

JACKPOT! Integration of Information Technology and Antimicrobial Stewardship

Riane J. Ghamrawi, Pharm.D., BCPS

LeAnne Moore, Pharm.D., BCPS

Sharanie V. Sims, Pharm.D., BCPS, AQ-ID

Rainbow Babies & Children's Hospital

Disclosure

 The program chair and presenters for this continuing education activity have reported no relevant financial relationships.

...You want me to add on Antimicrobial Stewardship to my to-do list?

Describe the institution where you primarily practice

- A. Large academic medical center (≥600 beds)
- B. Medium-sized academic medical center (400-600 beds)
- C. Community hospital, part of a health-system (200-400 beds)
- D. Community hospital, not part of a health-system (200-400 beds)
- E. Community hospital with \leq 200 beds
- F. Specialty Hospital
- G. Government-based facility (i.e., Veterans Affairs)

Who is part of ASP at your institution?

- A. Infectious diseases-trained pharmacist only
- B. Infectious diseases physician only
- C. Infectious diseases physician and pharmacist
- D. Non-infectious diseases trained pharmacist only
- E. Non-infectious diseases trained physician only
- F. Non-infectious diseases trained physician and pharmacist
- G. Other
- H. We do not have an ASP at this time

Learning Objectives

- Explain the importance of information technology in antimicrobial stewardship programs
- Evaluate three ways to integrate information technology into antimicrobial stewardship programs
- Describe methods of measuring antimicrobial outcomes using information technology

Antibiotic Resistance: An Ongoing Threat

- World Health Organization: 1 of 3 greatest threats to human health
- Centers for Disease Control and Prevention (2013):
 - >2 million illnesses, >23,000 deaths due to drug resistant bacteria

Deaths attributable to antimicrobial resistance every year by 2050

Source: Review on Antimicrobial Resistance 2014

Antimicrobial resistance: tackling a crisis for the health and wealth of nations. [online]. Retrieved on 2016 March 25. from: http://amr-review.org

Dellit TH, et al. *Clin Infect Dis* 2007: 44 (15 January): 159-77 CDC: Antibiotic Resistance threats in the United States, 2013. [Online]. Retrieved on 26 Sept 2016 from, http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

Antibiotic Resistance: An Ongoing Threat

- "There may be a danger, though, in underdosage. It is not difficult to make microbes resistant to penicillin in the laboratory..." – Sir Alexander Fleming, Nobel Lecture, 1945
- Today: Drug resistance + limited pipeline of antibiotics = POST-ANTIBIOTIC ERA

UNLESS, we do something about it...

Antimicrobial Stewardship Programs

- ~50% of prescribed antibiotics = unnecessary or inappropriate
- ASPs improve antibiotic use
 - \uparrow patient outcomes, \downarrow unintended consequences
- Cost savings of \$200,000 \$900,000 at larger hospitals

Antimicrobial Stewardship Programs

- Need for ASPs recognized nationally
 - National Action Plan for Combating Antibiotic Resistant Bacteria
 - Centers for Disease Control and Prevention
 - Joint Commission medication management standard
 - Centers for Medicare and Medicaid Services proposed conditions of participation

What are key components that make up an Antimicrobial Stewardship Program?

Antimicrobial Stewardship Programs

- Preauthorization or prospective audit with feedback intervention
- Antimicrobial restrictions
- Institutional guidelines
- Order sets
- Pharmacokinetic services
- Intravenous to oral conversions

- Allergy reconciliation
- Therapy duration limitation
- Antibiogram development
- Microbiology reporting optimization

Who are the core members that make up Antimicrobial Stewardship Program teams?

"For ASPs to be optimized fully and truly make a viable long-term impact on patient outcomes, information technology (IT) must be employed."

Kullar R, et al. Clin Infect Dis 2013. 57(7): 1005-13.

Information Technology

- Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009
 - Financial incentives to qualified institutions
- Institute of Medicine has identified electronic medical record functions needed to improve patient care

What information technology does your Antimicrobial Stewardship Program have to support initiatives and goals?

- A. Electronic Medical Records
- B. Clinical Decision Support Systems
- C. Rapid Microbiologic Tests
- D. More than one form of technology
- E. None at this time

Information Technology in ASPs

Electronic Medical Records

Electronic Medical Records (EMR)

Does your institution have an EMR?

- A. Yes
- B. No

Which EMR System Does Your Facility Use?

- A. Cerner[®]
- B. Epic[®]
- C. All Scripts[™]
- D. CPRS[®]
- E. Other
- F. We are still using paper charts

Various EMR Systems

Importance of EMR

- Promote appropriate antimicrobial use
- Efficient review of all patient data
 - Helps provide greater impact on inappropriate use
- Facilitates promotion of patient care
- Limited data on clinical outcomes and antimicrobial use with EMR alone
 - Coupled with CDSS → improved clinical care and patient outcomes

IDSA GUIDELINE

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

- Through the use of EMRs, ASP can aid in:
 - Prospective audit and feedback
 - Antibiotic preauthorization/formulary restrictions
 - Guidelines and clinical pathways
 - De-escalation of therapy

Trends in Adoption of EMR

Adoption of electronic health records systems among US Non-Federal Acute Acre Hospitals: 2008-2014. [Online]. Retrieved 1 Sept 2016 from, https://www.healthit.gov/sites/default/files/data-brief/2014HospitalAdoptionDataBrief.pdf

ASP Activities in EMRs

Antibiotic order forms

	Prompt	Answer			
1.	[DAPTOmycin] Indication \\	Prophylaxis-Surgical Prophylaxis- Medical Non-infectious Infection-Documented			
		Infection-Suspected			
2.	[DAPTOmycin] Site (select all that apply) 😣	Abdominal/Pelvic Bloodstream Burn Cellulitis HEENT IV Line Lower RTI Meningitis			
		Musculoskeletal Neutropenic Fever Surgical Wound URI UTI Non-infectious			
		Transplanted Organ			
3.	[DAPTOmycin] Cultures Ordered (Y/N) 🚯	Yes No			
4.	[DAPTOmycin] Type of Therapy 😡	New Therapy Modification of Therapy Change Route of Therapy Continuation of Therapy			
5.	[DAPTOmycin] Coverage (select all that apply)	Anaerobes Enteric GNR Enterococcus, Not VRE Enterococcus VRE Mycobacteria			
		Pseudomonas aeruginosa Staph, Beta-Lactam Susceptible Staph, Methicillin Resistant			
		Streptococcus-Penicillin Susceptible Streptococcus-Penicillin Resistant Non-infectious			
		Methicillin-resistant CoNS Organism NOS			
6.	[DAPTOmycin] Authorizing ID provider/protocol. (From 23-07, the pharmacy may dispense a bridging quantity to initiate therapy until 1200)				

Dosing alerts

Type/Significance	Description	Override Reason/Comment	
⊟N/A			New (1) 🖆
Dose 1 Single	vancomycin, 10,000 mg, Intravenous, ONCE Single dose 10,000 mg. OVERDOSE (max. 3,267 mg) 🥔 🗢 vancomycin (VANCOCIN) 10,000 mg in dextrose 5 % 500 mL bag	Remove	

ASP Activities in EMRs

- Pharmacokinetic dosing
- Care pathways
- Order sets
- IV-to-PO interchange
- Best practice alerts
- Progress notes
- iVents^{*}

*specific to Epic®

EMR is Just the Beginning...

- EMR primary focus is clinical, patient care functions (ex: EPIC[®])
 - Limited decision support functions

 Medication safety, patient/medication list, etc.
- Additional clinical decision support software (CDSS) can improve ASP functionality
- Major barrier to CDSS implementation => \$\$\$

- What ASP efforts have you implemented within your EMR?
- Name barriers to building ASP-related EMR initiatives. How did you successfully overcome these barriers?

ADD-ON CLINICAL DECISION SUPPORT SYSTEMS (CDSS)

CDSS in ASP

- Patient data + population statistics + clinical guidance
- CDSS embedded in EMRs
 - Limited capabilities
- Add-on CDSS
 - "Software as a service" programs
 - Data collected from multiple sources

 Pharmacy, microbiology
 - Robust case-finding and logic capabilities

CDSS in ASP

- Automated, near real-time surveillance, alerting, analysis, reporting
- Integrates electronic and medical administration records
- Identify opportunities to decrease risk of adverse drug events, de-escalate, and optimize therapy

IDSA guidelines

- "We suggest incorporation of computerized clinical decision support at the time of prescribing into ASPs" (weak recommendation, moderate-quality evidence)
- CDSS can streamline work of ASPs, identifying opportunities for interventions

Capabilities of CDSS

- EMR integration
 - Clinical information
- Treatment guidelines
- Infection control software
- Institutional antibiograms
- Prescriber metrics
- Real-time, customizable alerts

Forrest GN, et al. Clin Infect Dis 2014 (suppl 3): S122-S133.

Third-Party CDSS Vendors

CDSS									
<u>Vendor/</u> <u>Features</u>	TheraDoc®	SafetySurveillor®	QC PathFinder [®]	Sentri7®	MedMined®				
EMR integration	\checkmark		\checkmark	\checkmark					
Real-time alerts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Delayed alerts		\checkmark	\checkmark	\checkmark	\checkmark				
Customizable alerts	\checkmark	\checkmark	\checkmark		\checkmark				
Clinical information	\checkmark	\checkmark		\checkmark	\checkmark				
Infection control	\checkmark	\checkmark	\checkmark	>	\checkmark				
Unit antibiogram	\checkmark		\checkmark	>	\checkmark				
Prescriber metrics	\checkmark	\checkmark			\checkmark				
Other features	Antibiotic assistant, pager/ email alerts	Training modules, cost justification letters	Pager/email alerts, pre-programmed customizable alerts	User-specific reports	E-mail alerts, clinical experts support team				

Forrest GN, et al. *Clin Infect Dis* 2014 (suppl 3): S122-S133. Kullar R, et al. *Infect Dis Clin North Am* 2014. 28(2): 290-300.

Benefits of CDSS

Reductions in:

- Broad spectrum antibiotics
- Antibiotic resistance
- Prescribing errors
- Adverse events
- Mortality
- Antibiotic costs

Improvements in:

- Antibiotic dosing
- Appropriate antibiotic selection
- Efficiency of ASP initiatives

CDSS in ASP

- Nebraska Medical Center
- Post-implementation:

Influenza vaccination Pneumococcal vaccination Polyantimicrobials (3+ antibacterials) Redundant anaerobic coverage Drug-bug mismatch Vancomycin for CoNS Vancomycin for MSSA No positive cultures

- 10,545 alerts, 30% of alerts actionable
- Increase in intervention attempts
 - 88% intervention acceptance rate

CDSS in ASP

- Good Shepherd Medical Center, Texas
- Alerts sent via pager, e-mail

IV to PO conversion ADR alert Targeted drugs (i.e., piperacillin-tazobactam, daptomycin) TAM: Susceptibility known, inpatient TAM: No positive bacterial cultures TAM: No positive fungal cultures Renal function alert Antibiotic level Targeted organisms (*Pseudomonas*, quinolone-resistant; Staphylococcus aureus, resistant; Enterococcus, vancomycin resistant)

- Interventions documented within system
- Antibiogram development

CDSS in ASP

- Good Shepherd Medical Center, Texas
- 99% intervention acceptance rate
 - Increased from 1986 per month to 4065 per month
- Intervention cost calculator model:
 - Cost savings increased by 96% to \$249,959/month

5 "Rights" of CDSS

CDSS is not meant to replace clinical judgement, but to assist

RIGHT information RIGHT people RIGHT channels RIGHT intervention formats RIGHT points in workflow

Ehealth University: Centers for Medicare & Medicaid - Clinical Decision Support. [Online]. Retrieved from on 26 Sept 2016 from, https://www.cms.gov/regulations-and-guidance/legislation/EHRincentiveprograms/downloads/clinicaldecisionsupport_tipsheet-.pdf

Building Alerts

- Pre-built alerts vs. custom-built alerts
- Base alerts on institutional needs, available resources
 - Flexibility of ASP and alerts is key
- Alerts with high actionable intervention potential (pilot phase)
- Supportive of CDC, IDSA guidelines, and recommendations

Preauthorization: Does you institution restrict or regularly monitor use of antibiotics?

- A. YES, all antimicrobials are restricted, none are monitored
- B. YES, some antimicrobials are restricted, others are monitored
- C. YES, no restricted antimicrobials, some are monitored
- D. NO, we do not currently have antimicrobials restricted or monitored for use at our institution

Preauthorization: How do you ensure that restrictions are enforced and followed?

- A. Daily antibiotic report print out/review
- B. Customized Clinical Decision Support System alert
- C. We currently do not track process compliance for restricted antimicrobials

Preauthorization

- CDSS with customizable real-time alerts when restricted or monitored antimicrobial ordered
 - Allows for active discussion by ASP member
 - Approval by ASP member was more effective than offhour approval by ID fellows in:
 - ➢ Recommendation appropriateness
 - ≻Cure rate
- Pertinent patient-related information found in CDSS summary

Prospective Audit and Feedback (PAF)

- Pre-built alerts
 - De-escalation of therapy after pre-specified duration
 - Reported (+)-cultures without antibiotics prescribed
 - Redundant antimicrobials (i.e., dual anti-anaerobic coverage)
- Customizable alerts
 - Microbe-drug mismatch
 - Specific de-escalation opportunities
 - Multi-drug resistant organisms on inappropriate therapy
 - Optimizing therapy (escalation of therapy)

Open Discussion

- 1) What de-escalation specific alerts have you built at your institution?
- 2) What other alerts have you built that would allow for PAF?
- 3) Name barriers you have encounter in using CDSS at your institution for ASP efforts. How did you successfully overcome these barriers?

Rapid Microbiologic Tests

Does Your Hospital Have Rapid Microbiologic Tests ?

- A. Yes
- B. No

Which Rapid Microbiologic Tests Does Your Hospital Use?

- A. Verigene®
- B. Gene Xpert®
- C. MALDI-TOF
- D. PNA-FISH[®] or *Quick*FISH[™]
- E. FilmArray®
- F. Light Cycler®
- G. T2 Candida®
- H. My hospital uses >1 of these tests
- I. None at this time

Rapid Microbiologic Tests for Identification of Bloodstream Pathogens

Rapid Test	Pathogens Detected	Resistance Marker	Time
Verigene®	S. aureus, CoNS, Streptococcus spp., Enterococcus spp. (including VRE) Enterobacteriaceae, P. aeruginosa, Acinetobacter spp., Listeria spp.	mecA, Van A, Van B KPC, NDM, CTX-M, VIM, IMP, OXA	2 – 2.5 hr
Gene Xpert®	S. aureus	mecA	<1 hr
MALDI- TOF	Gram (+), Gram (-), yeast, fungi, mycobacteria	Under development	10-30 min

Rapid Microbiologic Tests for Identification of Bloodstream Pathogens

Rapid Test	Pathogens Detected	Resistance Marker	Time
PNA FISH®	S. aureus, CoNS, Enterococcus spp., E. coli, K. pneumoniae, P. aeruginosa, Candida spp.	No	1.5-3 hr
<i>QUICK</i> FISH™	S. aureus, CoNS, Enterococcus spp., E. coli, K. pneumoniae, P. aeruginosa	No	<30 min
FilmArray®	S. aureus and CoNS, Streptococcus spp., Enterococcus spp., P. aeruginosa, Enterobacteriaceae, A. baumannii, Candida spp.	mecA, Van A, Van B	1 hr
Light Cycler®	S. aureus, CoNS, Streptococcus spp., Enterococcus spp., Enterobacteriaceae, S. maltophilia, Candida spp.	No	6 hr

Impact of RMTs + ASPs

- Pre/post quasi-experimental
 - MALDI-TOF vs. historical control
 - ~500 pts with bacteremia/ candidemia
- Real time notification of all (+) blood cultures + ASP
- Time to organism identification
 - 84.0 vs. 55.9 hrs, p < 0.001
- Time to effective antibiotics
 - 30.1 vs. 20.4 hrs, p =0.02
- Time to optimal antibiotics
 - 90.3 vs. 47.3 hrs, p < 0.001

Impact of Rapid Microbiologic Tests + ASP: Cost Savings

- Pre/post comparative study
 - Rapid PCR MRSA/SA
 - 156 bacteremic patients
- Real time notification of all (+) blood cultures + ASP

Clinical Meeting & Exhibition

Open Discussion

- 1) In what capacity is pharmacy/ASP involved in results from rapid microbiologic tests at your institution?
- 2) Are the services 24 hrs vs. business hours?
- 3) What is the process?
- 4) What barriers have you encountered in involving pharmacy/ASP in the process related to results from rapid microbiologic tests?

Measuring ASP-Related Outcomes

The Why

- Measurement allows comparison, highlighting differences in approach to reveal opportunities for improvement
- "It is widely believed that you cannot manage what you cannot measure. It is also true that you cannot measure what you cannot define."
 - Richard Platt, MD, MSc

Open Discussion

- 1) What ASP-related metrics are used at your institution?
- 2) How is this data obtained?
- 3) Who is responsible for obtaining, analyzing and reporting this data?
- 4) How and where do you document ASP-related interventions?

Sources of Data

- Purchased
 - Easy to obtain, but least accurate
- Dispensed
 - More accurate than purchased but can still overestimate usage
- Administered
 - Most accurate, best achieved with electronic medical records

Definitions

- Defined daily dose (DDD)
- Days of therapy (DOT)
- Length of therapy (LOT)
- Standardized antimicrobial administration ratio (SSAR)
- Simply a numerator (DOT, DDD, LOT) & a denominator (patient days, admissions, days present)

Defined Daily Dose (DDD)

- The assumed average maintenance dose per day for a drug used for its main indication in adults
 - <u>WHO standards</u>
- Pros
 - Relatively easy to calculate
- Cons
 - May underestimate antibiotic exposure
 - Not applicable in pediatrics
 - Number of days of therapy may be inaccurate at times

Drug	Day 1	Day 2	Day 3	This patient	Use/WHO standard
Piperacillin/tazobactam (3.375g q6H)	\checkmark	\checkmark	\checkmark	12g x3 days= 36	36/14= 2.57
Vancomycin (1g q8H)		√	√	3g x 2 days = 6	6/2=3

WHO standards: Piperacillin/tazobactam = 14g Vancomycin= 2g

Days of Therapy (DOT)

- Pros
 - Not impacted by dose changes
 - Can be used in adults and pediatrics
- Cons
 - Patient-level antibiotic use data needed

Drug	Day 1	Day 2	Day 3	This patient	D0T
Piperacillin/tazobactam (3.375g q6H)	\checkmark	\checkmark	\checkmark	3 DOT	3+2= 5
Vancomycin (1g q8H)		√	\checkmark	2 DOT	

Polk RE. *Clin Infect Dis* 2007. 44: 664-70 Barlam TF, et al. *Clin Infect Dis* 2016. 62(10) e51-77.

Length of Therapy (LOT)

- Number of antimicrobials dispensed/utilized is irrelevant
- Pros
 - Accounts for dosing intervals beyond 1 day (e.g. patients on q48H vancomycin)
- Cons
 - Does not differentiate between monotherapy or combination therapy

Drug	Day 1	Day 2	Day 3	LOT
Piperacillin/tazobactam (3,375g q6H)	√	√	\checkmark	3
Vancomycin (1g q8H)		~	\checkmark	

Standardized Antimicrobial Administration Ratio (SSAR)

- Developed by the CDC
- **Definitions:**
 - Antimicrobial day: aggregate sum of days for any amount of antimicrobial administered to a patient
 - Observed antimicrobial use (O): # of days of therapy
 - Predicted antimicrobial use (P): calculated using predictive modules developed by CDC

• Five specific categories

IDSA Recommendation

- Every ASP must measure antibiotic use, stratified by antibiotic (weak recommendation, low-quality evidence)
- DOT is preferred
 - Not impacted by dose adjustments, patient population
 - CDC's National Healthcare Safety Network requirement

Manual Reporting

- Excel[®]
- Google docs[®]

- Free Resource
 - Joint Commision Toolkit

Requirements for Manual Calculation

- Date of administration
- Patient account number or medical record number (MRN)
- Note: only valid for antimicrobials given at least once daily
 - May be inaccurate for q48H or q72H dosing

CDSS Reports: SafetySurveillor®

				Patient Days of Use (per DDD)			DDD/1000 Patient Days			Actual Days of Therapy (DOT)				y DOT/1000 Patient Days					
Ward/Unit	Census	Drug	DDD	Curr	Avg	Hi	Lo	Curr	Avg	Hi	Lo	Curr	Avg	Hi	Lo	Curr	Avg	Hi	Lo
CICU	505	acyclovir	4.0 gm		0.3	2.5	0.2		0.5	4.8	0.5		0.8	6.0	1.0		1.7	11.5	1.9
CICU	505	amphotericin B liposomal	350.0 mg		0.3	3.3	3.3		0.5	6.4	6.4		0.3	4.0	4.0		0.6	7.8	7.8
CICU	505	ampicillin	2.0 gm		12.9	51.0	1.0		24.6	97.9	1.9		3.8	17.0	1.0		7.3	31.7	1.9
CICU	505	ampicillin-sulbactam (single)	2.0 gm	3.0	14.2	54.0	1.5	5.9	26.7	95.6	2.9	2.0	4.1	13.0	1.0	4.0	7.7	24.2	1.9
CICU	505	azithromycin	500.0 mg	11.0	15.7	27.5	4.0	21.8	30.0	53.0	7.6	12.0	16.0	29.0	4.0	23.8	30.5	55.9	7.6
CICU	505	aztreonam	4.0 gm	0.4	5.8	9.8	0.4	0.7	11.1	17.3	0.7	1.0	9.3	16.0	1.0	2.0	17.8	31.1	2.0
CICU	505	cefazolin	3.0 gm	1.0	7.2	22.0	1.0	2.0	13.9	42.4	2.0	2.0	8.9	19.0	2.0	4.0	17.1	36.6	3.8

Permission for reproduction granted from Premier, Inc on 30 Sept 2016.

CDSS Reports: TheraDoc®

Clinical Meeting & Exhibition

Permission for reproduction granted from Premier, Inc on 30 Sept 2016.

DOT Reports: TheraDoc®

DOT per 1000 (Days Present)

Therapeutic Class	Medication / Class	Jul 16 TO	TAL	Average
anti-infectives	acyclovir	49.13	49.13	49.13
anti-infectives	amoxicillin-clavulanate	49.13	49.13	49.13
anti-infectives	azithromycin	20.23	20.23	20.23
anti-infectives	bacitracin	26.01	26.01	26.01
anti-infectives	cefazolin	8.67	8.67	8.67
anti-infectives	ceftriaxone	15.90	15.90	15.90
anti-infectives	cefuroxime	114.16	114.16	114.16

DOT

Therapeutic Class	Medication / Class	Jul 16 T	OTAL	Average
anti-infectives	acyclovir	34.00	34.00	34.00
anti-infectives	amoxicillin-clavulanate	34.00	34.00	34.00
anti-infectives	azithromycin	14.00	14.00	14.00
anti-infectives	bacitracin	18.00	18.00	18.00
anti-infectives	cefazolin	6.00	6.00	6.00
anti-infectives	ceftriaxone	11.00	11.00	11.00
anti-infectives	cefuroxime	79.00	79.00	79.00

Permission for reproduction granted from Premier, Inc on 30 Sept 2016.

Goals of Measuring Outcomes of ASP

Improve patient outcomes

• Maximize clinical cure by optimizing antibiotic choice, dose, duration

Improve patient safety

• Minimize unintended consequences

Reduce resistance

• Preserve the utility of available agents

Reduce cost

• Less antimicrobial use and shorter durations

Mcgowan JE. Infect Control Hosp Epidemiol 2012; 33 (4): 331-37.

Process vs. Outcome Measures

Process

- Excess days of therapy
- Duration of therapy
- Compliance with guidelines or treatment algorithm
- Change in antibiotics based on microbiology results
- Conversion of IV-to-PO

Outcome

- Hospital length of stay
- 30-day mortality
- Unplanned hospital readmission within 30 days
- Clostridium difficile infection or other adverse event related to antibiotics
- Clinical failure

Moving from Process to Clinical Outcomes

- Historically, ASP outcomes have focused on cost reduction
- Measuring clinical outcomes such as antimicrobial resistance is more difficult
 - Changes in patterns of organisms prevalent in a setting
 - Changes in infection control measures

Decreased Resistance with Antimicrobial Restriction of Carbapenems

Pakyz AL, et al. Antimicrob Agents Chemother 2009. 53(5):1983-6.

Susceptibilities and Stewardship

 Pseudomonas aeruginosa susceptibility increased after the initiation of ASP in a 70-bed rural community hospital

Incorporating IT into your Ideal ASP

- 1) What ASP-related EMR initiatives will you take back and build at your institution?
- 2) What de-escalation alerts will you incorporate into your ASP with the available IT support/resources?
- 3) What additional PAF alerts will you build at your institution?
- 4) How will you incorporate rapid microbiologic tests into your ASP?

Key Takeaways

- Resistance continues to be a global health threat
- Antimicrobial Stewardship Programs can help preserve the power of our currently available antimicrobials
- As the demand of ASP initiatives continues to increase, the incorporation of information technology is of vital importance in assisting with streamlining ASP efforts

