QTc Interval Prolongation

- Prospective, observational study in n=1200 patient admissions to two 28-bed CCUs over a 1-year period
- Risk score developed in first 900 patients
- Validated in subsequent 300 patients

Development and Validation of a Risk Score to Predict QTc Interval Prolongation

Definition of QT Interval Prolongation

- QTc interval <u>></u> 500 ms at anytime during hospitalization
- Change in QTc interval <u>></u> 60 ms from value on admission

Development and validation of a Kisk Score to Predict QTC interval

Prolongation Independent Risk Factors for QTc Interval Prolongation

Variable	Odds ratio	р
Age ≥ 68 years	1.3 (1.0-1.9)	0.04
Female sex	1.5 (1.1-2.0)	0.03
Loop diuretic	1.4 (1.0-2.0)	0.007
Serum K⁺ <u><</u> 3.5 mEq/L	2.1 (1.5-2.9)	<0.001
Admitting QTc <u>></u> 450 ms	2.3 (1.6-3.2)	<0.001
Acute MI	2.4 (1.6-3.9)	<0.001
2 QTc-prolonging drugs	2.6 (1.9-5.6)	0.02
Sepsis	2.7 (1.5-4.8)	0.002
Heart failure	2.7 (1.6-5.0)	<0.001
One QTc-prolonging drug	2.8 (2.0-4.0)	<0.001

Development and validation of a Kisk Score to Predict Qrc interval

Prolongation Calculation of Risk Score for QTc Interval Prolongation

Risk Factor	Points
Age \geq 68 years	1
Female sex	1
Loop diuretic	1
Serum K+ <u><</u> 3.5 mEq/L	2
Admitting QTc <u>></u> 450 ms	2
Acute MI	2
≥ 2 QTc-prolonging drugs	3
Sepsis	3
Heart failure	3
One QTc-prolonging drug	3
Maximum risk score	21
Circ Cardiovasc Qual Outcomes 2013;6:479-487.	Clinical Meeting & Exhibition

)18

Development and Validation of a Risk Score to Predict QTc Interval Prolongation

QTc Interval Risk Score Stratification

Risk score category	Risk score	QTc prolongation in derivation group	QTc prolongation in validation group
Low	< 7	51%	53%
Moderate	7-10	35%	34%
High	≥11	14%	13%

ROC AUC (c-statistic) = 0.832

Development and Validation of a Risk Score to Predict QTc Interval Prolongation

QTc Interval Risk Score Stratification

Risk category	Sensitivity	Specificity	+ Predictive value	- Predictive value
Moderate	0.67	0.88	0.55	0.88
High	0.74	0.77	0.79	0.76

Development and Validation of a Risk Score to Predict QTc Interval Prolongation

- A risk score using easily obtainable clinical risk factors predicts patients at highest risk for QTc interval prolongation during hospitalization
- May be useful for guiding monitoring and treatment decisions

RISQ-PATH Score - Belgium

Risk Factor	Points assigned
K+ \leq 3.5 mEq/L Baseline QTc \geq 450 ms (males) or 470 ms (females)	6 points each
Age ≥ 65 years Female sex Smoking Ischemic cardiomyopathy Hypertension Arrhythmia Thyroid disturbances $Ca^{2+} < 8.6 mg/dL$ For each "list 1" crediblemeds drug	3 points each
BMI ≥ 30 kg/m ² Liver failure CRP > 5 mg/L	1 point each
Neurological disorders Diabetes GFR ≤ 30 mL/min For each "list 2" crediblemeds drug	0.5 points each
For each "list 3" crediblemeds drug	0.25 points each
Maximum total	40.5 + sum QT drugs
nt J Clin Pharm 2017;39:424-432.	aship midye

RISQ-PATH Score - Belgium

Low risk score defined as < 10

Measure	Result
ROCAUC	0.72 (95% CI 0.62-0.81)
Sensitivity	96.2% (78.4-99.8%)
Specificity	32.9% (25.6-41.0%)
Positive predictive value	19.7% (13.4-27.9%)
Negative predictive value	98.0% (88.2-99.9%)

Int J Clin Pharm 2017;39:424-432.

- Secondary analysis of R, DB, PC crossover trial of 3 QT intervalprolonging drugs with n=15 time-matched QT and plasma drug concentrations
 - \circ Dofetilide
 - \circ Quinidine
 - \circ Ranolazine
 - Placebo
- Genetic analysis of n=22 subjects was performed
- Genetic score comprised n=61 common genetic variants
- Correlated with slope of subject's drug-induced increase in QTc vs drug concentration

- Secondary analysis of R, DB, PC crossover trial of 3 QT interval-prolonging drugs with n=15 time-matched QT and plasma drug concentrations
 - \circ Dofetilide
 - \circ Quinidine
 - \circ Ranolazine
 - o Placebo
- Genetic analysis of n=22 subjects was performed
 n=17 European descent, n=4 African descent, n=1 Asian descent
- Genetic score comprised n=61 common SNPs with previously established effects on QT interval from a large GWAS
- Correlated with slope of subject's drug-induced increase in QTc vs drug concentration

Nat Genet 2014;46:826-836; Circulation 2017;135:1300-1310.

Subjects of European descent (n=17)

	r (95% CI)	р	r ²
Genetic score vs baseline	0.52 (0.05 to 0.80)	0.03	0.27
Genetic score vs dofetilide QTc slope	0.55 (0.09 to 0.81)	0.02	0.30
Genetic score vs quinidine QTc slope	0.48 (-0.03 to 0.79)	0.06	0.23
Genetic score vs ranolazine slope	0.52 (0.05 to 0.80)	0.03	0.27

Subjects of African descent (n=4)

	r (95% CI)	р	r ²
Genetic score vs baseline	0.97 (0.11 to 1.00)	0.03	0.94
Genetic score vs dofetilide QTc slope	0.97 (0.12 to 1.00)	0.03	0.94
Genetic score vs quinidine QTc slope	0.18 (-0.94 to 0.97)	0.82	0.03
Genetic score vs ranolazine slope	0.55 (-0.87 to 0.99)	0.45	0.30

- Tested risk score in:
 - n=216 patients who had experienced TdP
 - n=771 controls who had not experienced TdP
- Genetic risk score was associated with significantly increased risk of TdP
 - p=1.3 x 10⁻⁷
 - \circ r² = 0.12

Effectiveness of a Clinical Decision Support System for Reducing the Risk of QT Interval Prolongation in Hospitalized Patients James E. Tisdale, Heather A. Jaynes, Joanna R. Kingery, Brian R. Overholser, Noha A. Mourad, Tate N. Trujillo and Richard J. Kovaes

- A CDS was developed incorporating our validated risk score for QT interval prolongation
- Tested in a pre-post interventional design
- n=3140 consecutive patient admissions to the 2 x 28-bed CCUs at IU Health Methodist Hospital
- Exclusion criteria:
 - Age < 18 years (n=10)
 - ECG rhythm of complete ventricular pacing (n=215)
 - Designation of outpatient in a bed or < 24 hour stay (n=524)
- After applying exclusion criteria, n=2400 patients enrolled

Computer Alert Screen Appearance

Alert text:

Based on the following parameters, this patient is at greater than 80% increased risk of developing QTc prolongation.

NAME:

RISK SCORE: 12.00

Risk Factor	Result	Points
High risk triggering medication	procainamide	2.00
Concomitant therapy with ≥ 1 higher risk QT c medication	IV amiodarone	5.00
Concomitant therapy with ≥ 1 QTc medication	No Qualifying Orders	0.00
Serum K ⁺ < 3.5 mEQ/L	4.6 mEQ/L	0.00
Thiazide or loop diuretic active order	No Qualifying Orders	0.00
Serum creatinine	Not applicable	N/A
CrCl < 50 mL/min and active renally eliminated medication	No Active RENAL Medication Orders	0.00
Gender = Female	Male	0.00
Age≥65	62	0.00
Troponin-I > 0.2 ng/mL or diagnosis of acute MI	True	2.00
Diagnosis of Heart Failure	False	0.00
Diagnosis of Sepsis	False	0.00
Current QTc interval > 450 ms	484 ms	3.00

Recommend the following Action Steps based on a Risk Score of: 12.00

Score > 11 High Risk Evaluate all QTc interval-prolonging meds for possible DC

ADE_SYN_CK_TORSADES_RISK AG1 WP_SYN_TORSADES_HIGH3

Incorporation of Predictive Analytics into Clinical Decision Support (CDS) Tools Primary Outcome Measures

- Odds of developing QT_c prolongation following intervention
- Odds of receiving a QT prolonging medication in patients at risk for or presenting with QT_c prolongation
- Odds of receiving a non-cardiac QT prolonging medication in patients at risk for or presenting with QT_c prolongation

	Adjusted odds ratio (95% CI)	р
QTc interval > 500 ms or <u>></u> 60 ms change from admitting value	0.65 (0.56-0.89)	<0.0001
Prescribing of any QTc interval-prolonging drug	0.87 (0.77-1.12)	0.13
Prescribing of any non-cardiac QTc interval- prolonging drug	0.79 (0.63-0.91)	0.03

Limitations

- Conducted in two cardiac care units at one institution generalizability/external validity?
- Pre-post design can introduce temporal bias
- Influence of education phase?

Conclusions

 A computerized CDS system incorporating a validated risk score for QT interval prolongation influences the prescribing of QT-prolonging drugs and reduces the risk of QT interval prolongation in hospitalized patients with TdP risk factors

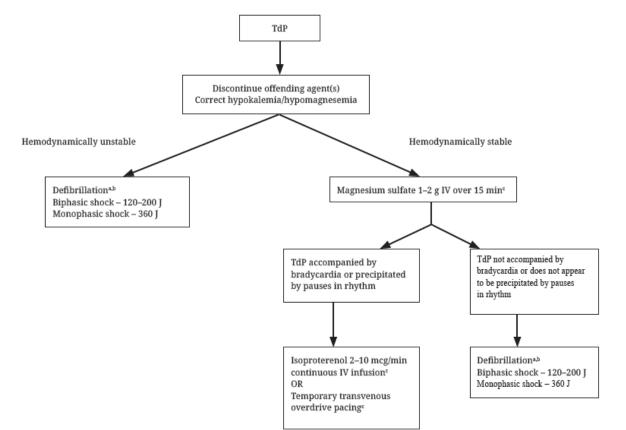
Incorporation of Predictive Analytics into Clinical Decision Support (CDS) Tools Mayo Clinic CDS Alert

- Notifies clinicians when patient has QTc ≥ 500 ms
- Alert was sent for n=2% of adult patients
 - Resulted in a 13.9% decrease in administration of QTc intervalprolonging medications
- n=5% of pediatric patients had QTc ≥ 500 ms
 - $\circ~$ Identified a child with previously undiagnosed congenital LQTS
 - Prescribers changed ~80% of QTc interval-prolonging medications after receiving the alert

Mayo Clin Proc 2013;88:315-325 J Med Syst 2017;41:161 Pediatr Cardiol 2015;36:1350-1356.

Mayo Clinic CDS Alert

- In Emergency Department
 - Alert was activated in 1.2% of patients
 - Identified one patient with previously undiagnosed congenital LQTS
 - Mortality was higher in ED patients identified by the QT alert
 13.0% vs 3.7%, p<0.001


J Emerg Med 2018;54:8-13.

• Outcome:

- $\,\circ\,$ Levofloxacin discontinued
- $\odot~$ K⁺ and Mg²⁺ replaced aggressively
- o 24 hours later:
 - ✤ QTc = 399 ms
- $\,\circ\,$ No additional episodes of TdP
- $\,\circ\,$ Discharged to home on day 9

Management of Torsades de Pointes

Acute Management of Arrhythmias, In: Erstad B, ed. Critical Care Pharmacotherapy. ACCP 2016;1244-1281. Used with permission from the American College of Clinical Pharmacy

Reducing the Risk of Drug-Induced QT Interval Prolongation and Torsades de Pointes

- Know drugs that are associated with QT prolongation and TdP (<u>www.crediblemeds.org</u>)
- Monitor risk factors for QT prolongation and TdP
- Where possible, quantify risk with appropriate risk score
- Where possible avoid QT-prolonging drugs in patients with risk factors
- Be attentive to drug interactions/dose adjustment for kidney disease where appropriate

Clin Pharmacol Ther 2004;75:242-7.

KEY TAKEAWAYS

1) KEY TAKEAWAY

Risk of QTc interval prolongation and torsades de pointes can be quantified with published risk scores, the use of which guide monitoring and treatment decisions in patients taking QTc interval-prolonging drugs

2) KEY TAKEAWAY

Drug-induced torsades de pointes should be managed by discontinuing QTc intervalprolonging drugs whenever possible, defibrillation (not synchronized cardioversion) for hemodynamically unstable patients, and administration of intravenous magnesium for hemodynamically stable patients

3) KEY TAKEAWAY

Clinical decision support (CDS) tools can be developed to alert clinicians when patients are at risk for QTc interval prolongation, and implementation of CDS alerts have been shown to reduce the risk of QTc interval prolongation

JEN Limited time only

> Chocolate & Crème and Golden Raisin & Crème Torsades Flaky croissant with French pastry crème