Unique Toxicity Profiles of BiTE and Experimental T-cell Therapies: Clinical Presentation and Management

Ali McBride, Pharm.D., M.S., BCPS, BCOP, FAzPA
Clinical Coordinator
The University of Arizona Cancer Center
Tucson, AZ

Brandon R. Shank, Pharm.D., M.P.H., BCOP, CPH
Clinical Pharmacy Specialist
University of Texas MD Anderson Cancer Center
Houston, TX
Disclosure

Ali McBride

Pfizer: Advisory Board; Sandoz: Advisory Board

All other planners, presenters, and reviewers of this session report no financial relationships relevant to this activity.
Question #1

Which of the following biomarkers are associated with T cells?

A. CD20
B. CD3
C. CD147
D. CD19
Adaptive Immune Mechanisms

Humoral immune responses
- B cells and antibodies

Cell mediated immune responses
- Cytotoxic T cell (Tc)
- Helper T cells (Th)
Origin of Cells of the Immune System

• Derived from common progenitor cell in bone marrow
 – Pluripotent hematopoietic stem cell
• Progenitor stem cells
 – Erythroid lineage
 – Myeloid lineage
 – Lymphoid lineage

Available at: https://visualsonline.cancer.gov/retrieve.cfm?imageid=7177&dpi=72&fileformat=jpg
Cells of Innate and Adaptive Immunity

Innate Immunity
- “Large Lymphocytes”
- Nonspecific
- Natural Killer cells (CD16, CD56)

Adaptive Immunity
- “Small Lymphocytes”
- Specific
- B cells (CD19)
- T cells (CD3, CD4 or CD8)
The Cluster of Differentiation (CD)

- Protocol for identification and investigation of cell surface molecules
- “CD number” assigned on basis of 1 cell surface molecule recognized by 2 specific monoclonal antibodies
- CD nomenclature established in 1982
 - 1st International Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA)

The Cluster of Differentiation (CD)

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>CD Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulocyte</td>
<td>CD45+, CD15+</td>
</tr>
<tr>
<td>Monocyte</td>
<td>CD45+, CD14+</td>
</tr>
<tr>
<td>T lymphocyte</td>
<td>CD45+, CD3+</td>
</tr>
<tr>
<td>T cytotoxic lymphocyte</td>
<td>CD45+, CD3+, CD8+</td>
</tr>
<tr>
<td>B lymphocyte</td>
<td>CD45+, CD19+</td>
</tr>
<tr>
<td>Natural killer cell</td>
<td>CD45+, CD16+, CD56+, CD3-</td>
</tr>
</tbody>
</table>
Structure of Antibody Molecules

Types of Monoclonal Antibodies (mAbs)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Symbol</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murine</td>
<td>Entirely murine amino acids</td>
<td>‘o’</td>
<td>e.g. murmonab</td>
</tr>
<tr>
<td>Chimeric</td>
<td>Human constant (C) + murine variable (V) regions</td>
<td>‘xi’</td>
<td>e.g. rituximab</td>
</tr>
<tr>
<td>Humanized</td>
<td>Murine complimentary determining regions (CDRs)</td>
<td>‘zu’</td>
<td>e.g. alemtuzumab</td>
</tr>
<tr>
<td>Human</td>
<td>Entirely human amino acids</td>
<td>‘u’</td>
<td>e.g. adalimumab</td>
</tr>
</tbody>
</table>
Structure-Function Relationship of Antibody Molecules

Ligand Blockade
Receptor Blockade
Receptor Downregulation
Depletion
Signaling Induction

Modification of Protein Structure to Enhance Function

Immuno-oncology in Practice

- Bring T cells and cancer cell targets into physical proximity
- Increase numbers of T cells capable of recognizing a tumor antigen
- Modulate T-cell activity once tumor-associated antigen is encountered
- Make tumors more attractive or accessible targets for cytotoxic T cells
- Disable the "brakes" or inhibitory signals limiting magnitude or duration of activity against neoplastic cells following T-cell activation

Cytotoxic T Cells

- T cells are a type of lymphocyte that play an active role in the immune response
- T cells recognize and eliminate foreign or abnormal cells, including cancer cells
- Cancer cells have mechanisms to evade T cell recognition

Bispecific T cell Engager (BiTE) Antibodies

- BiTE antibodies form a link between T cells and tumor cells
- Causes T cells to exert cytotoxic activity on tumor cells, independently of the presence of MHC I or co-stimulatory molecules, initiating apoptosis
- Mimics physiological processes observed during T cell attacks against tumor cells
Bispecific T cell Engager (BiTE) Antibodies

CAR-T Cell Therapies

- Engineered expression of chimeric antigen receptors (CARs) on the surface of T cells
- Enables the redirection of T cell specificity

CAR-T Cell Therapies
Safety and Efficacy of BiTE Antibodies for Hematologic Malignancies
Question #2

Which of the following adverse effects are not associated with blinatumomab?

A. Cytokine Release Syndrome
B. Hepatotoxicity
C. Seizures
D. Alopecia
Review:

Acute Lymphoblastic Leukemia (ALL)

- ALL can arise from both T cell and B cell precursors
- B cell ALL is more common (~88% of all cases)
- 95% of B precursor leukemic blasts express the surface antigen CD19
- CD19 is a promising target for immunotherapy
Blinatumomab

- Bispecific T cell engager (BiTE) antibody with dual specificity for CD19 and CD3

- CD19 is a highly specific B-cell marker expressed throughout B-cell development and in >90% of B cell lineage cancers

- FDA Approvals:
 - 2017: Treatment of relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL) in adults and children
 - 2014: Treatment of Philadelphia chromosome-negative relapsed or refractory B-cell precursor ALL

Blinatumomab Mechanism of Action

• Simultaneously binds CD3 positive cytotoxic T cells and CD19 positive B cells, resulting in T cell mediated lysis of normal and malignant B cells

• Engages patients’ endogenous T cells to attack and eradicates B precursor leukemic blasts
Blinatumomab for Relapsed/Refractory B Cell Precursor, Ph-Negative ALL

Patients

N = 189

18 years or older, refractory after induction, or relapsed within 12 months of CR1 or HCT or r/r after salvage therapy

Study Design

Multi-center, single arm, open label, phase II

Primary endpoint: CR and CRh within the first 2 cycles

Intervention

Blinatumomab via continuous intravenous infusion

9 µg/day for 1 week, then 28 µg/day to 4 weeks, then 2 weeks off; up to 5 cycles

ALL, acute lymphoblastic leukemia; CR, complete remission; CR1, first CR; CRh, CR with partial hematologic recovery of peripheral blood counts; HCT, hematopoietic stem cell transplantation; Ph, Philadelphia chromosome

Blinatumomab in R/R ALL: Efficacy

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All Patients (N = 189)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR or CRh in first 2 cycles, %</td>
<td>43</td>
</tr>
<tr>
<td>CR in first 2 cycles, %</td>
<td>33</td>
</tr>
<tr>
<td>MRD negativity in first 2 cycles, %*</td>
<td>82</td>
</tr>
<tr>
<td>Median OS, mos</td>
<td></td>
</tr>
<tr>
<td>‧ All patients</td>
<td>6.1</td>
</tr>
<tr>
<td>‧ MRD-negative CR</td>
<td>11.5</td>
</tr>
<tr>
<td>‧ MRD-positive CR</td>
<td>6.7</td>
</tr>
<tr>
<td>Median RFS, mos</td>
<td></td>
</tr>
<tr>
<td>‧ CR + CRh</td>
<td>5.9</td>
</tr>
<tr>
<td>‧ CR</td>
<td>6.9</td>
</tr>
<tr>
<td>‧ CRh</td>
<td>5.0</td>
</tr>
<tr>
<td>Allogeneic HCT, %*</td>
<td>40</td>
</tr>
<tr>
<td>‧ After CR</td>
<td>44</td>
</tr>
<tr>
<td>‧ After CRh</td>
<td>22</td>
</tr>
<tr>
<td>100-day mortality after allogeneic HCT, %</td>
<td>11</td>
</tr>
</tbody>
</table>

ALL, acute lymphoblastic leukemia; CR, complete remission; CRh, CR with partial hematologic recovery of peripheral blood counts; HCT, hematopoietic cell transplant; MRD, minimal residual disease; OS, overall survival; RFS, relapse-free survival.

Blinatumomab: Safety

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Topp et al 1</th>
<th>Topp et al 2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukopenia</td>
<td>2 (9.5%)</td>
<td>15 (7.9%)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1 (4.8%)</td>
<td>30 (15.8%)</td>
</tr>
<tr>
<td>Thrombopenia</td>
<td>1 (4.8%)</td>
<td>16 (8.4%)</td>
</tr>
<tr>
<td>Bacterial sepsis</td>
<td>1 (4.8%)</td>
<td>15 (7.9%)</td>
</tr>
<tr>
<td>Bronchopneumonia</td>
<td>1 (4.8%)</td>
<td>17 (8.9%)</td>
</tr>
<tr>
<td>Syncope/convulsion</td>
<td>1 (4.8%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>ND</td>
<td>6 (3.1%)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>1 (4.8%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>1 (4.8%)</td>
<td>13 (6.8%)</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>ND</td>
<td>10 (5.2%)</td>
</tr>
</tbody>
</table>

Blinatumomab: Adverse Effects

- Cytokine release syndrome
- Infections
- Neurological toxicities
- Tumor lysis syndrome
- Neutropenia
- Elevated liver enzymes
Cytokine Release Syndrome (CRS)

- Potentially serious complication of non-physiological T cell activation
- Produced by T cell engaging therapies such as bispecific T cell engaging antibodies and chimeric antigen receptor-engineered T cells
- May be caused by abnormal activation of macrophages
Cytokine Release Syndrome

• Occurs during the first cycle of treatment with blinatumomab
• Toxicities: CRS, disseminated intravascular coagulation, and central nervous system events (seizure or encephalopathy)
• Lowering the initial dose of blinatumomab to 5µg/m²/day and the addition of dexamethasone has been shown to reduce the toxicity of the agent

Cytokine Release Syndrome Biomarkers

C-Reactive Protein (CRP)

- Acute phase reactant that is synthesized by the liver in response to elevated IL-6
- CRP level of ≥ 200mg/L is linked to CRS with good sensitivity and specificity

Interleukin-6 (IL-6)

- Rising level of IL-6 is a strong predictor of CRS
- Changes in IL-6 level precede elevation of CRP

Tocilizumab

- Humanized monoclonal antibody against IL-6 receptors
- IL-6 blockade with tocilizumab demonstrated rapid reversal of life-threatening symptoms
- First choice therapy for CRS

Blinatumomab: Toxicity Management

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Grade</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>3</td>
<td>Withhold until resolved, then restart at 9 mcg/day. Escalate to 28 mcg/day after 7 days if toxicity does not reoccur.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Discontinue permanently</td>
</tr>
<tr>
<td>Neurologic Toxicity</td>
<td>3</td>
<td>Withhold until resolved to less than Grade 1 for 3 days, then restart at 9 mcg/day. Escalate to 28 mcg/day after 7 days if toxicity does not reoccur. If longer than 14 days to resolve, discontinue permanently.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Discontinue permanently</td>
</tr>
<tr>
<td>Seizure</td>
<td></td>
<td>If more than one seizure, discontinue permanently.</td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>Withhold until resolved to less than Grade 1 for 3 days, then restart at 9 mcg/day. Escalate to 28 mcg/day after 7 days if toxicity does not reoccur. If longer than 14 days to resolve, discontinue permanently.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Consider discontinuing permanently</td>
</tr>
</tbody>
</table>

Key Takeaways

• Immuno-Oncology is changing the current landscape of cancer therapies
• Toxicity of emerging immunotherapy agents is manageable and usually reversible, but can be severe
• Numerous considerations and precautions for monitoring of cytokine release syndrome should be implemented
Safety and Efficacy of CAR-T cells for Hematologic Malignancies
Chimeric Antigen Receptor (CAR)-T Cells

- Genetically programmed to bind to transmembrane glycoproteins
- Major histocompatibility complex independent action
- Targets
 - Limited off target effects
 - Specific to certain types of cancer
- Tisagenlecleucel- 1st FDA approved product

<table>
<thead>
<tr>
<th>Targets Under Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19</td>
</tr>
<tr>
<td>CD20</td>
</tr>
<tr>
<td>CD33</td>
</tr>
<tr>
<td>B-cell maturation antigen (BCMA)</td>
</tr>
</tbody>
</table>

CAR-T Cell Structure

*Costimulatory domains containing CD27, CD28, 4-1BB (CD137), ICOS, or OX40 (CD134)

CAR-T Cell Production

1. Conditioning regimen
2. CAR-T cell infusion
3. Ex vivo expansion and purification
4. Leukapheresis
5. DNA integration

Conditioning Regimen

- Depletion of leukocytes that may interfere with adoptive T cell activity
- Decrease in regulatory T-cells
 - Increased levels of interleukin (IL)-15 and IL-17
- Tumor debulking- less disease leads to greater persistence of CAR- T cells
- Anti-programmed cell death protein (PD-1) immune checkpoint inhibitor use after CAR-T cell infusion
 - Enhances CAR-T cell expansion, function, and persistence
- Medications
 - Cyclophosphamide
 - Fludarabine

Role of Fludarabine

• Greater CAR-T cell expansion and persistence with fludarabine
 – Fludarabine- reduces reaction to murine single-chain variable fragment on an antibody
 – B-cell acute lymphoblastic leukemia (ALL)- improved disease-free survival
 – Non-hodgkin’s lymphoma- improved progression-free and overall survival
• Juno’s ROCKET phase 2 trial (JCAR015)
 – CAR-T-cell-related encephalopathy syndrome (CRES)- 3 deaths from cerebral edema

Efficacy and Safety: B Cell ALL

<table>
<thead>
<tr>
<th>CAR-T Cells (Institution)</th>
<th>Product</th>
<th>No.</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL019 (CHOP)</td>
<td>Anti-CD19 CD3 zeta, 4-1BB</td>
<td>63 Children</td>
<td>CR 83%</td>
<td>Cytokine release syndrome (CRS) Grade ≥3 47%</td>
</tr>
<tr>
<td>19-28Z CAR (MSKCC)</td>
<td>Anti-CD19 CD3 zeta, CD28</td>
<td>51 Adults</td>
<td>CR 84%</td>
<td>Not reported</td>
</tr>
<tr>
<td>CD4⁺:CD8⁺ (FHCRC)</td>
<td>Anti-CD19 CD3-zeta, CD137, and EGFRt</td>
<td>36 Adults</td>
<td>CR 94%</td>
<td>Reported in aggregate with other B-cell malignancies</td>
</tr>
</tbody>
</table>

Efficacy and Safety: B Cell Lymphoma (BCL)

<table>
<thead>
<tr>
<th>Study (Manufacture)</th>
<th>Product</th>
<th>No.</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axicabtagene ciloleucel</td>
<td>Anti-CD19 CD3 zeta, CD28</td>
<td>101</td>
<td>CR 54%</td>
<td>CRS Grade ≥3 13% Febrile neutropenia 31% 3 deaths</td>
</tr>
<tr>
<td>(ZUMA1, KITE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL019 (JULIET, Novartis)</td>
<td>Anti-CD19 CD3 zeta, 4-1BB</td>
<td>85</td>
<td>CR 43%</td>
<td>CRS 57% 3 deaths*</td>
</tr>
<tr>
<td>JCAR017 (TRANSCEND, Juno)</td>
<td>Anti-CD19 CD3 zeta, 4-1BB</td>
<td>28</td>
<td>CR 60%</td>
<td>CRS Grade 1-2 36% 4 deaths*</td>
</tr>
</tbody>
</table>

*Disease progression not attributed to therapy

Patient Case

JW is a 40 year old male with past medical history of stage IV refractory B cell lymphoma, hypertension, and seasonal allergies with no known drug allergies.

Past treatment:
- R-CHOP x 6 cycles
- R-ICE x 3 cycles
- Autologous stem cell transplantation

<table>
<thead>
<tr>
<th>Home medications</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loratadine 10 mg PO daily</td>
<td>WBC 3,000/mm3</td>
</tr>
<tr>
<td>Lisinopril 20 mg PO daily</td>
<td>ANC 1,500/mm3</td>
</tr>
<tr>
<td>Multivitamin 1 tablet PO daily</td>
<td>Hgb 10.1 g/dL</td>
</tr>
<tr>
<td>Hydrochlorothiazide 12.5 mg PO daily</td>
<td>Platelets 150,000/mm3</td>
</tr>
</tbody>
</table>
The treatment team wants to initiate anti-CD19 CAR-T cell treatment for JW. What would you inform him about CAR-T cell therapy?

A. Complete response rates are similar to conventional chemotherapy
B. Conditioning chemotherapy enhances CAR-T cell expansion and persistence
C. Cytokine release syndrome is a rare complication of CAR-T cell therapy
D. Deaths from toxicities was greater than disease progression in clinical trials
Efficacy and Safety: Chronic Lymphocytic Leukemia (CLL)

<table>
<thead>
<tr>
<th>Study (Institution)</th>
<th>Product</th>
<th>No.</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL019 (UPenn)</td>
<td>Anti-CD19 CD3 zeta, 4-1BB</td>
<td>35</td>
<td>CR 23%</td>
<td>CRS any Grade 54%, Grade ≥3 20%</td>
</tr>
<tr>
<td>CD4⁺:CD8⁺ (FHCRC)</td>
<td>Anti-CD19 CD3-zeta, CD137, and EGFRt</td>
<td>13</td>
<td>CR 50%</td>
<td>Reported in aggregate with other B-cell malignancies</td>
</tr>
</tbody>
</table>

Efficacy and Safety: Multiple Myeloma

<table>
<thead>
<tr>
<th>Study (Manufacture/ Institution)</th>
<th>Product</th>
<th>No.</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bb2121 (CRB-401, Bluebird Bio)</td>
<td>Anti-BCMA CD3 zeta, 4-1BB</td>
<td>11</td>
<td>CR 50%*</td>
<td>CRS Grade 1-2 73%</td>
</tr>
<tr>
<td>CTL019</td>
<td>Anti-CD19 CD3-zeta and 4-1B</td>
<td>10</td>
<td>PFS 60%</td>
<td>CRS Grade 1 10%</td>
</tr>
<tr>
<td>LCAR-B38M (Nanjing Legend Biotech)</td>
<td>Anti-BCMA Domains not reported</td>
<td>35</td>
<td>CR 94%</td>
<td>CRS Grade 1-4 85% Grade ≥3 6%</td>
</tr>
</tbody>
</table>

* Of evaluable pts

Key Takeaways

• Studies are showing promising results in heavily pretreated patients

• More studies are needed to determine the optimal:
 – CAR-T cell dose
 – Target
 – Co-stimulatory domain
 – Conditioning regimen
Presentation and Management of CAR-T cell Toxicities
Immunotherapy Toxicity

- Cytokine-associated toxicity
 - CRS and CRES
 - Non-antigen specific
 - High-level of immune activation

- Autoimmune toxicity
 - Antigen-specific attack of host tissue
 - On target, off-tumor toxicity
 - Antigen expression on non-malignant tissue

CAR-T Cell Toxicities

- Rates vary across studies
 - Different products
 - Cell dose
 - Disease state
 - Patient population

- Onset varies with product

<table>
<thead>
<tr>
<th>Toxicity (Grade ≥3)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>66%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>44%</td>
</tr>
<tr>
<td>Anemia</td>
<td>43%</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>31%</td>
</tr>
<tr>
<td>Neurologic</td>
<td>28%</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>21%</td>
</tr>
<tr>
<td>CRS</td>
<td>13%</td>
</tr>
</tbody>
</table>

Pathophysiology of CRS/CRES

- Excretion of endogenous cytokines
- Cell dose: response relationship and onset dependent on specific product
- Risk factors
 - Large tumor burden
 - Early onset CRS
 - Multiple co-morbidities
 - Older age
 - Elevated C reactive protein (CRP) prior to CAR-T cell infusion

<table>
<thead>
<tr>
<th>Cytokine Elevations</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF alpha</td>
</tr>
<tr>
<td>IFN gamma</td>
</tr>
<tr>
<td>IL-1 beta</td>
</tr>
<tr>
<td>IL-2</td>
</tr>
</tbody>
</table>
CRS and CRP

Reprinted with permission from AAAS.
CRS (Occurring during the first 3 weeks after CAR-T cell infusion)

- Hypotension (systolic blood pressure < 90 mmHg)
- Organ toxicity
 - Neurotoxicity
 - Cardiac
 - Gastrointestinal
 - Hepatic/renal
 - Dermatologic
 - Coagulopathy
- Fever (temperature ≥ 38°C)
- Hypoxia (O₂ saturation < 90% on room air)

CRES

Seizures

Neurologic assessment
- Orientation/alertness
- Name objects
- Writing
- Counting

Motor weakness

Increased ICP

Grading of CRS/CRES

<table>
<thead>
<tr>
<th>CRS/CRES Grade</th>
<th>Criteria</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-life threatening symptoms requiring symptomatic treatment • Constitutional symptoms</td>
<td>• Fever- supportive care acetaminophen +/- hypothermia blanket • Assess and treat infection(s)/seizures • Consider tocilizumab or siltuximab for refractory fevers</td>
</tr>
</tbody>
</table>

Grading of CRS/CRES

<table>
<thead>
<tr>
<th>CRS/CRES Grade</th>
<th>Criteria</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Symptoms require and respond to moderate intervention</td>
<td>• Manage similar to grade 1</td>
</tr>
<tr>
<td></td>
<td>• Oxygen requirement < 40%</td>
<td>• Monitor for cardiac and other organ dysfunction</td>
</tr>
<tr>
<td></td>
<td>• Hypotension responsive to fluids or low dose vasopressor</td>
<td>• Fluid bolus, may repeat if SBP less than 90 mmHg</td>
</tr>
<tr>
<td></td>
<td>• Grade 2 organ toxicity</td>
<td>• +/- *tocilizumab/ siltuximab, *dexamethasone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supplemental oxygen</td>
</tr>
</tbody>
</table>

*High-risk patients/CRES
<table>
<thead>
<tr>
<th>CRS/CRES Grade</th>
<th>Criteria</th>
<th>Management</th>
</tr>
</thead>
</table>
| 3 | Symptoms require and respond to aggressive intervention
• Oxygen requirement ≥ 40%
• Hypotension requiring high-dose or multiple vasopressors
• Grade 3 organ toxicity or Grade 4 elevation in AST/ALT | • Manage similar to grade 2
• ICU transfer
• Supplemental oxygen, non-invasive positive pressure ventilation
• Consider tocilizumab/ siltuximab +/- dexamethasone |
| 4 | Life-threatening symptoms –
• Ventilator support
• Grade 4 organ toxicity (excluding elevation in AST/ALT) | • Manage similar to grade 3
• High-dose corticosteroids |
Treatment of CRS/CRES

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 receptor antagonist</td>
<td>Tocilizumab 8 mg/kg (maximum 800 mg/dose) IV</td>
</tr>
<tr>
<td></td>
<td>- Dose may be repeated</td>
</tr>
<tr>
<td></td>
<td>Siltuximab 11 mg/kg IV x 1 dose</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Dexamethasone 10-20 mg IV every 6 hours</td>
</tr>
<tr>
<td></td>
<td>Methylprednisolone 1 g/day IV followed by a rapid taper</td>
</tr>
<tr>
<td></td>
<td>(severe grade 4 toxicity)</td>
</tr>
</tbody>
</table>

Patient Case

- JW is a 40 year old male with past medical history of stage IV refractory B cell lymphoma, hypertension, and seasonal allergies with no known drug allergies.
- He is day +4 of anti-CD19 CAR-T cells he developed:
 - Fever (temp 39°C)
 - Headache
 - Hypotension (SBP 84 mmHg).
- The team ordered blood cultures, x-ray, and 500 mL IV NS bolus. SBP improved to 88 mmHg, temp 38.8°C, and A&O x 3.

<table>
<thead>
<tr>
<th>Current Scheduled Medications</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keppra 750 mg PO every 12 hours</td>
<td>WBC 700/mm3</td>
</tr>
<tr>
<td>Filgrastim 480 mcg SubQ daily</td>
<td>ANC 300/mm3</td>
</tr>
<tr>
<td>Cefepime 2 g IV every 8 hours</td>
<td>Hgb 7.9 g/dL</td>
</tr>
<tr>
<td>Vancomycin 1.5 g IV every 12 hours</td>
<td>Platelets 25,000/mm3</td>
</tr>
</tbody>
</table>
Question #4

What interventions are appropriate for JW at this time?

A. Repeat fluid bolus, acetaminophen, and neurology consult
B. Repeat fluid bolus, cooling blanket, and acetaminophen
C. Tocilizumab 8 mg/kg, repeat fluid bolus, and acetaminophen
D. Dexamethasone 10 mg IV q6h and acetaminophen
Other CRS Related Organ Toxicity

- Cardiac - tachycardia, arrhythmias, heart block, heart failure
- Respiratory - tachypnea, pulmonary edema, pleural effusions
- Gastrointestinal - nausea, vomiting, diarrhea
- Hepatic - increase in AST/ALT or bilirubin
- Renal - decreased urine output, increased serum creatinine
- Coagulopathy - disseminated intravascular coagulation
- Hemophagocytic lymphohistiocytosis
- Dermatologic - rash

Short-term Adverse Effects

- Infusion reactions - pre-medicate
- Tumor lysis syndrome - allopurinol
- Hematologic
 - Neutropenia - neupogen
 - Thrombocytopenia - platelet transfusions
 - Anemia - red blood cell transfusions
- Fever - cultures and antibiotics
- Headache
- Nausea and vomiting

Intermediate to Long-term Adverse Effects

- Monitor for infections
- Hypogammaglobulinemia
 - Monitor IgG levels and give IVIG for low IgG levels
- Hematologic toxicities

Interventions

• Avoid medications causing central nervous system depression
• Assess for drug interactions or excluded medications
 – Avoid corticosteroids as pre-medications for transfusions
 – Avoid non-steroidal anti-inflammatory medications NAIDS
• Prophylaxis
 – Varicella-zoster virus- continue acyclovir or valacyclovir for 1 year
 – Seizure
 – Pneumocystis pneumonia
 – Stress ulcer

Key Takeaways

• CAR-T cell toxicities have a unique presentation compared to traditional chemotherapy
• Training on the recognition, treatment, and monitoring of CRS/CRES is essential to decrease treatment related morbidity and mortality
• Interdisciplinary teams are necessary to optimally care for patients undergoing CAR-T cell therapy