A Whole New World: A Case-Based Approach to Managing CAR T-Cell Therapy and Immunotherapy Toxicities

Larry Buie, Pharm.D., BCOP, FASHP
Elizabeth Dow, Pharm.D., BCOP, BCPS
Carolyn Oxencis, Pharm.D., BCOP, BCPS
Disclosures

- **Larry W. Buie**: Heron: Advisory Board; Pfizer: Advisory Board
- All other planners, presenters, reviewers, and ASHP staff of this session report no financial relationships relevant to this activity.
Learning Objectives

• Interpret existing literature on chimeric antigen receptor (CAR) T-cell therapy immunotherapy management.

• Design therapeutic plans for managing CAR T-cell therapy and immunotherapy.

• Develop management guidelines to standardize treatment approaches.
A Whole New World

Chimeric Antigen Receptor (CAR) T-Cell

- Ipilimumab

Immune Checkpoint Inhibitors (ICPI)

- Pembrolizumab
- Nivolumab
- Atezolizumab
- Durvalumab
- Avelumab
- Axicabtagene ciloleucel
- Cemiplimab-rwlc
- Tisagenlecleucel

FDA-Approved CAR T-Cell Therapies

<table>
<thead>
<tr>
<th>Name</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisagenlecleucel (Kymriah®)</td>
<td>CD-19</td>
</tr>
<tr>
<td>Axicabtagene ciloleucel (Yescarta®)</td>
<td>CD-19</td>
</tr>
</tbody>
</table>
FDA-Approved Immune Checkpoint Inhibitors

<table>
<thead>
<tr>
<th>Name</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipilimumab (Yervoy®)</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>Nivolumab (Opdivo®)</td>
<td>PD-1</td>
</tr>
<tr>
<td>Pembrolizumab (Keytruda®)</td>
<td>PD-1</td>
</tr>
<tr>
<td>Atezolizumab (Tecentriq®)</td>
<td>PD-L1</td>
</tr>
<tr>
<td>Avelumab (Bavencio®)</td>
<td>PD-L1</td>
</tr>
<tr>
<td>Durvalumab (Imfinzi®)</td>
<td>PD-L1</td>
</tr>
<tr>
<td>Cemiplimab-rwlc (Libtayo®)</td>
<td>PD-1</td>
</tr>
</tbody>
</table>

A Whole New World

- Efficacy
- Safety
- Financial
- Growth
Immuno-Oncology

What we know?

What do we not know?
A Whole New World

CAR T-Cell Toxicities
- Supportive care requirements
- REMS program
- Monitoring
- Early identification

ICPI Toxicities
- Patient education
- Consistent monitoring
- Early identification
- Management of toxicities

Pharmacist Involvement
CAR-T Cell Therapy Toxicities
A Lesson From History: TGN1412

- CD28 superagonist monoclonal antibody
- 6 subjects without malignant disease
- Symptoms within 1 hour of infusion
 - Peak cytokine levels (TNFα, INFγ, IL-1β, IL-2, IL-6, IL-8 and IL-10)
 - Initial symptoms: headache, nausea/vomiting, diarrhea, pyrexia
 - within 24 hours, renal failure, DIC and respiratory distress
- Treatment with corticosteroids, ranitidine, chlorpheniramine
- Cytokine levels returned to normal within 2 days

Death from CAR T-Cell Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Malignancy</th>
<th>CAR T-Cell</th>
<th>Day of Death</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan 2010</td>
<td>Colon Cancer</td>
<td>HER2-28-ζ</td>
<td>5</td>
<td>ARDS</td>
</tr>
<tr>
<td>Brentjens 2010</td>
<td>CLL</td>
<td>CD19-28-ζ</td>
<td>2</td>
<td>CRS</td>
</tr>
<tr>
<td>Frey 2014</td>
<td>B-ALL</td>
<td>CD19-41BB-ζ, Tisagenlecleucel (CTL019)</td>
<td>5 15 15</td>
<td>CRS (+Influenza), CRS (+Sepsis)</td>
</tr>
<tr>
<td>Kochenderfer 2015</td>
<td>PMBCL</td>
<td>CD19-28-ζ</td>
<td>16</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>Chong 2016</td>
<td>FL</td>
<td>CD19-41BB-ζ</td>
<td></td>
<td>Encephalitis</td>
</tr>
<tr>
<td>Neelapu (Zuma-1)</td>
<td>DLBCL</td>
<td>CD19-28-ζ, Axicabtagene ciloleucel (KTE-C19)</td>
<td></td>
<td>HLH</td>
</tr>
</tbody>
</table>

Death from CAR T-Cell Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Malignancy</th>
<th>CAR T-Cell</th>
<th>Day of Death</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locke 20116 (Zuma-1)</td>
<td>NHL</td>
<td>CD19-28-ζ</td>
<td></td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>Turtle 2016</td>
<td>B-ALL</td>
<td>CD19-41BB-ζ</td>
<td>3</td>
<td>CRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>122</td>
<td>Neurotoxicity</td>
</tr>
<tr>
<td>Turtle 2016</td>
<td>NHL</td>
<td>CD19-41BB-ζ</td>
<td>30</td>
<td>CRS (+GI Bleed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>Neurotoxicity (+CNS Bleed)</td>
</tr>
<tr>
<td>Rocket 2017</td>
<td>B-ALL</td>
<td>CD19-28-ζ (JCAR015)</td>
<td></td>
<td>Cerebral edema X 5</td>
</tr>
<tr>
<td>Zuma-1 (2017)</td>
<td>NHL</td>
<td>CD19-28-ζ</td>
<td></td>
<td>Cerebral edema</td>
</tr>
<tr>
<td>Turtle</td>
<td>CLL</td>
<td>CD19-41BB-ζ</td>
<td>11</td>
<td>Cerebral edema</td>
</tr>
</tbody>
</table>

CAR T-Cell Associated Toxicity

• Autoimmune
 – On-target, off-tumor
 – Tumor associated antigen expressed on non-malignant tissue

• Cytokine-associated
 – Lymphoid and myeloid activation
 – Release of cytokines
 – Non-antigen specific

Meet the Patient

• 30 year old male with Ph- ALL dx April 2015
 – HyperCVAD x 8 cycles → complete response (CR) 1
 – POMP maintenance, relapsed April 2016
 – CALGB 10403 → CR 2 with minimal residual disease (MRD) +
 – Blinatumomab initiated 1/2017
 – Bone marrow biopsy 3/2018
 • Revealed relapse with 30% blasts → T cells collected
 – CAR T-cell conditioning 5/1/2018
 • Cyclophosphamide and fludarabine
 – CAR T-cell infusion with no immediate adverse events on 5/6/2018
Meet the Patient

• 5/7/18 febrile and tachycardic
 • Empiric broad spectrum antimicrobials
 • Antipyretics
 • Negative workup for infection

• 5/8/18 hypotension and hypoxia
 • IV fluid bolus
 • Supplemental oxygen
ARS Question

DE has been transferred to the ICU for management of continued encephalopathy following CAR-T cell administration. Which of the following should be given to treat his cytokine release syndrome (CRS)?

A. Infliximab
B. Tocilizumab
C. Adalimumab
D. Muromonab
Assessing CAR T-Cell Toxicities

Determine CAR T-Cell Toxicity

- CRS
 - Fever
 - Hypotension
 - Hypoxia
 - Organ Toxicity
 - Grade CRS
 - Manage according to grade of CRS

- CRES
 - CARTOX-10
 - Seizure
 - Increased ICP
 - Motor Weakness
 - Grade CRES
 - Manage according to grade of CRES

- HLH/MAS
 - Ferritin
 - Organ Toxicity
 - Hemophagocytosis
 - Grade organ toxicity per CTCAE
 - Manage HLH/MAS according to algorithm

CRS Pathophysiology

• Most common toxicity of cellular immunotherapy
• Triggered by activation and expansion of T cells
• Complex pathophysiology
 – IL-2, soluble IL-2Rα, INFγ, IL-6, soluble IL-6R, and GM-CSF
 – Monocyte and macrophage activation
 – Dendritic cell activation

Clinical Symptoms

<table>
<thead>
<tr>
<th>Organ System</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutional</td>
<td>Fever, rigors, malaise, fatigue, anorexia, myalgias, arthralgias, nausea, vomiting, headache</td>
</tr>
<tr>
<td>Skin</td>
<td>Rash</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Nausea, vomiting, diarrhea</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Tachypnea, hypoxemia</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), diminished cardiac output (late)</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Elevated D-dimer, hypofibrinogenemia, bleeding</td>
</tr>
<tr>
<td>Renal</td>
<td>Azotemia</td>
</tr>
<tr>
<td>Hepatic</td>
<td>Transaminitis, hyperbilirubinemia</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Headache, mental status changes, confusion, delirium, word finding difficulty, aphasia, hallucinations, tremor, dysmetria, altered gait, seizure</td>
</tr>
</tbody>
</table>

CRS with CAR T-Cells

- High disease burden = increased antigen load = more toxicity
- Improved CAR constructs = more toxicity
 - Increased cytokine production
 - Increased T-cell activation and expansion
- Develops during the first week
- Peaks within 1-2 weeks of cell infusion
- Symptoms appear with maximal T-cell expansion
- May occur earlier with CD19-CD28-ζ (axicabtagene ciloleucel)

Grading of CRS

CRS Revised Grading System

<table>
<thead>
<tr>
<th>Grade</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Symptoms are not life threatening and require symptomatic treatment only</td>
</tr>
</tbody>
</table>
| 2 | Symptoms require and respond to moderate intervention
 | Oxygen requirement $< 40\%$ or
 | Hypotension responsive to fluids or low dose of one vasopressor or
 | Grade 2 organ toxicity |
| 3 | Symptoms require and respond to aggressive intervention
 | Oxygen requirement $\geq 40\%$ or
 | Hypotension requiring high-dose or multiple vasopressors or
 | Grade 3 organ toxicity |
| 4 | Life-threatening symptoms
 | Requirement for ventilator support or
 | Grade 4 organ toxicity (excluding transaminitis) |
| 5 | Death |
Management of CRS

<table>
<thead>
<tr>
<th>CRS Grade</th>
<th>Symptom or Sign</th>
<th>Management</th>
</tr>
</thead>
</table>
| 1 | Fever | Antipyretics, IV fluids, empiric antibiotics, symptomatic management of organ toxicity
| | Organ toxicity | Infection assessment |
| | | Consider anti-IL-6 therapy |
| 2 | Hypotension | Fluid Bolus, vasopressors |
| | | Anti-IL-6 therapy; repeat if needed |
| | Hypoxia | Supplemental oxygen |
| | | Anti-IL-6 therapy as per hypotension |
| 3 | Hypotension | Fluids, anti-IL-6 therapy per CRS grade 2, vasopressors as needed |
| | | Transfer to ICU; echocardiogram and hemodynamic monitoring |
| | | Addition of corticosteroids |
| | Hypoxia | Supplemental oxygen including high flow oxygen delivery and positive pressure ventilation |
| | | Anti-IL-6 therapy per CRS grade 2 |
| 4 | Hypotension | Fluids, anti-IL-6 therapy, vasopressors, and hemodynamic monitoring per CRS grade 3 |
| | | Addition of high dose corticosteroids |
| | Hypoxia | Mechanical ventilation |
| | | Anti-IL-6 therapy per CRS 2 |

Biomarkers for CRS

• Barriers to biomarker utilization
 – Assays are not readily available
 – Severity of CRS is not predicted by cytokine levels
 – Panels need to measure multiple cytokines
• C-reactive protein (CRP)
 – Acute phase reactant
 – Produced in response to IL-6 production
 – Lag time is 1-2 days
 – Peak levels and fold increase in CRP may be predictive
• Ferritin is not predictive of CRS development but may indicate severity
• Hypofibrinogenemia

IL-6

• IL-6 is a mediator of toxicity in CRS
 – Strong positive correlation between IL-6 levels and severity of CRS
• It binds with gp130 (CD130) and IL-6 receptor (IL-6R, CD126))
• IL-6R is present on macrophages, neutrophils and hepatocytes
• When IL-6 levels are elevated, *trans*-signaling and activation of the proinflammatory IL-6–mediated cascade occurs
• Leads to activation of JAK/STAT pathway signaling

Tocilizumab

- Humanized, immunoglobulin G1κ antihuman IL-6R mAB
 - Inhibits IL-6 binding to both cell-associated and soluble IL-6Rs
 - Inhibiting classical and proinflammatory trans-signaling
- FDA approved for CRS occurring after CAR T-cell therapy
- Side effects: transaminitis, thrombocytopenia, hyperlipidemia, and an increased risk of infection
- Effective treatment for CRS
 - Symptoms begin to clear within hours
 - Cytokines return to normal within 48 hours
- Dose: 4-8 mg/kg IV once and may be repeated
- Must keep 2 doses per patient available per REMS for approved CAR T-cell therapies

Tocilizumab-Refractory CRS

- Tocilizumab refractory CRS may emerge as a distinct pathophysiological entity
- All patients had ALL treated with anti-CD22 CAR T cells
- 10 subjects evaluated; 7 developed CRS
- One patient developed grade 4 CRS with manifestations of HLH that was unresponsive to tocilizumab
 - Higher IL-2 (35 pg/mL) versus median 6.1
 - GM-CSF level higher at 12 hours (28 pg/mL) versus median 1
 - No rise in IL-6
 - Ultimately had CR

HLH/MAS: A Complication of CAR T-Cells

• Constellation of symptoms
 – High fevers, hepatosplenomegaly, hepatic dysfunction, coagulopathy, hypofibrinogenemia and hyperferritinemia
• IL-2R, MCP-1 and MIP1B and other proinflammatory cytokine production
• Leads to immune activation and excessive inflammation
• Lymphocytic tissue infiltration
• Splenomegaly
• Hemophagocytosis present in bone marrow
• Multisystem organ failure may result
• Tocilizumab is treatment of choice
• Some may choose HLH directed treatment with etoposide

Other Alternatives for Prevention and Treatment of CRS

- Prophylactic tocilizumab?
- CAR T-cell dose refinement
- Siltuximab – binds IL-6
 - Full effect of immunosuppressives unknown
- In CAR-T treated mice, one week of ruxolitinib starting from day 1 of CAR-T infusion resulted in less severe CRS with attenuated inflammatory cytokines—no reductions in efficacy
- Ibrutinib with CART19 may enhance antitumor response and modulate T cell cytokine response, effectively reducing CRS
- Incorporation of suicide genes

Back to Patient DE

• 5/16/18 altered mental status
 • Head CT and EEG negative
• 5/17/18 persistent encephalopathy
 • Left arm weakness and facial droop
 • Transfer to ICU
 • MRI Brain negative
 • Dexamethasone 20 mg IV X 1
Assessing CAR T-Cell Toxicities

Determine CAR T-Cell Toxicity

CRS
- Fever
- Hypotension
- Hypoxia
- Organ Toxicity

Grade CRS
Manage according to grade of CRS

CRES
- CARTOX-10
- Seizure
- Increased ICP
- Motor Weakness

Grade CRES
Manage according to grade of CRES

HLH/MAS
- Ferritin
- Organ Toxicity
- Hemophagocytosis

Grade organ toxicity per CTCAE
Manage HLH/MAS according to algorithm

Typically manifests as toxic encephalopathy
 – Earliest signs are diminished attention, language disturbance, impaired handwriting
 – Severe CRES is associated with seizures, mental obtundation, increased ICP, and cerebral edema

May be biphasic
 – Phase I: typically within first 5 days
 • Fever and other CRS symptoms present
 • Typically shorter duration and lower grade
 • Responsive to anti-IL-6 therapy
 – Phase II: delayed neurotoxicity occurring during weeks 3-4 after CAR T-cell therapy
 • Longer duration and higher grade neurotoxicity
 • Anti-IL-6 therapy is not effective!

Pathophysiology of CRES

- Passive diffusion of cytokines into the brain
 - High serum levels of IL-6 and IL-15 associated with severe neurotoxicity
- Trafficking of T cells into the CNS
 - Presence of CAR T-cells in cerebrospinal fluid from patients with neurotoxicity
- Disruption of blood brain barrier
 - Elevated protein levels
- Secondary cortical irritation
 - Diffuse generalized slowing consistent with encephalopathy on EEG
 - Seizure activity
- MRI and CT scans are usually negative
 - Exceptions: cerebral edema

Grading of CRES

<table>
<thead>
<tr>
<th>Grade</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CARTOX-10 score of 7-9 (mild impairment)</td>
</tr>
<tr>
<td>2</td>
<td>CARTOX-10 score of 2-6 (moderate impairment)</td>
</tr>
</tbody>
</table>
| 3 | CARTOX-10 score of 0-2 (severe impairment)
Raised intracranial pressure with stage 1-2 papilledema or CSF opening pressure <20 mmHg
Partial or non-convulsive seizures on EEG with response to benzodiazepine |
| 4 | Critical condition and/or obtunded
Cannot perform CARTOX-10 assessment of tasks
Stage 3-5 papilledema or CSF opening pressure ≥ 20 mmHg
Generalized seizures, convulsive or non-convulsive status epilepticus
New motor weakness |

Management of CRES

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supportive care, IV fluids Withhold oral intake Management of agitation Neurology consult: papilledema assessment, lumbar puncture, MRI, EEG If associated with CRS, consider anti-IL-6 therapy</td>
</tr>
<tr>
<td>2</td>
<td>Dexamethasone 10 mg IV q6h or methylprednisolone 1 mg/kg q12h if refractory to anti-IL-6 therapy, or for CRES without concurrent CRS Consider transfer to ICU</td>
</tr>
<tr>
<td>3</td>
<td>Transfer to ICU Corticosteroids, continue until grade 1 CRES then taper Acetazolamide</td>
</tr>
<tr>
<td>4</td>
<td>Consider mechanical ventilation Seizure management High dose corticosteroids Management of increased ICP and papilledema</td>
</tr>
</tbody>
</table>

DE continues to deteriorate and becomes obtunded in the ICU requiring mechanical ventilator support. He has no signs of CRS. Which of the following is the most appropriate treatment strategy?

A. Ibrutinib 420 mg PO daily
B. Tocilizumab 8 mg/kg X 1, repeat if necessary
C. Adalimumab 40 mg SC every two weeks
D. High dose steroids until CRES symptoms resolve to grade 1, then taper
Why are there no “Universal Guidelines”?

- Different CAR T-cell constructs
 - Different magnitude and timing of toxicity
- Different disease states
 - NHL
 - ALL
- Patient characteristics
 - Age
 - Comorbidities
 - Prior therapy
 - Cytokine response
- Variability in biomarker utilization/reliability
- Inpatient versus outpatient
- Dose, timing, and choice of corticosteroids
- Dose, timing, and choice of anti-IL6 blockade

CAR T-Cell KEY TAKEAWAYS

1) **CRS and CRES should be quickly identified in patients receiving CAR T-cells.**

2) **Appropriate therapy for CRS and CRES may include anti-IL-6 directed therapy (tocilizumab), corticosteroids, or a combination of the two if CRES with concomitant CRS.**

3) **A multidisciplinary approach is required to manage patients that develop CRS or CRES.**
ICPI Toxicity:
Hepatotoxicity
Immune Checkpoint Inhibitors: Mechanism of Action

CTLA-4 – cytotoxic T-lymphocyte-associated antigen 4
PD-1 – programmed cell deal protein 1
PD-L1 – programmed cell deal protein ligand 1

Image credit: jcmtjournal.com/article/viewFile/2275/1732/9986 (used with permission)
Introduction to Immunotherapy Toxicities

- Requires rapid and appropriate recognition and treatment
- Clinicians are inexperienced in recognizing and treating side effects
- Patients may not be aware the adverse effect they are experiencing could be caused by ICPI treatment

Did you know?
Immunotherapy-related adverse effects can occur at any time and affect any organ

Clinical Practice Guidelines

|---|---|

- Collaborative guidelines created with the goal of minimizing treatment toxicity and optimizing outcomes
- Guidelines pertain only to immune checkpoint inhibitors

Clinical Practice Guidelines

<table>
<thead>
<tr>
<th>Grade</th>
<th>Action</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Mild)</td>
<td>Continue immunotherapy</td>
<td>Close monitoring</td>
</tr>
<tr>
<td>2 (Moderate)</td>
<td>Hold immunotherapy, consider resuming when grade 1 or less</td>
<td>Corticosteroids may be administered</td>
</tr>
<tr>
<td>3 (Severe)</td>
<td>Hold with potential re-challenge, caution is advised</td>
<td>High dose corticosteroids</td>
</tr>
<tr>
<td>4 (Life-threatening)</td>
<td>Permanent discontinuation</td>
<td>High dose corticosteroids</td>
</tr>
</tbody>
</table>

*IRAEs = Immune-related adverse effects

Meet the Patient

• BG is a 50 year-old male with no significant PMH with the exception of PD-L1 positive metastatic gastric cancer
 – He is being treated with pembrolizumab IV every 21 days
• BG presents to his oncology clinic prior to cycle 4 complaining of fatigue, nausea, and abdominal pain
• Assessment: Physical exam reveals slight yellowing of the sclera
• Laboratory values reveal the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>Result</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>262</td>
<td>8 - 66 unit/L</td>
</tr>
<tr>
<td>AST</td>
<td>178</td>
<td>13 - 44 units/L</td>
</tr>
<tr>
<td>Bilirubin (total)</td>
<td>1.1 mg/dL</td>
<td>0.2 - 1.2 mg/dL</td>
</tr>
</tbody>
</table>
Hepatotoxicity

• Incidence: 2-10 %
 – Increased to 25-30% with combination therapy
 – 15% grade 3 or higher with combination therapy

• Mechanism:
 – Lymphocytic infiltration of the hepatocytes

• Onset: 6-12 weeks

• Signs and Symptoms
 – Abdominal pain
 – Jaundice
 – Severe nausea or vomiting
 – Dark urine
 – Bleeding/bruising
 – Pruritis
 – Loss of appetite
 – Drowsiness

Hepatotoxicity

• Diagnosis
 – Hepatic function panel
 – Rule out viral etiology
 – Rule out disease-related hepatic dysfunction
 – Rule out other drug-induced causes of transaminitis

• Adverse Events
 – Transaminitis without elevated bilirubin
 – Transaminitis with elevated bilirubin
 – Fulminant liver failure

LFTs – liver function tests
ALT – alanine aminotransferase
AST – aspartate aminotransferase
ULN – upper limit of normal

Clinical Practice Guidelines – Hepatic IRAEs

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management</th>
</tr>
</thead>
</table>
| 1 (Mild) – ALT/AST <3 x ULN | • **CONTINUE** immunotherapy
• Assess LFTs with increased frequency |
| 2 (Moderate) – ALT/AST 3-5 x ULN | • **HOLD** immunotherapy
• Monitor LFTs every 3-5 days
• Consider prednisone 0.5-1 mg/kg/day |
| 3 (Severe) – ALT/AST 5-20 x ULN | • **PERMANENTLY DISCONTINUE** immunotherapy
• Initiate prednisone 1-2 mg/kg/day
• Consider hospital admission/hepatology consultation
• Monitor liver enzymes every 1-2 days
• If steroid refractory or no improvement after 3 days, consider mycophenolate 0.5-1 g every 12 hours
• Infliximab should not be used for hepatitis |
| 4 (Life-threatening) – ALT/AST >20 x ULN | Grade >1 transaminitis
PLUS bilirubin >1.5 x ULN |

Hepatotoxicity

• Management
 – Consider consultation with disease-specific subspecialty
 – Limit/discontinue hepatotoxic medications
 – Early intervention with corticosteroids is the key goal of management of immune-related toxicities
 – Re-challenge can occur following a grade 1-2 IRAE when ALT/AST return to baseline and steroids have been tapered to <10 mg/day

Did you know?
Infliximab use should be avoided in patients with immune-related hepatitis, due to the risk for hepatitis B virus reactivation

Back to the Patient

• Diagnosis:
 – Grade 2 ICPI induced hepatotoxicity

• Plan:
 – HOLD ICPI
 – Initiate prednisone 0.5 mg/kg/day

• Follow Up:
 – Monitor LFTs every 3 to 5 days until normalized
 – Taper prednisone as tolerated over 4 to 6 weeks
 – Consider re-challenge if appropriate and taking <10 mg prednisone daily

According to the NCCN/ASCO clinical practice guidelines, which of the following best describes the initial recommended management of Grade 2 ICPI induced hepatotoxicity?

A. Continue immunotherapy and monitor liver function tests
B. Hold immunotherapy and consider corticosteroids
C. Hold immunotherapy and administer infliximab
D. Permanently discontinue immunotherapy
Clinical Practice Pearls

• Review patients for potential risk factors for ICPI hepatotoxicity – metastases to the liver, history of viral hepatitis, other pre-existing liver disorders

• Patients with mild hepatotoxicity can potentially be a candidate for ICPI re-challenge

• Counsel patients on signs and symptoms of severe hepatotoxicity: jaundice, itching, tea colored urine, severe abdominal pain

ICPI Toxicity: Cardiotoxicity
Meet the Patient

• SS is a 56 year-old female with no cardiac PMH and diagnosed with metastatic renal cell carcinoma
 – She is being treated with a combination of intravenous nivolumab and ipilimumab every 21 days and has just completed 4 cycles
• SS presents to the emergency room complaining of new onset shortness of breath, a “racing heart,” and bilateral lower extremity swelling
• Assessment:
 – Electrocardiography: T wave changes in the lateral leads, chest X-Ray: cardiomegaly, echocardiogram (ECG): impaired ventricular function
• Laboratory values reveal the following abnormalities:

<table>
<thead>
<tr>
<th>Component</th>
<th>Result</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain natriuretic peptide (BNP)</td>
<td>1921 pg/mL</td>
<td><124 pg/mL</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate (ESR)</td>
<td>235 mm/hr</td>
<td>0-30 mm/hr</td>
</tr>
</tbody>
</table>
Cardiotoxicity

• Incidence: <0.1%

• Mechanism:
 – Lymphatic infiltration of the myocardium and myocardial conduction system

• Onset:
 – 2-32 weeks
 – Median onset of 10 weeks

• Signs and Symptoms
 – Shortness of breath
 – Dizziness
 – Chest pain
 – Shoulder pain
 – Arrythmias
 – Edema

Cardiotoxicity

• **Diagnosis**
 – Cardiology consultation
 – Electrocardiograph (ECG)
 – Telemetry
 – Cardiac biomarkers
 – Inflammatory biomarkers
 – Chest X-Ray, Cardiac MRI
 – Rule out other causes (viral, etc)

• **Adverse Events**
 – Myocarditis
 – Pericarditis
 – Arrhythmias
 – Impaired ventricular function
 – Myocardial infarction
 – Cardiogenic shock

Clinical Practice Guidelines – Cardiovascular IRAEs

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Mild) –</td>
<td>• HOLD immunotherapy</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>• Cardiology consultation</td>
</tr>
<tr>
<td>biomarker elevation,</td>
<td></td>
</tr>
<tr>
<td>including abnormal ECG</td>
<td></td>
</tr>
<tr>
<td>2 (Moderate) –</td>
<td>• PERMANENTLY DISCONTINUE immunotherapy</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>• Initiate methylprednisolone/prednisone 1-2 mg/kg/day</td>
</tr>
<tr>
<td>biomarker elevation,</td>
<td></td>
</tr>
<tr>
<td>including abnormal ECG</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Practice Guidelines – Cardiovascular IRAEs

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management</th>
</tr>
</thead>
</table>
| 3 (Severe) – Arrhythmia, significant echo findings without hypotension, elevated cardiac biomarkers | • PERMANENTLY DISCONTINUE immunotherapy
• Initiate methylprednisolone/prednisone 1-2 mg/kg/day
• Hospital admission/Cardiology consultation
• Treat until cardiac function returns to baseline
• Taper steroids over 4-6 weeks |
| 4 (Life-threatening) – Arrhythmia, hemodynamic instability (hypotension), cardiomyopathy, cardiac biomarkers elevated >3 x ULN | • PERMANENTLY DISCONTINUE immunotherapy
• Consider methylprednisolone 1 g pulse dose
• Initiate methylprednisolone/prednisone 1-2 mg/kg/day
• Hospital admission/Cardiology consultation
• Treat until cardiac function returns to baseline
• Consider mycophenolate, infliximab, or anti-thymocyte globulin |

Cardiotoxicity

• Management
 – Holding ICPI is recommended for ALL grades of complications
 – Myocarditis symptoms are often non-specific and a diagnosis of exclusion
 – Patients with elevated troponin or conduction abnormalities should be immediately transferred to a coronary care unit
 – The appropriateness of ICPI re-challenge after cardiotoxicity is unknown

Did you know?
Infliximab use has been associated with heart failure and is contraindicated at high doses in patients with moderate to severe heart failure

Back to the Patient

• **Diagnosis:**
 – Grade 3 ICPI induced cardiotoxicity

• **Plan:**
 – Rapid initiation of corticosteroids
 – Inpatient admission to cardiology care unit
 – PERMANENTLY DISCONTINUE treatment due to severity IRAE

• **Follow Up:**
 – Cardiology consult
 – Management of heart failure symptoms per ACC/AHA guidelines

Answer

According to the NCCN/ASCO clinical practice guidelines, which of the following best describes the recommended management of Grade 3 ICPI induced cardiotoxicity?

A. Hold ICPI; consider resuming upon resolution of symptoms
B. Continue ICPI and monitor cardiac biomarkers
C. Discharge home with a prescription for prednisone
D. Inpatient admission, cardiac work-up, cardiology consult, initiate methylprednisolone/prednisone 1-2 mg/kg/day and permanent discontinuation of ICPI
Clinical Practice Pearls

• Although rare, cardiotoxicity associated with ICPI can be rapidly progressive and potentially fatal, and is more common with combination therapy

• Manage cardiac symptoms according to the American College of Cardiology (ACC) and American Heart Associate (AHA) guidelines

• Current clinical practice guidelines recommend discontinuing ICPI if severe or life threatening cardiotoxicity occurs

Did you know?
The American College of Cardiology (ACC) curates a “Cardio-Oncology” resource page available at: https://www.acc.org/clinical-topics/cardio-oncology
ICPI Toxicity: Endocrinopathy
Endocrine IRAEs

• One of the most frequently affected system
 – Pituitary, thyroid, adrenal glands, and pancreas
• Diagnosis can be challenging
 – Toxicity could be related to disease state
• Endocrine specialists play a vital role
• Essential to manage endocrine IRAEs quickly to provide optimal care and maximize benefit

Did you know?
Compared with other IRAEs, endocrine issues can have rapid improvement with treatment

Endocrine IRAEs

Anti-CTLA4 Therapy

• Primarily associated with hypophysitis and thyroid dysfunction
• Median onset 7-20 weeks
• Mechanism?
 – CTLA4 mutations leads to impaired function of CTLA4
 • Leads to unchecked T-cell self-reactivity
 – Presence of CTLA4 in normal pituitary cells could explain hypophysitis

Anti-PD1/PDL1 Therapy

• Primarily associated with thyroid dysfunction
• Median onset 10-11 weeks
• Mechanism?
 – Disruption of immune tolerance via PD1/PDL1
 – Evidence of both cellular and humoral autoimmunity have been observed in case series of insulin-dependent diabetes

Girotra M et al. JNCI Cancer Spectrum; 2018;2(3):pky021
<table>
<thead>
<tr>
<th>Agent</th>
<th>Any endocrine (%)</th>
<th>Any thyroid (%)</th>
<th>Hypothyroidism (%)</th>
<th>Hyperthyroidism (%)</th>
<th>Thyroiditis (%)</th>
<th>Hypophysitis (%)</th>
<th>Primary Adrenal Insufficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipilimumab</td>
<td>0-29</td>
<td>0-7.4</td>
<td>0-9</td>
<td>0-2.8</td>
<td>0</td>
<td>0-17.4</td>
<td>0-1.6</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>0-19.2 0-40</td>
<td>0-19.2 0-40</td>
<td>0-11.5 0-40</td>
<td>0-7.7 0-6.5</td>
<td>0-5</td>
<td>0-1.2</td>
<td>0-4.3 0-3.3</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>0-19.2 0-40</td>
<td>0-19.2 0-40</td>
<td>0-11.5 0-40</td>
<td>0-7.7 0-6.5</td>
<td>0-5</td>
<td>0-1.2</td>
<td>0-4.3 0-3.3</td>
</tr>
<tr>
<td>Avelumab</td>
<td>0-10 0-6 2.3-11</td>
<td>4.2-10 0-6 2.3-8.7</td>
<td>0-6.5 0-6 2.3-4.8</td>
<td>0-10 0-3.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atezolizumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Durvalumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avelumab + nivolumab</td>
<td>16.7-50 10-50</td>
<td>10-50</td>
<td>4-27</td>
<td>0-30</td>
<td>0-4</td>
<td>0-11.7</td>
<td>0-8</td>
</tr>
<tr>
<td>Atezolizumab + Durvalumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Signs and Symptoms

- Persistent and/or unusual headaches
- Increased sweating
- Rapid heartbeat
- Increased hungry and/or thirst
- Dizziness
- Nausea or vomiting
- Constipation
- Muscle aches
- Weight gain or loss
- Hair loss
- Vision changes
- Hair loss
- Changes in mood and/or behavior
- Feeling cold
- Increased urinary frequency
- Deeper voice
- Abdominal pain
- Extreme fatigue
- Increased fatigued

Meet the Patient

MN is a 68 year-old male with a history of unresectable stage III non-small cell lung cancer
- Completed chemotherapy plus radiation
- Started durvalumab 10 mg/kg IV every 2 weeks

Prior to his 3rd dose of durvalumab, he called into clinic complaining of significantly worsening fatigue and inability to walk a block without becoming winded...
Which endocrine based laboratory tests need to be monitored for thyroid dysfunction with immune checkpoint inhibitors based on NCCN/ASCO clinical practice guidelines?

A. Thyroid stimulating hormone (TSH) every 3 weeks
B. Free thyroxine (FT4) every 3 weeks
C. TSH and FT4 only in symptomatic patients
D. TSH and FT4 every 4 to 6 weeks
Patient Case

- MN presents to clinic appearing anxious and diaphoretic
- Assessment:
 - Rapid irregular heartbeat
 - FT4 = 15 ug/dL
 - TSH = 0.01 mIU/L
 - ACTH and cortisol are normal
- Diagnosis:
 - Grade 2 ICPI induced hyperthyroidism
- Plan:
 - Direct admission, cardiology consult, IV beta-blockers

Completed chemotherapy plus radiation → 1st dose durvalumab → 2nd dose durvalumab → Admission prior to 3rd dose due to hyperthyroidism
Hyperthyroidism Management

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic or mild symptoms</td>
<td>Continue ICPI
Monitor TSH, FT4 every 2-3 weeks (eval for persistent hyperthyroidism)</td>
</tr>
<tr>
<td>2</td>
<td>Moderate symptoms, able to perform ADL</td>
<td>Consider holding ICPI
Consider Endocrine consult
Beta-blockers, hydration, supportive care
> 6 weeks (persistent hyperthyroidism): work-up</td>
</tr>
<tr>
<td>3-4</td>
<td>Severe symptoms, medically significant or life-threatening consequences, unable to perform ADL</td>
<td>Hold ICPI
Beta blocker, hydration, supportive care
Severe symptoms or concern for thyroid storm: hospitalize and initiate prednisone 1-2 mg/kg/d or equivalent tapered over 1-2 weeks</td>
</tr>
</tbody>
</table>

After diagnosis of ICPI related hyperthyroidism, what laboratory monitoring needs to occur?

A. TSH and FT4 every 4 weeks
B. TSH and FT4 every 2 to 3 weeks
C. TSH every 4 to 6 weeks
D. FT4 every 4 to 6 weeks
Patient Case

- Two weeks after discharge, MN returns to clinic
- Assessment:
 - Worsening fatigue, constipation, and depression
 - TSH = 12 mIU/L
 - T4 = 0.2 mcg/dL
 - Obtain endocrine consult

- Diagnosis:
 - Grade 2 ICPI induced hypothyroidism

- Plan:
 - Taper beta-blocker
 - Start levothyroxine
Hypothyroidism Management

<table>
<thead>
<tr>
<th>Grade</th>
<th>Treatment</th>
<th>TSH Level</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continue ICPI</td>
<td>TSH < 10 mIU/L and asymptomatic</td>
<td>TSH < 10 mIU/L and asymptomatic</td>
</tr>
<tr>
<td>2</td>
<td>Monitor TSH and FT4</td>
<td>Moderate symptoms; able to perform ADL</td>
<td>Moderate symptoms; able to perform ADL</td>
</tr>
<tr>
<td></td>
<td>Consider holding ICPI and</td>
<td>TSH persistently > 10 mIU/L</td>
<td>TSH persistently > 10 mIU/L</td>
</tr>
<tr>
<td></td>
<td>endocrine consult</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyroid supplementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(any degree of TSH elevation or asymptomatic with TSH levels that persist > 10 mIU/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No risk factors: 1.6 mcg/kg/d (IBW); if elderly or frail with multiple comorbidities: consider titrating up from low dose (25-50 mcg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitor TSH Q6-8 weeks while titrating hormone replacement to normal TSH, afterwards monitor thyroid function Q6 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td>Hold ICPI and obtain endocrine consult</td>
<td>Severe symptoms, medically significant or life-threatening consequences, unable to perform ADL</td>
<td>TSH < 10 mIU/L and asymptomatic</td>
</tr>
<tr>
<td></td>
<td>May admit for IV therapy if signs of myxedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyroid supplementation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What dose of levothyroxine should MN be started on?

A. 75 mcg PO daily
B. 100 mcg PO daily
C. 150 mcg PO daily
D. 200 mcg PO daily

PMH: HTN, anxiety
Weight = 70 kg
All other labs WNL
Patient Case

Completed chemotherapy plus radiation

1st dose durvalumab

2nd dose durvalumab

Hospital admit: hyperthyroidism

Follow-up clinic visit: hypothyroidism

3rd dose durvalumab

5 week delay
Clinical Practice Pearls

• Endocrinopathies often result in permanent organ damage that require life-long hormonal supplementation

• Endocrinopathies can have rapid improvement with treatment

• Corticosteroids help mitigate acute inflammation but are not recommended for managing hypothyroidism or type I diabetes

ICPI Toxicity:
Dermatologic
Meet the Patient

• MJ is a 66 year-old female with newly diagnosed metastatic melanoma who presents to clinic for initiation of ipilimumab and nivolumab
 – PMH: left cataract removal, degenerative joint disease
 – PSH: left knee arthroscopy, and s/p sinus surgery for deviated septum
 – Allergies: sulfa (skin rash), intolerant of aspirin
 – ECOG performance status: 0
 – Medications: loratadine, omega-3 fish oil, sertraline, vitamin D

• As the clinic pharmacist, you enroll the patient in the immune checkpoint inhibitor program
Patient Case

- MJ presents prior to cycle 3 of ipilimumab and nivolumab
 - During RPh follow-up phone call, she reported a mild rash on her upper chest
 - Managed with topical hydrocortisone 2.5% cream and occasional use of oral diphenhydramine
 - Today, she reports that rash has been increasing in size and remains pruritic
- Assessment:
 - A few scattered areas of rash on the upper chest, abdomen, arms, and upper things
 - Estimation rash involved 15-20% of BSA
Dermatologic IRAEs

• Cutaneous toxicities appear to be one of the most prevalent IRAEs
 – Anti-CTLA-4, anti-PD-1, anti-PD-L1 all implicated
 – Anti-CTLA-4 and anti-PD-1 therapies in combination are associated with more
 frequent, severe and earlier cutaneous IRAEs
• Observed in more than 1/3 of treated patients
 – Regardless of tumor type
• Onset is within the first several weeks of treatment
• Most common is maculopapular rash (eczema-like spongiotic dermatitis) and pruritus
• Early recognition and management can mitigate severity of lesions
Dermatologic IRAEs

Anti-CTLA4, -PD1, -PDL1 Therapy

<table>
<thead>
<tr>
<th>Maculopapular rash</th>
<th>Vitiligo</th>
<th>Psoriasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichenoid reactions</td>
<td>Life threatening (Stevens-Johnson syndrome, toxic-epidermal necrolysis)</td>
<td>Grover’s Disease</td>
</tr>
<tr>
<td>Pruritus</td>
<td>Bullous Pemphigoid</td>
<td>Dermatomyositis</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Sjogren’s Syndrome</td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td>Sweet’s syndrome</td>
<td>Acneiform rash</td>
<td>Papulopustular Rosacea</td>
</tr>
<tr>
<td>Alopecia</td>
<td>Nail changes</td>
<td>Photosensitivity</td>
</tr>
</tbody>
</table>

Dermatologic IRAEs

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Papules and/or pustules covering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Symptoms do not affect the quality of life or controlled with topical regimen and/or oral antipruritic</td>
<td><10% BSA, +/- pruritus or tenderness</td>
</tr>
<tr>
<td>2</td>
<td>Inflammatory reaction that affects quality of life and requires intervention based on diagnosis Limiting instrumental ADL</td>
<td>10-30% BSA, +/- pruritus or tenderness</td>
</tr>
<tr>
<td>3</td>
<td>As grade 2, but with failure to respond to indicated interventions for a grade 2 dermatitis Limiting self-care ADL; associated with local superinfection with oral antibiotics indicated</td>
<td>>30% BSA, +/- pruritus or tenderness</td>
</tr>
<tr>
<td>4</td>
<td>All severe rashes unmanageable with prior interventions and intolerable Associated with extensive superinfection with IV antibiotics indicated; life threatening consequences</td>
<td>any percent BSA, ± pruritus or tenderness</td>
</tr>
</tbody>
</table>

Common Terminology Criteria for Adverse Events (CTCAE) 2017 v.5.0
Rash BSA Calculation
What grade of dermatologic toxicity is MJ experiencing?

A. Grade 1
B. Grade 2
C. Grade 3
D. Grade 4
Dermatologic IRAE Management

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Continue ICPI</th>
</tr>
</thead>
</table>
| • Topical emollients and/or mild-moderate potency topical corticosteroids
• Avoid skin irritants and sun exposure | |

<table>
<thead>
<tr>
<th>Grade 2</th>
<th>Consider holding ICPI, monitor weekly for improvement</th>
</tr>
</thead>
</table>
| • Consider initiating prednisone (or equivalent) at 1 mg/kg, tapering over at least 4 weeks
• Treat with topical emollients, oral antihistamines, and medium to high potency topical corticosteroids | |

<table>
<thead>
<tr>
<th>Grade 3</th>
<th>Hold ICPI, consult dermatology for resumption</th>
</tr>
</thead>
</table>
| • Initiate (methyl)prednisolone (or equivalent) 1-2 mg/kg, tapering over at least 4 weeks
• Treat with topical emollients, oral antihistamines, and high-potency topical corticosteroids | |

<table>
<thead>
<tr>
<th>Grade 4</th>
<th>Hold ICPI indefinitely unless benefits outweigh risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Initiate IV (methyl)prednisolone (or equivalent) 1-2 mg/kg, with slow tapering</td>
<td></td>
</tr>
</tbody>
</table>

Potency of Common Topical Corticosteroids

<table>
<thead>
<tr>
<th>Potency</th>
<th>Medication Name</th>
<th>Strength</th>
<th>Dosage vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least potent</td>
<td>Hydrocortisone</td>
<td>0.5-2.5%</td>
<td>C, L, O</td>
</tr>
<tr>
<td>Low</td>
<td>Desonide</td>
<td>0.05%</td>
<td>G, L, O</td>
</tr>
<tr>
<td></td>
<td>Fluocinolone acetonide</td>
<td>0.01%</td>
<td>C</td>
</tr>
<tr>
<td>Medium</td>
<td>Betamethasone valerate</td>
<td>0.1%</td>
<td>C, L</td>
</tr>
<tr>
<td></td>
<td>Fluocinolone acetonide</td>
<td>0.025%</td>
<td>C, O</td>
</tr>
<tr>
<td></td>
<td>Mometasone furoate</td>
<td>0.1%</td>
<td>C, L, O</td>
</tr>
<tr>
<td></td>
<td>Triamcinolone</td>
<td>0.025-0.1%</td>
<td>C, L, O</td>
</tr>
<tr>
<td>Medium to High</td>
<td>Betamethasone dipropionate</td>
<td>0.05%</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate</td>
<td>0.005%</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Triamcinolone</td>
<td>0.5%</td>
<td>C, O</td>
</tr>
<tr>
<td>High</td>
<td>Augmented betamethasone dipropionate</td>
<td>0.05%</td>
<td>C, L</td>
</tr>
<tr>
<td></td>
<td>Betamethasone dipropionate</td>
<td>0.05%</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Fluocinonide</td>
<td>0.05%</td>
<td>C, G, O</td>
</tr>
<tr>
<td>Ultra-high</td>
<td>Augmented betamethasone dipropionate</td>
<td>0.05%</td>
<td>G, O</td>
</tr>
<tr>
<td></td>
<td>Clobetasol</td>
<td>0.05%</td>
<td>C, G, L, O</td>
</tr>
<tr>
<td></td>
<td>Fluocinonide</td>
<td>0.1%</td>
<td>C</td>
</tr>
</tbody>
</table>

C=cream, G=gel, L=lotion, O=ointment

Patient Case

• Diagnosis:
 – Grade 2 ICPI induced skin rash

• Plan:
 – Hold ipilimumab/nivolumab x 1 week
 – Patient would like to avoid oral steroids
 – Start other supportive care medications
 – Follow-up in 1 week
Based on MJ’s grade of toxicity, which therapy would you recommend?

A. Clobetasol 0.05% cream applied twice daily and hydroxyzine 25 mg PO TID PRN
B. Diphenhydramine topical cream applied twice daily and diphenhydramine 25 mg PO BID PRN
C. Hydrocortisone 2.5% cream applied twice daily and diphenhydramine 25 mg PO BID PRN
D. Triamcinolone 0.5% cream applied twice daily and hydroxyzine 25 mg PO TID PRN
Patient Case

• MJ presents back to clinic 1 week later
 – Rash continued to worsen
 – Woke up with new facial edema and erythema
• Assessment:
 – Disseminated, maculopapular and erythematous rash covering approximately 50% of BSA on back, chest, arms, and legs
• Diagnosis:
 – Grade 3 ICPI induced skin rash

1st dose ipilimumab + nivolumab → 2nd dose if ipilimumab + nivolumab → 3rd dose held for 1 week Topical treatment → Worsening skin rash
Diagnostic Work-Up

- Rule out alternative etiologies such as infection, adverse effects from other drugs, or contact dermatitis
- Full medication review to rule out drug-induced causes
- Dermatology consult
- Dermatologic emergencies (Stevens-Johnson syndrome/toxic epidermal necrosis, Sweet syndrome) should be ruled out
- Serologic studies if an autoimmune condition is suspected
- Skin biopsies considered for grade 2 and above

Based on MJ’s grade 3 skin IRAE, what would the best treatment option be?

A. Continue ICPI, admit for IV methylprednisolone 1 mg/kg/day
B. Continue ICPI, admit for PO prednisone 2 mg/kg/day
C. Hold ICPI, admit for IV methylprednisolone 1 mg/kg/day
D. Hold ICPI, admit for PO prednisone 0.5 mg/kg/day
Patient Case

- MJ presents to clinic 1 week after discharging from the hospital
- Plan:
 - Taper prednisone over at least 4 weeks
 - Consult dermatology when and if appropriate to resume ICPI
 - Continue topical emollients, oral antihistamines, and topical steroids

<table>
<thead>
<tr>
<th>Week</th>
<th>Prednisone Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 mg PO daily</td>
</tr>
<tr>
<td>2</td>
<td>40 mg PO daily</td>
</tr>
<tr>
<td>3</td>
<td>20 mg PO daily</td>
</tr>
<tr>
<td>4</td>
<td>10 mg PO daily</td>
</tr>
<tr>
<td>5</td>
<td>5 mg PO daily</td>
</tr>
</tbody>
</table>

1st dose ipilimumab + nivolumab
2nd dose if ipilimumab + nivolumab
3rd dose held for 1 week
Hospital admission
4-5 week steroid taper
Patient Case

• MJ presents back to clinic, her skin rash is completely resolved
 – Ipilimumab will be discontinued due to grade 3 rash
 – She will resume single agent nivolumab every 2 weeks
• Fast forward 11 months...
 – CT and MRI findings show stable disease
 – MJ reports an occasional nonproductive cough which started 3 weeks ago
 • Increasing dyspnea on exertion
 – She denies fever, headache, chills, nausea/vomiting, rash, abdominal pain
 – CT chest shows new consolidations concerning for immune-mediated pneumonitis

1st dose ipilimumab + nivolumab

2nd dose if ipilimumab + nivolumab

Grade 3 skin rash caused 10 week delay

3rd dose of nivolumab

22 doses of nivolumab later presents with pneumonitis
Pneumonitis Management

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic; clinical or diagnostic observations only; intervention not indicated</td>
<td>Confined to one lobe of the lung or < 25% of lung parenchyma</td>
</tr>
<tr>
<td>2</td>
<td>Symptomatic; medical intervention indicated; limiting instrumental ADL</td>
<td>Involves more than one lobe of the lung or 25-50% of lung parenchyma</td>
</tr>
<tr>
<td>3</td>
<td>Severe symptoms; limiting self-care ADL, oxygen indication</td>
<td>Involves all lung lobes or > 50% of lung parenchyma</td>
</tr>
<tr>
<td>4</td>
<td>Life-threatening; urgent intervention indicated (intubation)</td>
<td></td>
</tr>
</tbody>
</table>

Pneumonitis Management

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Monitor patients weekly, repeat CT in 3-4 weeks</td>
<td>Permanently discontinue ICPI</td>
</tr>
<tr>
<td>2</td>
<td>• Prednisone 1-2 mg/kg/d and taper by 5-10 mg/wk over 4-6 weeks</td>
<td>Hold ICPI until resolution to Grade 1 or less</td>
</tr>
<tr>
<td></td>
<td>• If no improvement after 48-72 hours, treat as Grade 3/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Consider empirical antibiotics</td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td>• Initiate (methyl)prednisolone IV 1-2 mg/kg/d, taper over 4-6 weeks</td>
<td>Hold ICPI, resume once radiographic improvement or resolution</td>
</tr>
<tr>
<td></td>
<td>• No improvement after 48 hours, may add infliximab 5 mg/kg or mycophenolate mofetil IV 1 g twice daily or IVIG for 5 days or cyclophosphamide</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Practice Pearls

• Patients should be educated to be hypervigilant of their skin and should report any changes

• Recognize differences in topical steroid preparations and strengths

• Patients can have multiple IRAEs over the course of ICPI treatment

Did you know?
Pruritus can occur with or without rash. Treatment of severe pruritus requires corticosteroids and GABA antagonist
Pharmacist’s Role in Management

• Recognize appropriate corticosteroid tapers
 – Some IRAEs require over at least one month and can be escalated when needed

• Recommend appropriate supportive care medications
 – Prophylaxis against *pneumocystis jiroveci pneumonia* (PJP)
 • Prednisone dose of 20 mg or more daily for 4 or more weeks
 – Prophylaxis against fungal infections
 • Prednisone dose of 20 mg or more daily for more than 6-8 weeks
 – Proton pump inhibitors or H2 blockers can be considered in patients at higher risk of gastritis for the durations of corticosteroid therapy

• Develop and implement an ICPI toxicity monitoring program

ICPI Toxicity KEY TAKEAWAYS

1) Ensure patients receive appropriate education about ICPI and their associated toxicities

2) Early recognition and management can lead to better outcomes

3) Pharmacists play a vital role in ensuring appropriate treatment and supportive care
A Whole New World: A Case-Based Approach to Managing CAR T-Cell Therapy and Immunotherapy Toxicities

Larry Buie, Pharm.D., BCOP, FASHP
Elizabeth Dow, Pharm.D., BCOP, BCPS
Carolyn Oxencis, Pharm.D., BCOP, BCPS