

Jeremy DeGrado, Pharm.D., BCCCP, BCPS Medical ICU Clinical Pharmacy Specialist Brigham and Women's Hospital Boston, MA

Heather Torbic, Pharm.D., BCCCP, BCPS Medical ICU Clinical Pharmacy Specialist Cleveland Clinic Cleveland, OH

Disclosure

All planners, presenters, and reviewers of this session report no financial relationships relevant to this activity.

Learning Objectives

- Compare and contrast 2016 guidelines compared to 2012, specifically with regard to definitions and early goal-directed therapy.
- Given a patient case, describe various methods of hemodynamic assessment and possible pharmacotherapy options for support.
- Describe the impact of various regulations on local sepsis guideline and protocol development.
- Apply and interpret international guidelines.

Case

- KB is a 67 year old male (83 kg) who presents from an inpatient rehabilitation facility with AMS, T39.0°C, and BP 103/75. PMH significant for T2DM, ESRD on IHD, and underwent a left BKA 2 weeks ago for a non-healing foot ulcer.
- In the ED his HR is 117 beats/min, BP 85/58 mm Hg (MAP 67 mm Hg), Hgb 7.3 g/dL, Hct 23%, Na 144 mEq/L, K 4.8 mEq/L, Cl 112 mEq/L, and lactate 4.1 mmol/L. There is a foul odor and green discharge coming from the incision site on his left leg.
- Does KB have SIRS, sepsis, severe sepsis, or septic shock?

- Leading cause of mortality and critical illness worldwide
- Septic shock
 - Incidence: 19 cases/1000 hospitalizations
 - Mortality: 40-50%
- 2011 \$20 billion of US hospital costs
- CMS Core Measure affecting reimbursement
- Survivors often suffer from long-term sequelae

Singer M, et al. *JAMA*. 2016;315(8):801-810. Kadri SS, et al. *Chest*. 2017;151(2):278-285.

Evolving Sepsis Definitions

1991	Systemic Inflammatory Response Syndrome Sepsis Severe Sepsis Sentic Shock
	Septic Shock
2001	•Systemic Inflammatory Response Syndrome •Sepsis •Severe Sepsis •Septic Shock
2012	•Sepsis •Severe Sepsis •Septic Shock
2016	•Sepsis •Septic Shock
l. 2003; 29:530-538 013; 41:580-637.	8.

Levy MM, et al. *Intensive Care Med.* 2003; 29:530-538 Dellinger RP, et al. *Crit Care Med.* 2013; 41:580-637. Singer M, et al. *JAMA*. 2016;315(8):801-810.

Centers for Medicare and Medicaid Services

European Society of Intensive Care Medicine

> Society of Critical Care Medicine

Sepsis

Definitions

SEPSIS-3 Sepsis Definition

- Suspected/documented infection plus:
 - Acute increase of ≥ 2 Sequential [Sepsis-Related] Organ Failure Assessment (SOFA) score points
- Quick SOFA(qSOFA)
 - RR \geq 22 breaths/min
 - Altered mentation
 - SBP \leq 100 mmHg
- *If ≥ 2 qSOFA points exist, evaluate for organ failure

SEPSIS-3 Septic Shock Definition

- Sepsis plus:
 - Persisting hypotension requiring vasopressors to maintain MAP ≥ 65 mm Hg

-AND-

Blood lactate >2 mmol/L despite adequate volume resuscitation

CMS SEP-1 Definitions

Sepsis	Suspected infection + ≥ 2 SIRS criteria
Severe Sepsis	Sepsis + lactate > 2 or ≥ 1 variable of organ dysfunction
Septic Shock	Severe sepsis + lactate > 4 or hypoperfusion despite fluid resuscitation

Organ dysfunction variables:

SBP < 90, MAP < 70, SBP decrease > 40 from baseline, Scr > 2, UOP < 0.5 ml/kg/hr > 2 hr, bilirubin > 2, platelets < 100,000, INR > 1.5, PTT > 60, altered mental status

- KB is a 67 year old male (83 kg) who presents from an inpatient rehabilitation facility with AMS, T39.0°C, and BP 103/75. PMH significant for T2DM, ESRD on IHD, and underwent a left BKA 2 weeks ago for a non-healing foot ulcer.
- In the ED his HR is 117 beats/min, BP 85/58 mm Hg (MAP 67 mm Hg), Hgb 7.3 g/dL, Hct 23%, Na 144 mEq/L, K 4.8 mEq/L, Cl 112 mEq/L, and lactate 4.1 mmol/L. There is a foul odor and green discharge coming from the incision site on his left leg.
- Does KB have SIRS, sepsis, severe sepsis, or septic shock?

	SEPSIS-3	CMS SEP-1
Sepsis	Quick SOFA(qSOFA) -RR ≥ 22 breaths/min -Altered mentation -SBP ≤ 100 mmHg	Suspected infection $+ \ge 2$ SIRS criteria
Severe Sepsis	n/a	Sepsis + lactate > 2 or ≥ 1 variable of organ dysfunction
Septic Shock	Sepsis + Hypotension requiring vasopressors to maintain MAP ≥ 65 mm Hg + Lactate >2 mmol/L despite adequate volume resuscitation	Severe sepsis + lactate > 4 or hypoperfusion despite fluid resuscitation

Centers for Medicare and Medicaid Services

European Society of Intensive Care Medicine

> Society of Critical Care Medicine

Sepsis

Management

Early Goal Directed Therapy

Single center prospective randomized controlled trial			
Adults presenting to the ED with severe sepsis, septic shock, or the sepsis syndrome			
Arterial and central venous catheterization			
 Standard therapy CVP ≥ 8-12 mm Hg MAP ≥ 65 mm Hg UOP ≥ 0.5 ml/kg/hr 	EGDT \ge 6 h & continuous ScvO ₂ monitoring • CVP \ge 8-12 mm Hg • MAP \ge 65 mm Hg • UOP \ge 0.5 ml/kg/hr • ScvO ₂ \ge 70 %		
 In-hospital mortality: EGDT 30.5% vs. Control 46.5%, P=0.009 Resuscitation endpoints favored EGDT 			
	Single center prospective Adults presenting to the sepsis syndrome Arterial an Standard therapy • $CVP \ge 8-12 \text{ mm Hg}$ • $MAP \ge 65 \text{ mm Hg}$ • $UOP \ge 0.5 \text{ ml/kg/hr}$		

CELEBRATING YEAR

Early Goal Directed Therapy

	ProCESS	ARISE	PROMISE	
Methods	EGDT vs. Protocol vs. Usual Care	EGDT vs. Usual Care	EGDT vs. Usual Care	
Results	 60-day Mortality: 21.0% vs. 18.2% vs. 18.9% (p=0.83) More renal failure in protocol group (p=0.04) 	 90-day Mortality: 18.6% vs. 18.8% (p=0.90) More vasopressor use in EGDT group 	 90-day Mortality: 29.5% vs. 29.2% (p=0.90) More fluids and vasopressor use in EGDT group 	
Conclusion	 No mortality benefit with EGDT Patients randomized to EGDT received more invasive monitoring, more fluids/PRBC/vasopressors, and more advanced support 			

Yealy DM, et al. *N Engl J Med*. 2014; 370:1683-1693. ARISE investigators. *N Engl J Med*. 2014; 371:1496-1506. Mouncey PR, et al. *N Engl J Med*. 2015; 372:1301-1311.

Surviving Sepsis Campaign Guidelines

2012

- Early goal directed therapy
- Sepsis bundles/ protocolized care

2016

- Early recognition, treatment, and reassessment
- Decreased emphasis on EGDT and protocolized care
- More comprehensive antimicrobial recommendations

Dellinger RP, et al. *Crit Care Med.* 2013; 41:580-637. Rhodes A, et al. *Crit Care Med.* 2017; (43)3:304-377.

CMS SEP-1 Guidelines

Mithin 2 hours of Alassu	•	
presentation Admin	re lactate cultures prior to otics ister antibiotics	 Measure lactate Obtain cultures prior to antibiotics Administer antibiotics Administer 30 mL/kg crystalloids
Within 6 hours of presentation • Repeat lactate if initial is > 2		 Repeat volume status and tissue perfusion assessment Administer vasopressors (if still hypotensive after fluids

CELEBRATING / YEAR:

CMS SEP-1 Guidelines

Included Populations	Excluded Populations	
 Age ≥ 18 years old ICD-10 Code: Sepsis Severe Sepsis Septic Shock 	 Comfort Care Directive Within 3 hours of severe sepsis Within 6 hours of septic shock Length of stay > 120 days Transfer from outside acute care facility Death Within 3 hours of severe sepsis Within 6 hours of septic shock 	

Available from: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/qualitymeasures/core-measures.html

SSC Guidelines Fluid Selection

- Best Practice Recommendations
 - Use fluid challenge technique as long as hemodynamics continue to improve
- Strong Recommendations
 - Crystalloids for initial resuscitation and subsequent volume replacement
 - Avoid hydroxyethyl starches
- Weak Recommendations
 - Balanced crystalloids or saline for initial resuscitation
 - Albumin for initial resuscitation if requiring substantial amounts of crystalloids

Fluid Selection

SSC Guidelines

- Crystalloids for initial resuscitation and subsequent volume replacement
- Avoid hydroxyethyl starches
- Balanced crystalloids or saline for initial resuscitation
- Albumin for initial resuscitation if requiring substantial amounts of crystalloids

CMS SEP-1

- Resuscitation with 30 ml/kg of <u>crystalloid</u> therapy only
 - Initiated within 3 hours of presentation with septic shock
 - Actual body weight
 - Infusion rate ≥ 125 ml/hr

Rhodes A et al. Crit Care Med. 2017; (43)3:304-377.

Available from: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/qualitymeasures/core-measures.html

Choice of Fluid

Colloids Balanced Unbalanced Crystalloids • Sodium Modified Lactated Sodium chloride chloride gelatins Ringers 0.9% 0.9% • Plasma-Lyte • Dextran Colloids Lactated Albumin • Hartmann's Ringers solution • Hypertonic Hydroxyethyl • Hypertonic saline starches saline

Finfer S et al. *N Engl J Med*. 2004; 350(22):2247-2256. Perel P, Roberts I, Ker K. *Cochrane Database Syst Rev*. 2013; 2:CD000567. Morgan TJ. *Curr Opin Crit Care*. 2013; 19(4):299-307.

Crystalloids vs. Colloids

- No evidence that colloids are better than crystalloids for fluid resuscitation in ICU, trauma, burn, or postoperative patients
 - Mortality
 - Pulmonary edema
 - Length of stay
- Larger well-designed randomized trials are needed to achieve sufficient power to detect potentially small differences in treatment effects if they truly exist

Choi PT, et al. *Crit Care Med*. 1999; 27:200-210. Perel P, Roberts I, Ker K. *Cochrane Database Syst Rev*. 2013; 2:CD000567.

SAFE Study

Methods	 Adult ICU patients requiring fluids to maintain/increase intravascular volume 4% albumin vs. Sodium chloride 0.9%
Results	 Mortality: Albumin 726 deaths v. 729 deaths; Relative risk of death 0.99; 95% CI 0.91-1.09; P=0.87 No difference in new organ failure, need for renal replacement therapy, duration of mechanical ventilation, and ICU or hospital length of stav

SAFE Study – Subgroup Analysis

Subgroup	4% Albumin	Sodium Chloride 0.9%	Relative Risk (95% CI)	P value
Trauma	81/596 (13.6%)	59/590 (10.0%)	1.36 (0.99-1.86)	0.006
Severe sepsis	185/603 (30.7%)	217/615 (35.3%)	0.87 (0.74-1.02)	0.09
Acute respiratory distress syndrome	24/61 (39.3%)	28/66 (42.4%)	0.93 (0.61-1.41)	0.72

CELEBRATING YEAR

SAFE study investigators. N Engl J Med. 2004; 350(22):2247-2256.

ALBIOS Study

Is there a mortality benefit when maintaining serum albumin levels $\geq 3.0 \text{ g/dL}$ in patients with severe sepsis?

Methods	 Adult ICU patients with severe sepsis 20% albumin + crystalloid to maintain albumin ≥ 3.0 g/dL vs. crystalloid
Results	 28-Day Mortality: Albumin 31.8% vs. Crystalloid 32.0%; Relative risk of death 1.00; 95% CI 0.87-1.14; P=0.94 Albumin group had a higher MAP (P=0.03) and lower net fluid balance (P<0.001) in the first 7 days No difference in 90-day mortality, new organ failure, need for renal replacement therapy, duration of mechanical ventilation, and ICU or hospital length of stay

Balanced vs. Unbalanced Fluids

- Unbalanced fluids routinely used for initial resuscitation in sepsis
 - May induce hyperchloremia and metabolic acidosis
- Balanced fluids more similar electrolyte composition to plasma
 - Associated with reduced perioperative mortality and ICU morbidity

Neyra JA, et al. *Crit Care Med*. 2015; 43:1938-1944. Shaw AD, et al. *Intensive Care Med*. 2014; 40:1897-1905. Zampieri, FG et al. *Crit Care Med*. 2016; 44:2163-2170.

Hyperchloremia

Hyperchloremia (Cl \ge 110 mEq/L) at admission and persisting at ICU day 3 associated with increased mortality

– OR 1.38; 95%CI 1.13-1.68; p=0.002

Resuscitation with lower CI load is associated with lower mortality

- 3.5% (Δ0-10 mmol/L) vs. 9.7% (Δ30-40 mmol/L), p<0.001

Neyra JA, et al. *Crit Care Med*. 2015; 43:1938-1944. Shaw AD, et al. *Intensive Care Med*. 2014; 40:1897-1905. Zampieri FG, et al. *Crit Care Med*. 2016; 44:2163-2170.

Balanced vs. Unbalanced Fluids

	SPLIT Trial	Sepsis Trial
Methods	 ICU patients requiring crystalloids Sodium chloride 0.9% vs. Plasma-Lyte 148 	Nonsurgical ICU patients with sepsisBalanced vs. unbalanced fluids
Results	 No difference in incidence of acute kidney injury (including sepsis subgroup) No difference in incidence of renal replacement therapy, duration of mechanical ventilation, ICU and hospital lengths of stay, and inhospital mortality 	 Balanced fluids were associated with a significantly decreased in-hospital mortality (19.6 vs. 22.8%, RR 0.86, p=0.001) No significant difference in incidence of acute renal failure and ICU or hospital lengths of stay

Case

- KB is a 67 year old male (83 kg) who presents from an inpatient rehabilitation facility with AMS, T39.0°C, and BP 103/75. PMH significant for T2DM, ESRD on IHD, and underwent a left BKA 2 weeks ago for a non-healing foot ulcer.
- In the ED his HR is 117 beats/min, BP 85/58 mm Hg (MAP 67 mm Hg), Hgb 7.3 g/dL, Hct 23%, Na 144 mEq/L, K 4.8 mEq/L, Cl 112 mEq/L, and lactate 4.1 mmol/L. There is a foul odor and green discharge coming from the incision site on his left leg.
- What is the best initial order for fluid resuscitation in KB?
- A. Sodium chloride 0.9%, 1000 ml/hr x 2.5 L
- B. Lactated Ringers, 1000 ml/hr x 2.5 L
- C. Lactated Ringers 100 ml/hr x 2.5 L
- D. Sodium Chloride 0.9%, 1000 ml/hr x 1L

Case

- KB is a 67 year old male (83 kg) who presents from an inpatient rehabilitation facility with AMS, T39.0°C, and BP 103/75. PMH significant for T2DM, ESRD on IHD, and underwent a left BKA 2 weeks ago for a non-healing foot ulcer.
- In the ED his HR is 117 beats/min, BP 85/58 mm Hg (MAP 67 mm Hg), Hgb 7.3 g/dL, Hct 23%, Na 144 mEq/L, K 4.8 mEq/L, Cl 112 mEq/L, and lactate 4.1 mmol/L. There is a foul odor and green discharge coming from the incision site on his left leg.
- What is the best initial order for fluid resuscitation in KB?
- A. Sodium chloride 0.9%, 1000 ml/hr x 2.5 L
- B. Lactated Ringers, 1000 ml/hr x 2.5 L
- C. Lactated Ringers 100 ml/hr x 2.5 L
- D. Sodium Chloride 0.9%, 1000 ml/hr x 1L

Antibiotic Timing

Increased in-hospital mortality with each hour delay in administration of effective antibiotics

Time to antibiotics (hour)	OR	95% CI	P value	Probability of mortality (%)	95% CI
0-1	1.00			24.6	23.2-26.0
1-2	1.07	0.97-1.18	0.165	25.9	24.5-272
2-3	1.14	1.02-1.26	0.021	27.0	25.3-28.7
3-4	1.19	1.04-1.35	0.009	27.9	25.6-30.1
4-5	1.24	1.06-1.45	0.006	28.8	25.9-31.7
5-6	1.47	1.22-1.76	<0.001	32.3	28.5-36.2
>6	1.52	1.36-1.70	<0.001	33.1	30.9-35.3

SSC Guidelines Antimicrobial Therapy

- Best Practice Recommendations
 - Obtain appropriate routine microbiologic cultures prior to initiating antimicrobial therapy if doing so does not does not result in substantial delay in the start of antimicrobials
 - Utilize PK/PD principles to optimize therapy
 - No sustained prophylaxis for noninfectious inflammatory states
 - Achieve source control as soon as possible
 - If combination therapy is initially used, de-escalate in response to clinical improvement and culture data

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

SSC Guidelines Antimicrobial Therapy

- Strong Recommendations
 - Administer IV antimicrobials as soon as possible and within 1 hour recognition of sepsis
 - Empiric broad-spectrum therapy
- Weak Recommendations
 - Combination therapy aimed at most likely pathogen for initial management of septic shock
 - Combination therapy not routine for ongoing treatment of serious infections, including bacteremia and sepsis without shock
 - Procalcitonin levels to support decreasing duration
 - Duration 7-10 days appropriate for most infections

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

Antimicrobial Therapy

SSC Guidelines

- Obtain cultures prior to initiating antimicrobial therapy if doing so does not does not result in substantial delay in the start of antimicrobials
- Administer IV antimicrobials as soon as possible and within 1 hour recognition of sepsis
- Empiric broad-spectrum therapy

CMS SEP-1

- Within 3 hours of presentation:
 - Blood cultures drawn prior to antibiotics
 - Broad spectrum or other antibiotics administered

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

Available from: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/qualitymeasures/core-measures.html

CMS SEP-1

Recommended Antimicrobial Therapy

Monotherapy	OR		Column B
Doripenem		Amikacin	Cefazolin
Ertapenem		Gentamicin	Cefoxitin
Imipenem/Cilastatin		Tobramycin	Cefuroxime
Meropenem		Aztreonam	Clindamycin
Cefotaxime		Ciprofloxacin	Daptomycin
Ceftazidime			Telavancin
Ceftriaxone			Vancomycin
Cefepime			Linezolid
Ceftaroline fosamil			Azithromycin
Moxifloxacin			Erythromycin
Levofloxacin			Ampicillin
Amoxicillin/clavulanat	e		Nafcillin
Ampicillin/sulbactam			Oxacillin
Piperacillin/tazobactar	n		Penicillin G

Available from: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/qualitymeasures/core-measures.html

To review...

Identify patients early

Utilize SSC Guidelines and CMS SEP-1 to guide initial resuscitation

Fluid resuscitation

Early, appropriate antibiotics

Jeremy DeGrado, Pharm.D., BCCCP, BCPS Medical ICU Clinical Pharmacy Specialist Brigham and Women's Hospital Boston, MA

Heather Torbic, Pharm.D., BCCCP, BCPS Medical ICU Clinical Pharmacy Specialist Cleveland Clinic Cleveland, OH

Case

- KB has received 3 L crystalloid in the first 6 hours and now is mechanically ventilated on volume-control ventilation with TV 8-10 mL/kg. HR 120 bpm (SR), BP 95/55 (MAP 68) mm Hg, urine output 25-50 mL/hr, CVP 12, ScvO₂ 73%, lactate 3.2 mmol/L, Hct 29%
- What is the best choice regarding further fluid resuscitation in KB?
- A. CVP is 12, further fluids should not be administered
- B. Hct is 29%, PRBC should be administered
- C. MAP is low, more fluids should be administered along with initiating norepinephrine
- D. Passive leg raise maneuver should be performed

Goals of Resuscitation

- Early, early, early
- Improve organ perfusion
 - Increase SV
 - Increase CO
- Volume status assessment
 - Determine fluid responsiveness
 - Avoid fluid overload
- Maintain adequate pressures
 - Hemodynamic assessment
 - Vasoactive agents, fluids, adjunctive support based on patient data

SSC Guidelines Resuscitation

- Strong Recommendations
 - 30 ml/kg IV crystalloid within first 3 hours
 - Goal MAP > 65 mm Hg for patients in shock on vasopressors
- Weak Recommendations
 - Dynamic > static variables to predict fluid responsiveness
 - Normalize lactate

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

Fluid Balance and Mortality

Quartiles According to Fluid Balance at 24 hours

■ ICU ■ Hospital

Quartiles According to Fluid Balance at 72 hours

■ ICU ■ Hospital

Sakr Y, et al. Crit Care Med. 2017; 45(3):386-394.

Fluid Administration and Vasopressor Initiation

Waechter J, et al. Crit Care Med. 2014; 42:2158-2168. (adapted)

Fluid Balance

Volume Overload

Independent predictor of ICU mortality in patients with sepsis/septic shock (p<0.001)

Inability to ambulate at hospital discharge (p=0.01)

Require discharge to rehab (p=0.03)

Mitchell KH, et al. *Ann Am Thorac Soc.* 2015; 12:1837-1844. de Oliveira FS, et al. *J Crit Care.* 2015; 30:97-101. Neyra JA, et al. *Crit Care Med.* 2016; 44:1891-1900. Acheampong A, Vincent JL. *Crit Care.* 2015; 19:251. Brotfain E, et al. *Am J Emerg Med.* 2016; 34:2122-2126.

Fluid Responsiveness

Static

- Central venous pressure (CVP)
- LV or RV enddiastolic volume
- Pulmonary artery occlusion pressure

Dynamic

- Stroke volume variation (SVV)
- Pulse pressure variation (PPV)

Techniques

- Passive leg raise (PLR)
- Fluid challenge
- Tidal volume challenge

Marik PE, et al. *Ann Intensive Care* 2011; 1:1. Myatra SN, et al. *Crit Care Med*. 2017; 45:415-421.

Assessing Volume Status

SSC Guidelines

- Reassessment should include thorough clinical exam and evaluation of available physiologic variables
- Dynamic variables preferred to predict fluid responsiveness

Focused exam including:

Vital signs +

Cardiopulmonary exam +

Capillary refill evaluation +

Peripheral pulse evaluation + Skin exam Any 2 of the following:

- CVP

CMS SEP-1

OR

- Bedside cardiovascular ultrasound
- PLR or Fluid Challenge

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

Available from: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/qualitymeasures/core-measures.html

Lactate Guided Resuscitation •Decreases mortality (RR 0.67; 95% CI 0.53-0.84) •Benefit greatest in hospitals with higher baseline mortality •No effect on ICU length of stay (mean difference -1.51 days; 95% CI -3.65-0.62)

Gu WJ, et al. *Intensive Care Med.* 2015; 41:1862-1863. Simpson SQ, et al. *J Crit Care.* 2016; 36:43-48.

Stroke Volume-Guided Resuscitation

Multivariable Analysis

Outcome	Results	p- Value
Net fluid balance 4h	-361 mL	0.053
Net fluid balance 24h	-1392 mL	<0.001
Net fluid balance 48h	-1485 mL	0.004
In-hospital mortality, %	OR 0.58	0.25
ICU LOS (survivors), d	-2.55 days	0.04
Mechanically ventilated	OR 0.34	0.01
Ventilator days	-2.15 days	0.17
Vasopressor initiated	OR 0.57	0.15
Vasopressor duration	-27.94 hours	0.02

Fluid Responsiveness

	CVP Meta-Analysis	PLR Meta-Analysis
Methods	 22 studies (n=1148) Divided CVP: <8, 8-12, >12 mm Hg 	 21 studies (n=991) Assessed CO and arterial pulse pressure (PP)
Results	 Highest positive predictive value was 65% for all CVPs 0-20 mm Hg Positive predictive value decreased as CVP increased 	 PLR changes in CO: 85% sensitivity, 91% specificity PLR changes in CO: 56% sensitivity, 83% specificity
Conclusion	 Positive predicative value was low for all CVP values assessed 	 Changes in CO during a PLR test more reliably predict fluid responsiveness than change in arterial PP

CELEBRATING YEAR

Eskesen TG, et al. *Intensive Care Med*. 2016; 42(3):324-332. Monnet X, et al. *Intensive Care Med*. 2016; 42(12):1935-1947.

- KB is thought to no longer be fluid responsive, and was initiated on norepinephrine. The dose of norepinephrine has fluctuated between 5 and 10 mcg/min over last 8 hours.
- What would you choose as your next step?
- A. Add vasopressin
- B. Add epinephrine
- C. Add hydrocortisone
- D. Continue with current regimen

SSC Guidelines Vasopressor Therapy 2016

2012

- Norepinephrine (NE) first-line vasopressor
- Add epinephrine to NE (or substitute for NE) when an additional agent to maintain MAP is needed
- Add vasopressin to NE to reach MAP goal or vasopressin to decrease NE dose
- Dopamine in select patients
- Phenylephrine if NE is associated with serious arrhythmias, CO is high but BP low, or as salvage therapy
- Dobutamine for hypoperfusion despite fluid resuscitation and vasopressors

- Norepinephrine (NE) first-line vasopressor
- Add vasopressin or epinephrine to NE to reach MAP goal or vasopressin to decrease NE dose
- Dopamine in select patients
- No "renal-dose" dopamine
- Dobutamine for hypoperfusion despite fluid resuscitation and vasopressors

Dellinger RP, et al. *Crit Care Med.* 2013; 41:580-637. Rhodes A, et al. *Crit Care Med.* 2017; (43)3:304-377.

SEPSISPAM

Asfar P, et al. N Engl J Med. 2014; 370:1583-1593.

OVATION Pilot

OVATION				
Patients	Vasodilatory shock requiring vasopressor therapy			
Methods	Vasopressor titrated to MAP 75 to 80 mmHg (high-target) or 60 to 65 mmHg (low-target)			
Results	 No difference in mortality Trend toward more cardiac arrhythmias in high-target group Patients ≥ 75 years old with low-MAP target had reduced hospital mortality 			

Norepinephrine vs. Dopamine

CELEBRATING

De Backer D, et al. N Engl J Med. 2010;362:779-789.

Norepinephrine vs. Dopamine

NE vs. DA in Septic Shock Meta-Analysis

28-Day DA NE Mortality Study n/N RR (95% CI) n/N Martin 10/16 7/16 1.43 (0.73-2.80) Marik 6/10 5/10 1.20 (0.54-2.67) Ruokonen 3/5 4/5 0.75 (0.32-1.74) Mathur 19/25 14/25 1.36 (0.90-2.05) 291/542 249/502 1.08 (0.98-1.19) De Backer Patel 67/134 51/118 1.16 (0.89-1.51) 330/676 Overall 396/732 1.12 (1.01-1.20) 3 0 2 Overall effect p = 0.035Heterogeneity p = 0.77, $I^2 = 0\%$

De Backer D, et al. Crit Care Med. 2012;40:725-730.

Norepinephrine vs. Epinephrine

Variable	EPI	NE	p value
Time to MAP goal, median	35.1	40	0.26
Vasopressor-free days	26	25.4	0.31
28 day mortality, no (%)	31 (22.5)	36 (26.1)	0.48
Study drug discontinued, no (%)	18 (12.9)	4 (2.8)	0.002

Myburgh JA, et al. Intensive Care Med. 2008; 34:2226-2234. (adapted)

Vasopressin in Septic Shock

- Low fixed-dose vasopressin infusion (0.01-0.04 units /min) in septic shock:
 - Restores depleted physiologic levels
 - 0.04 units/min ~150-290 pmol/L
 - Spares high dose catecholamine
 - 1 MAP
 - ー 个 SVR
 - \uparrow Urine output

Hollenberg SM. *Crit Care Clin.* 2009; 25:781–802. Szumita PM, et al. *Am J Health Syst Pharm.* 2005; 62(18):1931-1936.

Patients	Adult ICU patients with septic shock receiving norepinephrine
Methods	Norepinephrine 5-15 mcg/min vs. Norepinephrine + vasopressin 0.01-0.03 units/min
Results	• 28-day mortality: vasopressin 35.4% v. norepinephrine 39.3% p=0.26
	 Vasopressin group had a lower heart rate(p<0.001)
	 Vasopressin group had reduced norepinephrine use (p<0.001)
	Patients with less severe shock had lower mortality with vasopressin use

Percent

Russell JA, et al. *N Engl J Med.* 2008; 358:877-887. Russell JA. *Crit Care.* 2011; 15:226-245. Gordon AC, et al. *Intensive Care Med.* 2010; 36:83-91.

SSC Guidelines Corticosteroid Therapy

- Weak Recommendation
 - IV hydrocortisone 200 mg/day if adequate fluid resuscitation and vasopressors do not restore hemodynamic stability

Rhodes A, et al. Crit Care Med. 2017; (43)3:304-377.

Corticosteroid Controversy

Annane D, et al. *JAMA*. 2002; 288(7):862-871. Sprung CL, et al. *N Engl J Med*. 2008; 358 (2):111-124.

Days Until Shock Reversal

	Annane 2002			CORTICUS 2008		
	Placebo	LD CS	p value	Placebo	LD CS	p value
Non-responders	10	7	0.001	6.0	3.9	0.06
Responders	7	9	0.49	5.8	2.8	< 0.001
All patients	9	7	0.01	5.8	3.3	< 0.001

Annane D, et al. *JAMA*. 2002; 288:862-871. Sprung CL, et al. *N Engl J Med*. 2008; 358:111-124.

Annane 2002

CORTICUS 2008

Annane D, et al. *JAMA*. 2002; 288:862-871. Sprung CL, et al. *N Engl J Med*. 2008; 358:111-124.

Corticosteroid Controversy

Annane 2002

- SAPS II ~ 60
- Placebo mortality 61%
- Enrolled w/in 8hr
 - CS w/in 4hr pressor initiation
- MAP 55 mmHg
- Hydrocort + fludrocort x 7d
- 60% medical patients
- 77% non-responders
- Appropriate antibiotics
 - > 90% patients
 - Time to AA ~ 6 hours

Annane D, et al. *JAMA*. 2002; 288:862-871. Sprung CL, et al. *N Engl J Med*. 2008; 358:111-124.

CORTICUS 2008

- SAPS II 48
- Placebo mortality 32%
- Enrolled w/in 72hr
 CS w/in ?? pressor initiation
- SBP 94 mm Hg
- Hydrocort x 11d (taper)
- 35% medical patients
- 46.7% non-responders
- Appropriate antibiotics
 ?

Early Corticosteroids in Septic Shock

HYPRESS Trial

Patients	Adult patients with severe sepsis, but not in shock
Methods	 Continuous infusion hydrocortisone 200 mg x 5 days followed by dose tapering until day 11 vs. Placebo
Results	 Development of septic shock within 14 days: Hydrocortisone 21.2% vs. placebo 22.9%, P=0.70 No differences in time to septic shock or mortality Hydrocortisone group had more secondary infections, weaning failure, muscle weakness, and hypernatremia (NS) Significantly greater hyperglycemia with hydrocortisone (p=0.009)

Vasopressin and Corticosteroids

Bauer, et al

- Time from pressor initiation to first CS dose = 22.2 hours
- Median time to withdrawal of vasopressor ۰ support (p = 0.09)
 - CS = 65 hours
 - No CS = 20 hours
- Patients alive w/o vasopressors at day 7 (p =۲ 0.02)
 - CS = 80.9%
 - No CS = 47.6%
- CS independently associated with survival ۰ w/o vasopressors at day 7

Patients	Adult ICU patients with septic shock, within 6 hours of shock onset
Methods	 Vasopressin + Hydrocortisone vs. Vasopressin + Placebo vs. Norepinephrine + Hydrocortisone vs. Norepinephrine + Placebo
Results	 28-day survivors who never developed kidney failure: Vasopressin 57.0% vs. Norepinephrine 59.2% (difference -2.3%, 95% CI -13.0% to 8.5%) No difference in mortality or adverse events Less renal replacement therapy in vasopressin group (25.4% vs. 35.3%, 95% CI -19.3 to -0.6)

Short-Term Hemodynamic Effects of Hydrocortisone/Vasopressin

Patients	Adult patients with septic shock (n=300)
Methods	 Retrospective cohort study of patients receiving AVP 0.04 units/min, HCT 200- 300 mg/day, or AVP/HCT combination "Response" defined as ≥ 50% reduction of NE dose by 4 hours (no Δ in MAP) Reassessed at 12 and 24 hours
Results	 Higher response rate at 4 hours in concomitant AVP/HCT (88.5%) vs. HCT (62.3%) or VP (72.9%) monotherapy (p=0.0005) Response rate significantly higher at 24 hours in concomitant group (p=0.032) and trend towards significance at 12 hours (0.052) Significantly higher rate of NE in non-responders at all time intervals Responders were more likely to be in AVP/HCT group Responders had higher SOFA scores, were older, and were more likely to be on > 15 mcg/min of NE at baseline

Angiotensin II – ATHOS 3

Endpoint	Angiotensin II	Placebo	P value
Δ CV SOFA at $48h^{\alpha}$	-1.75 ± 1.77	-1.28 ± 1.65	0.01
Δ total SOFA at 48h ^{α}	1.05 ± 5.50	1.04 ± 5.34	0.49
Δ NE-equiv dose at $3h^{\alpha}$	-0.03 ± 0.10	0.03 ± 0.23	<0.001
All cause mortality day 7 ^β	47 (29)	55 (35)	0.22
All cause mortality day 28 ^β	75 (46)	85 (54)	0.12
α mean ± SD β No. (%)			

Khanna A, et al. N Engl J Med. 2017; 377:419-430.

Vitamin C + Hydrocortisone + Thiamine

Endpoint	Treatment	Control	P value
ICU LOS, dα	4 (3-5)	4 (4-10)	NS
Duration vasopressors ^β	18.3 ± 9.8	54.9 ± 28.4	<0.001
RRT for AKI (%)	10	33	0.02
Δ SOFA, 72h ^{β}	4.8 ± 2.4	0.9 ± 2.7	<0.001
Procalcitonin clearance, median % and IQR, 72h	86.4 (80.1 to 90.8)	33.9 (-62.4 to 64.3)	<0.001
α median (IQR) β mean ± SD			

Marik PE, et al. Chest. 2017; 151:1229-1238.

Key Takeaways

- Key Takeaway #1
 - Understand both international guidelines and CMS SEP-1 requirements, to develop a local sepsis care path which follows best practices
- Key Takeaway #2
 - Continually reassess patients using dynamic markers, if possible, and patient-specific variables to individualize management based on response
- Key Takeaway #3
 - Septic shock is associated with high mortality. Management strategies and treatment options are still evolving.

