Preparing for Change: Antimicrobial Stewardship in Ambulatory Care

Heather M. Draper, Pharm.D., BCPS
Clinical Specialist, Emergency Medicine
Mercy Health Saint Mary’s
Grand Rapids, Michigan
Disclosure

• Faculty have nothing to disclose.
Objectives

• Discuss proposed regulatory standards for antimicrobial stewardship in the ambulatory care setting and describe an effective interprofessional antimicrobial stewardship team to meet or exceed the standards.

• Utilize antimicrobial surveillance data to identify potential targets for antimicrobial stewardship activities in the ambulatory care setting.

• Design innovative strategies for antimicrobial stewardship in the ambulatory care setting, including collaborative practice agreements and local prescribing guidelines.
Emerging Antimicrobial Resistance in the Community

MRSA, ESBL, and MDRSP! Oh My!
Time for a Poll
How to vote via the web or text messaging

From any browser

Pollev.com/ashp
Enter your response
Submit response

From a text message

To: 22333

152964
How to vote via text message

How's my presentation so far?

璐 Respond at PollEv.com/ashp 璐 Text a KEYWORD to 22333

It's amazing.	152964
It's incredibly amazing!	152965
It's aw-right.	152968

From a text message
How to vote via the web

How's my presentation so far?

- Respond at PollEv.com/ashp
- Text a KEYWORD to 22333

<table>
<thead>
<tr>
<th>Comment</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>It's amazing</td>
<td>152964</td>
</tr>
<tr>
<td>It's incredibly amazing!</td>
<td>152965</td>
</tr>
<tr>
<td>It's aw-right</td>
<td>152968</td>
</tr>
</tbody>
</table>

From any browser
Question 1: Which of the following regarding drug resistant *Streptococcus pneumoniae* is true?

A. Easily spread through direct contact
B. Most commonly isolated in college aged patients (i.e., 18 to 25 years)
C. Frequently resistant to azithromycin
D. Remains highly susceptible to penicillin
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Antimicrobial Resistance in the Community

• No longer limited to the “sickest” patients

• Rate of resistance increasing in the community faster than the hospital setting in some cases

• Commonly prescribed antimicrobials are becoming clinically insignificant

Community-Acquired Methicillin-Resistant *Staphylococcus aureus* (CA-MRSA)

- **1990s**: Methicillin Resistant *Staphylococcus aureus* (MRSA) isolated in community-based patients with no risk factors/history

- Produces exotoxin via Panton-Valentine leukocidin gene
 - Associated with increased virulence
 - Rarely seen in other strains of MRSA
 - Causes necrosis and lesions of the skin and mucosa

Community-Acquired Methicillin-Resistant *Staphylococcus aureus* (CA-MRSA)

- CA-MRSA most commonly associated with skin and soft tissue infections
- Can also cause hemorrhagic and/or necrotizing pneumonia and necrotizing fasciitis
- Easily spread through direct contact

“Zithromax is the best antiviral ever invented!”
—A Physician I Worked With Who Shall Remain Nameless
Erythromycin-Resistant Group A *Streptococcus*

- 2001: Emergence of erythromycin resistance noted in isolates obtained from throat cultures in children
 - 48% of isolates resistant in study group
 - 38% of randomly selected isolates resistant

- Resistance results from either active efflux (mef genes) or target modification (erm genes)
 - erm genes \(\rightarrow\) also confer lincosamide resistance

Erythromycin-Resistant Group A *Streptococcus*

* Group A *Streptococcus* most commonly associated with pharyngitis

* Can also cause necrotizing fasciitis and toxic shock syndrome

* Easily spread via droplets and direct contact

Drug-Resistant

Streptococcus pneumoniae (DRSP)

- 30% of *Streptococcus pneumoniae* isolates are resistant to at least one antibiotic
- Frequently demonstrates resistance to penicillins and macrolides
- Rates of resistance are highest in patients aged <5 years and ≥ 65 years

Drug-Resistant
Streptococcus pneumoniae (DRSP)

- Most commonly associated with pneumonia

- Can also cause otitis media, meningitis, and bacteremia

- Easily transmitted via droplets

Extended-Spectrum Beta-Lactamase (ESBL)-Producing *Escherichia coli*

- Community-acquired ESBL-producing *Escherichia coli* rates dramatically increasing

- Community-acquired ESBL pathogens often have a different gene than “typical” ESBL-producing pathogens
 - CTX-M variant
 - Demonstrate resistance to trimethoprim-sulfamethoxazole, tetracycline, gentamicin, and ciprofloxacin

Extended-Spectrum Beta-Lactamase (ESBL)-Producing *Escherichia coli*

- Most commonly associated with urinary tract infection
- Can also cause intraabdominal infections
- Question animal → human transmission
- Easily spread through direct contact with contaminated surfaces

And the List Goes On...

- Clindamycin-resistant Group B *Streptococcus*
- Fluconazole-resistant *Candida*
- *Clostridium difficile*
- *Neisseria gonorrhoeae*

Question 1: Which of the following regarding drug resistant *Streptococcus pneumoniae* is true?

A. Easily spread through direct contact
B. Most commonly isolated in college aged patients (i.e., 18 to 25 years)
C. Frequently resistant to azithromycin
D. Remains highly susceptible to penicillin
Proposed Standards for Antimicrobial Stewardship
Question 2: A decreased rate in which of the following is a proposed expectation from antimicrobial stewardship in ambulatory care?

A. Hospitalization for treatment of infections by 10%
B. Adverse drug events attributed to antibiotics by 30%
C. Inappropriate antibiotic use by 50%
D. Clinical failure attributed to antibiotics by 60%
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
White House National Action Plan for Combating Antibiotic-Resistant Bacteria

• March 2015: The White House released a National Action Plan for Combating Antibiotic-Resistant Bacteria

• Several objectives were outlined describing the need for antimicrobial stewardship programs in all healthcare settings, including the community

White House National Action Plan for Combating Antibiotic-Resistant Bacteria

• A reduction in inappropriate antibiotic use by **50%** in outpatient settings is expected

• Annual reporting of antibiotic use in outpatient settings to be used to guide future interventions
 – Centers for Disease Control and Prevention (CDC) will set new benchmarks for prescribing

The Joint Commission Proposed Rule on Antimicrobial Stewardship (MM.09.01.01 for Ambulatory Health Care)

- Education regarding antimicrobial resistance and antimicrobial stewardship practices upon hire and annually thereafter
- Education for patients and families on the appropriate use of antimicrobials
- The organization and leadership establish an antimicrobial stewardship program as a priority

The Joint Commission Proposed Rule on Antimicrobial Stewardship (MM.09.01.01 for Ambulatory Health Care)

- An antimicrobial stewardship multidisciplinary team including the following, when available:
 - Pharmacist(s)
 - Infection disease physician
 - Infection preventionist(s)
The Joint Commission Proposed Rule on Antimicrobial Stewardship

- Antimicrobial stewardship program including the following core elements:
 - Leadership commitment
 - Accountability
 - Drug expertise
 - Action
 - Tracking
 - Reporting
 - Education

The Joint Commission. Proposed Standard for Antimicrobial Stewardship in AHC, CAH, HAP, NCC, and OBS.
https://jointcommission.az1.qualtrics.com/CP/File.php?F=F_StDHGzIVDMHenDn
Antimicrobial stewardship program uses protocols such as:
- Guidelines for antimicrobial use in adults and pediatric patients
- Assessment of Appropriateness of Antibiotics for Community-Acquired Pneumonia
- Treatment Guidelines for Common Infections
- "Wait-and-See" Antibiotic Protocol
The Joint Commission Proposed Rule on Antimicrobial Stewardship (MM.09.01.01 for AHC)

• The organization collects and analyzes data on its antimicrobial stewardship program, including prescribing and resistance patterns

• Action(s) for improvement based on opportunities identified through the antimicrobial stewardship program are taken
Question 2: A decreased rate in which of the following is a proposed expectation from antimicrobial stewardship in ambulatory care?

- Hospitalization for treatment of infections by 10%
- Adverse drug events attributed to antibiotics by 30%
- Inappropriate antibiotic use by 50%
- Rate of clinical failure attributed to antibiotics by 60%
Developing an Antimicrobial Stewardship Team
Question 3: Which of the following is an essential member of the antimicrobial stewardship team?

A. Administrative Assistant
B. Clinical Microbiologist
C. Information systems specialist
D. Pharmacist
Question 3

Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or Open poll in your web browser
http://www.cdc.gov/getsSMART/

Centers for Disease Control and Prevention. Get Smart programs & observances.
CDC Core Elements of Antibiotic Stewardship Programs

- **Leadership Commitment**: allow for dedicated time, resources, and participation

- **Accountability**: assign a stewardship program leader responsible for program outcomes

- **Drug Expertise**: identify a pharmacist leader

- **Action**: implement at least one recommended action/intervention

CDC Core Elements of Antibiotic Stewardship Programs

• **Tracking**: monitor prescribing and resistance patterns

• **Reporting**: regular reporting on antibiotic use, resistance, and outcome measures

• **Education**: educate clinicians about resistance and optimal prescribing

The Joint Commission Proposed Rule on Antimicrobial Stewardship
(MM.09.01.01 for AHC)

- An antimicrobial stewardship multidisciplinary team including the following, when available:
 - Pharmacist(s)
 - Infection disease physician
 - Infection preventionist(s)
IDSA/SHEA* Guidelines for...Antimicrobial Stewardship: Team Members

- **Essential:** Infectious diseases physician, pharmacist, hospital administration, medical staff leadership, local providers

- **Optimal:** clinical microbiologist, infection control specialist, information system specialist, hospital epidemiologist

* = Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

The Antimicrobial Stewardship Team in Ambulatory Care

• Physicians/Advanced Practice Providers
 – Ambulatory Care
 – Infectious Diseases

• Pharmacist(s)
 – Ambulatory Care
 – Infectious Diseases
 – Community
The Antimicrobial Stewardship Team in Ambulatory Care

• Administration/Leadership

• Microbiologist

• Information system specialist/support

• Others?
The Antimicrobial Stewardship Team in Ambulatory Care

How do we get team members to be invested?
Question 3: Which of the following is an essential member of the antimicrobial stewardship team?

A. Administrative Assistant
B. Clinical Microbiologist
C. Information systems specialist
D. Pharmacist
Identifying Targets for Antimicrobial Stewardship
Question 4: Based on surveillance data, which of the following would most benefit from targeted antimicrobial stewardship efforts?

A. Epididymitis
B. Meningitis
C. Otitis externa
D. Pharyngitis
Question 4

Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Question 5: Based on surveillance data, which of the following would most benefit from targeted antimicrobial stewardship efforts?

A. Amoxicillin
B. Azithromycin
C. Cephalexin
D. Nitrofurantoin
Question 5

Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Community Antibiotic Prescribing Rates by State (2013/2014)*

50% of all antibiotics prescribed in U.S. health provider offices are either unnecessary or inappropriate.

*Antibiotic prescriptions per 1000 persons
Prescribing data from 2014; population data from 2013

Source: IMS Health
Identifying Targets for Antimicrobial Stewardship

• Targets for antimicrobial stewardship should be high value, achievable, and measurable

• Target 1: “Common things are common”

• Target 2: “Where there is smoke, there is fire”

• Target 3: “Get the most bang for the buck”
Identifying Targets for Antimicrobial Stewardship: “Common Things are Common”

• 2011: 262.5 million courses of antibiotics prescribed
 – 842 prescriptions written per 1000 persons
 – 61.5% of antibiotic expenditures in the United States

• Prescribing rate highest for children aged 0—2 years: 1,287 prescriptions per 1,000 population

• Penicillins and macrolides most commonly prescribed
 – Azithromycin single most commonly prescribed antibiotic
 – Quinolones highest antibiotic expenditure

Identifying Targets for Stewardship: “Common Things are Common”

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of Prescriptions per 1,000 Population [95% CI]</th>
<th>Percentage of Visits with Antibiotics Prescribed, All Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinusitis</td>
<td>56 [48-64]</td>
<td>72.2%</td>
</tr>
<tr>
<td>Otitis media</td>
<td>47 [41-54]</td>
<td>79.5%</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>43 [38-49]</td>
<td>62.2%</td>
</tr>
</tbody>
</table>

CI = confidence interval
Identifying Targets for Stewardship: “Common Things are Common”

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of Prescriptions per 1,000 Population [95% CI]</th>
<th>Number of Appropriate Prescriptions</th>
<th>Percentage of Appropriate Prescriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Conditions</td>
<td>221 [198-245]</td>
<td>111</td>
<td>50.2%</td>
</tr>
<tr>
<td>All Conditions</td>
<td>506 [458-554]</td>
<td>353</td>
<td>69.8%</td>
</tr>
</tbody>
</table>

CI = confidence interval
Identifying Targets for Stewardship: “Where There is Smoke, There is Fire”

<table>
<thead>
<tr>
<th>Pharyngitis</th>
<th>Percentage Positive for Group A Streptococcus</th>
<th>Percentage of Patients Receiving Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>37</td>
<td>56.2</td>
</tr>
<tr>
<td>Adults</td>
<td>18</td>
<td>72.4</td>
</tr>
</tbody>
</table>

Identifying Targets for Antimicrobial Stewardship: “Where There is Smoke, There is Fire”

• Treatment guidelines recommend penicillin/amoxicillin as first-line therapy for most sinusitis, otitis media, and *Streptococcal* pharyngitis

• Yet azithromycin is the most frequently prescribed antibiotic....

• ...and now we have erythromycin-resistant Group A *Streptococcus*

Identifying Targets for Antimicrobial Stewardship: “Get the Most Bang for the Buck”

• Identify targets where prescribing is inappropriate
 – Are antibiotics needed?
 – Drug selection, dose, and duration

• Identify targets with either high level resistance or with low level but emerging resistance
Identifying Targets for Antimicrobial Stewardship: “Get the Most Bang for the Buck”

• Upper respiratory tract infections
 – Are antibiotics indicated?
 – Are first-line agents being utilized?

• Urinary tract infections
 – Are antibiotics indicated?
 – Are first line agents being utilized?
 – Is the duration of therapy appropriate?
Identifying Targets for Antimicrobial Stewardship: “Get the Most Bang for the Buck”

• Identify antimicrobial agents to target → identify prescribing patterns and focus on those
 – Fluoroquinolones
 – 3rd-generation cephalosporins

• Combine with local resistance information to target therapy
 – e.g., *Streptococcus pneumoniae* → azithromycin
Identifying Targets for Stewardship: “Get the Most Bang for the Buck”

Is it Really a Penicillin Allergy?

Evaluation and Diagnosis of Penicillin Allergy for Healthcare Professionals

Did You Know? 5 Facts About Penicillin Allergy (Type 1, Immunoglobulin E (IgE)-mediated)
1. Approximately 10% of all U.S. patients report having an allergic reaction to a penicillin class antibiotic in their past.
2. However, many patients who report penicillin allergies do not have true IgE-mediated reactions. When evaluated, fewer than 1% of the population are truly allergic to penicillins.¹
3. Approximately 80% of patients with IgE-mediated penicillin allergy lose their sensitivity after 10 years.¹
4. Broad-spectrum antibiotics are often used as an alternative to penicillins. The use of broad-spectrum antibiotics in patients labeled “penicillin-allergic” is associated with higher healthcare costs, increased risk for antibiotic resistance, and suboptimal antibiotic therapy.¹
5. Correctly identifying those who are not actually penicillin-allergic can decrease unnecessary use of broad-spectrum antibiotics.¹

10% of the population reports a penicillin allergy but <1% of the whole population is truly allergic.

Before prescribing broad-spectrum antibiotics to a patient thought to be penicillin-allergic, evaluate the patient for true penicillin allergy (IgE-mediated) by conducting a history and physical, and, when appropriate, a skin test and challenge dose.
Question 4: Based on surveillance data, which of the following would most benefit from targeted antimicrobial stewardship efforts?

A. Epididymitis
B. Meningitis
C. Otitis externa
D. Pharyngitis
Question 5: Based on surveillance data, which of the following would most benefit from targeted antimicrobial stewardship efforts?

A. Amoxicillin
B. Azithromycin
C. Cephalexin
D. Nitrofurantoin
Innovative Strategies for Antimicrobial Stewardship in Ambulatory Care
Question 6: Which of the following should be performed prior to developing a guideline for the treatment of skin and soft tissue infections?

A. Construct an antibiogram
B. Conduct a provider preference survey
C. Review the hospital treatment protocol
D. Gather prescription benefit plan formularies
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
The Joint Commission Proposed Rule on Antimicrobial Stewardship

- Antimicrobial stewardship program uses protocols such as:
 - Guidelines for antimicrobial use in adults and pediatric patients
 - Assessment of Appropriateness of Antibiotics for Community-Acquired Pneumonia
 - Treatment Guidelines for Common Infections
 - "Wait-and-See" Antibiotic Protocol

Antimicrobial Stewardship Strategies

- Prospective audit with intervention and feedback
- Formulary restriction and preauthorization
- Education
- Guidelines and clinical pathways
- Antimicrobial order forms
- Streamlining or de-escalation of therapy
- Dose optimization
- Parenteral-to-oral conversion
- Computer surveillance and decision support

Audit and Feedback

• Generally performed one-on-one on a patient-specific basis

• Can be performed as a summative review per disease state (e.g., urinary tract infection)

• Need to balance discussing when suboptimal choices are made to impact care and being the “police”

Audit and Feedback

• Candy bars work (much to my surprise)!

From the Pharmacy Team

To: ____________________________

GREAT JOB!

For: ____________________________
Education

• Ultimately, education should include both providers and patients

• Education alone is “only marginally effective” and does not result in sustained impact

• Education may be provided in any format possible

Viruses or Bacteria

What's got you sick?

Antibiotics only treat bacterial infections. Viral illnesses cannot be treated with antibiotics. When an antibiotic is not prescribed, ask your healthcare professional for tips on how to relieve symptoms and feel better.

<table>
<thead>
<tr>
<th>Illness</th>
<th>Usual Cause</th>
<th>Antibiotic Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold/Runny Nose</td>
<td>✓ Virus</td>
<td>NO</td>
</tr>
<tr>
<td>Bronchitis/Chest Cold (in otherwise healthy children and adults)</td>
<td>✓ Virus</td>
<td>NO</td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>✓ Virus</td>
<td>Yes</td>
</tr>
<tr>
<td>Flu</td>
<td>✓ Virus</td>
<td>NO</td>
</tr>
<tr>
<td>Strep Throat</td>
<td>✓ Virus</td>
<td>Yes</td>
</tr>
<tr>
<td>Sore Throat (except strep)</td>
<td>✓ Virus</td>
<td>NO</td>
</tr>
<tr>
<td>Fluid in the Middle Ear (otitis media with effusion)</td>
<td>✓ Virus</td>
<td>NO</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>✓ Virus</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Antibiotics Aren't Always the Answer

www.cdc.gov/getsmart

Diagnosis:
- Cold
- Cough
- Flu
- Middle ear fluid (Otitis Media with Effusion, OME)
- Viral sore throat
- Other:

You have been diagnosed with an illness caused by a virus. Antibiotics do not cure viral infections. If given when not needed, antibiotics can be harmful. The treatments prescribed below will help you feel better while your body's own defenses are fighting the virus.

General instructions:
- Drink extra water and juice.
- Use a cool mist vaporizer or saline nasal spray to relieve congestion.
- For sore throats, use ice chips or sore throat spray; lozenges for older children and adults.

Specific medicines:
- Fever or aches:
- Ear pain:

Use medicines according to the package instructions or as directed by your healthcare provider. Stop the medication when the symptoms get better.

Follow up:
- If not improved in _____ days, if new symptoms occur, or if you have other concerns, please call or return to the office for a recheck.
- Other:

Signed: ____________________________

For More Information call 1-800-CDC-INFO or visit www.cdc.gov/getsmart
Treatment Guidelines

• Treatment guidelines available at:
 http://www.idsociety.org/IDSA_Practice_Guidelines/

• Guidelines should be used in combination with local susceptibility and resistance patterns

• NB: guidelines may lag behind practice and are in need of an update...
Treatment Guidelines

• Guidelines should include recommendations for diagnosis and testing, when applicable

• Education should accompany guideline implementation to ensure provider awareness and “buy in”

• Development should be a multidisciplinary effort

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Suspected Pathogens</th>
<th>Empiric Therapy</th>
<th>Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin and soft tissue infections,</td>
<td>Streptococci,</td>
<td>First line:</td>
<td></td>
</tr>
<tr>
<td>Cellulitis, non-purulent,</td>
<td>Staphylococci</td>
<td>- Cephalexin 500 mg PO q 6 h</td>
<td>5 – 7 days</td>
</tr>
<tr>
<td>without abscess</td>
<td></td>
<td>Second-line, severe beta-lactam allergy</td>
<td></td>
</tr>
<tr>
<td>Cellulitis, purulent OR with abscess</td>
<td></td>
<td>- Clindamycin 300 mg PO q 8 h</td>
<td></td>
</tr>
<tr>
<td>NOTE: Well drained abscesses do not need antibiotic treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and soft tissue infections,</td>
<td>Staphylococci,</td>
<td>First line:</td>
<td></td>
</tr>
<tr>
<td>Community-acquired Diabetic foot infection</td>
<td>Trimethoprim/sulfamethoxazole 2 DS tabs PO q 12 h</td>
<td>- Doxycycline 100 mg PO q 12 h</td>
<td>5 – 7 days</td>
</tr>
<tr>
<td>Vascular insufficiency</td>
<td>MRSA coverage suggested empirically with presence of abscess</td>
<td>Alternative:</td>
<td></td>
</tr>
<tr>
<td>Presumed polymicrobial infection</td>
<td></td>
<td>- Doxycycline 100 mg PO q 12 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Clindamycin 450 mg PO q 8 h</td>
<td></td>
</tr>
<tr>
<td>Skin and soft tissue infections,</td>
<td>Staphylococcus aureus,</td>
<td>First line, no hx of MRSA:</td>
<td></td>
</tr>
<tr>
<td>Pasturella, Staphylococci,</td>
<td>Streptococci,</td>
<td>- Amoxicillin/clavulanate 875/125 mg PO q 12 h</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Staphylococci,</td>
<td>GNB,</td>
<td>Hx of MRSA:</td>
<td></td>
</tr>
<tr>
<td>anaerobes</td>
<td></td>
<td>- Doxycycline 100 mg PO q 12 h PLUS amoxicillin/clavulanate 875/125 mg PO q 12 h</td>
<td></td>
</tr>
<tr>
<td>Presumed polymicrobial infection</td>
<td></td>
<td>- Trimethoprim/sulfamethoxazole 2 DS tabs PO q 12 h PLUS amoxicillin/clavulanate 875/125 mg PO q 12 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ciprofloxacin 500 mg PO q 12 h PLUS metronidazole 500 mg PO q 8 h PLUS doxycycline 100 mg PO q 12 h</td>
<td></td>
</tr>
<tr>
<td>Skin and soft tissue infections,</td>
<td>Pasturella,</td>
<td>First line :</td>
<td>Prophylaxis: 3-5 days</td>
</tr>
<tr>
<td>Cat/dog/human bite</td>
<td>Staphylococci,</td>
<td>- Amoxicillin/clavulanate 875/125 mg PO q 12 h</td>
<td>Treatment: 5 – 7 days</td>
</tr>
<tr>
<td></td>
<td>Streptococci,</td>
<td>Alternative, Beta-lactam allergy:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anaerobes</td>
<td>- Doxycycline 100 mg PO q 12 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Trimethoprim/sulfamethoxazole 2 DS tabs PO q 12 h PLUS metronidazole 500 mg PO q 8 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Moxifloxacin 400 mg PO daily</td>
<td></td>
</tr>
</tbody>
</table>
The Antibiogram

<table>
<thead>
<tr>
<th>Organism</th>
<th>Oxacillin</th>
<th>Vancomycin</th>
<th>Lincomycin</th>
<th>Tetracycline</th>
<th>Azithromycin</th>
<th>Amoxicillin</th>
<th>Amoxicillin–clavulanate</th>
<th>Piperacillin–tazobactam</th>
<th>Cefazolin</th>
<th>Cefuroxime</th>
<th>Ceftriaxone</th>
<th>Cefepime</th>
<th>Tobramycin</th>
<th>Sulphamethoxazole–trimethoprim</th>
<th>Ciprofloxacin</th>
<th>Levofoxacin</th>
<th># Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>60</td>
<td>99</td>
<td>99</td>
<td>5</td>
<td>98</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>96</td>
<td>98</td>
<td>86</td>
<td>99</td>
<td>45</td>
<td>179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus species</td>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>63</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99, 45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>92</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrobacter species</td>
<td>53</td>
<td>60</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>53</td>
<td>92</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>99</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter species</td>
<td>92</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>40</td>
<td>99</td>
<td>144</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>33</td>
<td>93</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>82</td>
<td>97</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>95</td>
<td>85</td>
<td>88</td>
<td>65</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
</tbody>
</table>

1) Less than 30 isolates tested
2) Only 2 *S. pneumoniae* isolates from ER (inpatient isolates added to total)
3) 76% sensitive for meningitis
4) *C. freundii* and *C. koseri*
5) *E. aerogenes* and *E. cloacae*
6) Levofloxacin 750 mg or Moxifloxacin 400 mg
7) This organism is known to harbor inducible AmpC beta lactamases and may develop resistance during prolonged therapy with third generation cephalosporins
Collaborative Practice Agreement

• Culture-guided therapy adjustments are made when culture results are available

• Infectious diseases to consider:
 – Skin and soft tissue
 – Urinary tract infection
 – Group A *Streptococcus* pharyngitis
 – Infectious diarrhea
 – Sexually transmitted diseases
Positive group A strep throat cultures

Documentation of patient emergency department encounter will be reviewed by the ED Pharmacist for symptoms of group A strep pharyngitis.

Patient will be contacted by to confirm resolution of symptoms if no treatment for group A strep pharyngitis was issued during UC visit and symptoms of pharyngitis were documented.

If during follow-up evaluation, the patient has continued symptoms of a group A strep pharyngitis, the patient will be issued antibiotic treatment for group A strep pharyngitis.

First-line Treatment

Penicillin VK 500 mg two times daily x 10 days

Second-line Treatment

Amoxicillin 875 mg two times daily x 10 days

(for penicillin allergic, cephalosporin tolerant)

Cephalexin 500 mg two times daily x 10 days

Alternative Treatment

Clindamycin 300 mg three times daily x 10 days
Collaborative Practice: Pharyngitis

<table>
<thead>
<tr>
<th></th>
<th>Pharmacist (n = 62)</th>
<th>RN/Physician (n = 28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment appropriate, n (%)</td>
<td>60 (96.8)</td>
<td>11 (39.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Received antibiotic, symptoms not assessed, n(%)</td>
<td>1 (1.6)</td>
<td>19 (67.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Revisit within 72 hours of initial visit, n (%)</td>
<td>2 (3.2)</td>
<td>4 (14.3)</td>
<td>0.073</td>
</tr>
</tbody>
</table>

Dumkow K et al. Unpublished data [publication in process].
“Wait-and-See” Method of Prescribing

• An antibiotic prescription is given but patient is instructed to wait 48—72 hours before filling

• Recommended for acute otitis media in children

• Reduces number of prescriptions filled with no change in patient/parent satisfaction

“Wait-and-See” Method of Prescribing

• Could potentially be extrapolated to other infectious diseases most frequently caused by viruses

• Urinary symptoms with no sign of infection OR with positive sexually transmitted disease test results?
Viruses or Bacteria
What's got you sick?

Antibiotics only treat bacterial infections. Viral illnesses cannot be treated with antibiotics. When an antibiotic is not prescribed, ask your healthcare professional for tips on how to relieve symptoms and feel better.

<table>
<thead>
<tr>
<th>Illness</th>
<th>Usual Cause</th>
<th>Antibiotic Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold/Runny Nose</td>
<td>✔️</td>
<td>NO</td>
</tr>
<tr>
<td>Bronchitis/Chest Cold (in otherwise healthy children and adults)</td>
<td>✔️</td>
<td>NO</td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>✔️</td>
<td>Yes</td>
</tr>
<tr>
<td>Flu</td>
<td>✔️</td>
<td>NO</td>
</tr>
<tr>
<td>Strep Throat</td>
<td>✔️</td>
<td>Yes</td>
</tr>
<tr>
<td>Sore Throat (except strep)</td>
<td>✔️</td>
<td>NO</td>
</tr>
<tr>
<td>Fluid in the Middle Ear (otitis media with effusion)</td>
<td>✔️</td>
<td>NO</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>✔️</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Antibiotics Aren’t Always the Answer

www.cdc.gov/getsmart

Name: __________________________
Date: __________ / __________ / __________

Diagnosis:
- Cold
- Cough
- Flu
- Middle ear fluid (Otitis Media with Effusion, OME)
- Viral sore throat
- Other: __________________________

You have been diagnosed with an illness caused by a virus. Antibiotics do not cure viral infections. If given when not needed, antibiotics can be harmful. The treatments prescribed below will help you feel better while your body's own defenses are fighting the virus.

General instructions:
- Drink extra water and juice.
- Use a cool mist vaporizer or saline nasal spray to relieve congestion.
- For sore throats, use ice chips or sore throat spray; lozenges for older children and adults.

Specific medicines:
- Fever or aches:
- Ear pain:

Use medicines according to the package instructions or as directed by your healthcare provider. Stop the medication when the symptoms get better.

Follow up:
- If not improved in _____ days, if new symptoms occur, or if you have other concerns, please call or return to the office for a recheck.

- Other: __________________________

Signed: __________________________

For more information call 1-800-CDC-INFO or visit www.cdc.gov/getsmart

Centers for Disease Control and Prevention. Get smart: know when antibiotics work. Print materials for healthcare professionals.
Future Trends

• Rapid viral testing

• Rapid diagnostic testing

• Outpatient intravenous antibiotics – who will manage this?

Question 6: Which of the following should be performed prior to developing a guideline for the treatment of skin and soft tissue infections?

A. Construct an antibiogram
B. Conduct a provider preference survey
C. Review the hospital treatment protocol
D. Gather prescription benefit plan formularies
Key Takeaways

• Key Takeaway #1 – Emerging resistance and regulatory standards will require an increased focus and effort on antimicrobial stewardship in the ambulatory care setting

• Key Takeaway #2 – Antimicrobial stewardship offers a unique opportunity for expansion of pharmacist services and research

Questions?
References

References

References

References

References

Recommended Resources & Readings

• The White House National Action Plan for Combating Antibiotic-Resistant Bacteria:
 https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibiotic-resistant_bacteria.pdf

• The Joint Commission Proposed Standard on Antimicrobial Stewardship:
 https://jointcommission.az1.qualtrics.com/CP/File.php?F=F_5tDHGzlVDMHenDn

• Centers for Medicare & Medicaid Services Proposed Rule on Infection Control and Antibiotic Stewardship Programs:
Recommended Resources & Readings

• Infectious Diseases Society of America (IDSA) Practice Guidelines:
 http://www.idsociety.org/IDSA_Practice_Guidelines/

• Centers for Disease Control and Prevention (CDC) Antimicrobial Stewardship Resources:
 http://www.cdc.gov/getsmart/healthcare/

• CDC Get Smart for Healthcare:
 http://www.cdc.gov/getsmart/healthcare/index.html
Recommended Resources & Readings

• ASHP Statement on the Pharmacist’s Role in Antimicrobial Stewardship and Infection Prevention and Control:

• ASHP Resource Center:
 http://www.ashp.org/menu/PracticePolicy/ResourceCenters/Inpatient-Care-Practitioners/Antimicrobial-Stewardship
Recommended Resources & Readings

• American Hospital Association’s Antimicrobial Stewardship User Guide:
 http://www.ahaphysicianforum.org/resources/appropriate-use/antimicrobial/

Recommended Resources & Readings

Recommended Resources & Readings
