Safety and Efficacy Updates in the Management of Invasive Fungal Infections

Scott J. Bergman, Pharm.D., BCPS (AQ ID), FIDSA
Kayla R. Stover, Pharm.D., BCPS (AQ ID)
Session Objectives

- Discuss updated recommendations for the management of candidiasis from the Infectious Diseases Society of America
- Evaluate the recent reports of toxicity associated with commonly used antifungal agents
- Develop a medication regimen that reflects application of best evidence and current guidelines given a description of a specific patient
Disclosure

The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except:

- **Kayla Stover** - Astellas Pharma, Inc.: Grant/Research Support
Safety and Efficacy Updates in the Management of Invasive Fungal Infections

Scott J. Bergman, Pharm.D., BCPS (AQ ID), FIDSA
Antimicrobial Stewardship Coordinator, Nebraska Medicine
University of Nebraska Medical Center, College of Pharmacy
Outline - Efficacy

• Invasive Candidiasis
• Invasive Aspergillosis
• Isavuconazole
Introduction - Case

- 55 year old male presents to emergency room
 - Type 2 diabetes for 15 years, on glyburide/metformin,
 - Poor glycemic control, A1C = 10%
 - No recent hospitalizations
- Complaining of chronic abdominal discomfort – diagnosis of presumptive diverticulitis
 - Fever, hypotension, tachypnea
 - Abdomen distended and tender
- Admitted to medical floor
Introduction - Case

- Initiated on broad-spectrum antibiotics, bowel rest prescribed
 - Central line placed, TPN started
- Fever persists, condition deteriorates, transferred to ICU
 - Blood cultures negative
- Abdominal CT: Small abscesses in peritoneal cavity and significant amount of intraperitoneal fluid
 - Blood cultures repeated
- What risk factors does this patient have for invasive fungal infection?
Introduction - Case

- Interventional radiology drains the peritoneal abscess
 - White blood cell count decreases
 - Fever persists
- Gram stain of peritoneal fluid shows a Gram negative rod and budding yeast
 - Germ tube negative
 - Lactose fermenting Gram-negative rod susceptible to original beta-lactam chosen
- IV catheter removed, tip cultured
- What would you recommend now?
Candidiasis

- Over 15 different Candida species exist
- Five account for >90% of bloodstream infections
 - *C. albicans* (37-45%)
 - *C. glabrata* (20-25%)
 - *C. parapsilosis* (13-17%)
 - *C. tropicalis* (8-11%)
 - *C. krusei* (1-2%)

Candidiasis

- Mucosal
 - Oropharynx (thrush)
 - Esophageal
 - Vulvovaginal
- Invasive
 - Intra-abdominal
 - Candidemia
Annual candidemia incidence rates per 100,000 person-years, by year and location, 2008–2013.

http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0120452
Invasive Candidiasis Practice Guidelines

- 2016 IDSA Update
- Echinocandins are first-line therapy
 - Caspofungin 70mg x1, then 50mg/d
 - Micafungin 100mg daily
 - Anidulafungin 150mg x1, then 100mg/d
- Non-neutropenic patients (strong, high)
- Neutropenic patients (strong, moderate)

Candidiasis Treatment Meta-analysis

Overall Mortality 31.4%

Improved survival (OR)
- Removal of central venous catheter (0.5)
- Echinochandhin treatment (0.65)

Predict treatment failure
- Increasing age (1.01)
- APACHE II score (1.11)
- Immunosuppresive therapy (1.69)
- *Candida tropicalis* (1.64)

Fluconazole

- Acceptable alternative
 - 800mg (12mg/kg) x 1, then 400mg (6mg/kg) IV/PO daily
 - If not critically ill and considered unlikely to have resistance (strong, high)
- Testing for azole susceptibility is recommended for all bloodstream and other clinically-relevant isolates
 - Rapid identification of species is important

C. glabrata Resistance

- Fluconazole
 - 18% → 30% between 2001 and 2010
 - 14% of these also echinocandin resistant

- Echinocandins
 - 4.9% → 12.3% prevalence
 - FKS mutant
 - 8/10 treated, failed or relapsed
 - Risk factor: prior echinocandin therapy
 - Odds ratio 19.65

Proportion of cases with *Candida glabrata* isolates non-susceptible to echinocandins, by surveillance site and year, 2008–2014

Echinocandin Resistance

- Testing should be considered
- Patients who have had prior treatment with an echinocandin or have *C. glabrata* or *C. parapsilosis*
 - Strong recommendation, low evidence
- *C. parapsilosis* naturally has higher MICs
 - Outcomes are similar between therapies

Overall Resistance

- 7% Fluconazole
- 2% Echinocandin
- 1% multiple drugs

- Amphotericin B lipid formulation 3-5 mg/kg/d

Invasive Aspergillosis
Invasive Aspergillosis Practice Guidelines

- Triazoles are 1st line therapies (strong rec, high evidence)
- Treatment: Voriconazole 6mg/kg IV q12h x 2 doses, then 4mg/kg q12h before switch to oral 200-300mg BID
- Prevention: Posaconazole
- Therapeutic drug monitoring is advised
 - Strong recommendation, moderate evidence
- Antifungal susceptibility testing is not required
 - Reserve for treatment failure or if resistance suspected

Combination Therapy

- Preclinical studies and laboratory testing promising
 - Azoles or polyenes and echinocandins
 - Synergistic or additive effects, but conflicting results
 - Weak recommendation, low-quality evidence
- Voriconazole plus an echinocandin can be considered
 - Weak recommendation, moderate evidence
 - Probable IA mortality 15.7% vs. 27.3%, overall NS
 - Combination AE’s 12.7% vs. 8.4% monotherapy

Alternatives

- **Primary therapy:**
 - Liposomal Amphotericin B 3-5 IV mg/kg/d
 - Isavuconazole IV/PO 200mg q8h x 6, then 200mg/d

- **Salvage therapy:**
 - Amphotericin B Lipid Complex 5mg/kg/d
 - Caspofungin 70mg/d, then 50mg/d
 - Micafungin 100-150mg/d IV
 - Posaconazole 300mg q12h x2, then 300mg/d IV/po XR
 - Itraconazole suspension 200mg po BID

Isavuconazole
Isavuconazonium (Cresemba)

- Azole antifungal prodrug
 - Isavuconazonium sulfate \rightarrow isavuconazole
- FDA indications: invasive aspergillosis & mucormycosis, 2015
- IV = PO
- Load: 372mg (200mg) q8h x 6 doses
- Maintenance: 372mg (200mg) daily
Aspergillosis – SECURE Trial

- Phase 3, randomized, double-blind, controlled, multi-center, noninferiority trial
- Isavuconazole vs. voriconazole in patients with proven, probable, or possible invasive mold disease caused by *Aspergillus* spp. or other filamentous fungi
 - In patients with proven or probable disease, *Aspergillus* spp. were isolated in ~33% of cases
 - *A. fumigatus* most common

Maertens JA et al. Lancet. 2016 (Feb);387:760-769.
Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline risk factor in ITT population</th>
<th>Isavuconazole N=258 n(%)</th>
<th>Voriconazole N=258 n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic malignancy</td>
<td>211 (82)</td>
<td>222 (86)</td>
</tr>
<tr>
<td>Allogeneic hematopoietic stem cell transplant (HSCT)</td>
<td>54 (21)</td>
<td>51 (20)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>163 (63)</td>
<td>175 (68)</td>
</tr>
<tr>
<td>Corticosteroid use</td>
<td>48 (19)</td>
<td>39 (15)</td>
</tr>
<tr>
<td>T-cell immunosuppressant use</td>
<td>111 (43)</td>
<td>109 (42)</td>
</tr>
</tbody>
</table>

Maertens JA et al. Lancet. 2016 (Feb);387:760-769.
Results

- Primary efficacy endpoint: all-cause mortality at day 42 in intention-to-treat population
 - Isavuconazole: 258 patients, 19%
 - Voriconazole: 258 patients, 20%

- Secondary endpoint: overall response in patients with proven or probable disease, determined by data review committee
 - Isavuconazole: 143 patients, 35%
 - Voriconazole: 129 patients, 36%

Maertens JA et al. Lancet. 2016 (Feb);387:760-769.
Results

Safety

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Isavuconazole</th>
<th>Voriconazole</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>96%</td>
<td>98%</td>
<td>0.122</td>
</tr>
<tr>
<td>Skin</td>
<td>33%</td>
<td>42%</td>
<td>0.037</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>27%</td>
<td>33%</td>
<td>0.151</td>
</tr>
<tr>
<td>Ocular</td>
<td>15%</td>
<td>27%</td>
<td>0.002</td>
</tr>
<tr>
<td>Hepatobiliary</td>
<td>9%</td>
<td>16%</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Mucormycosis – VITAL trial

- Phase 3, open-label, non-comparative trial
 - 34 sites worldwide
- 37 patients with proven or probable mucormycosis, most pulmonary
 - Primary therapy
 - Refractory to prior antifungal therapy
 - Intolerance to prior antifungal therapy

Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline risk factors in Mucorales patients</th>
<th>Primary N=21 n(%)</th>
<th>Refractory N=11 n(%)</th>
<th>Intolerant N=5 n(%)</th>
<th>Total N=37 n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic malignancy</td>
<td>11 (52)</td>
<td>7 (64)</td>
<td>4 (80)</td>
<td>22 (60)</td>
</tr>
<tr>
<td>Allogeneic HSCT</td>
<td>4 (19)</td>
<td>4 (36)</td>
<td>5 (100)</td>
<td>13 (35)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>4 (19)</td>
<td>5 (46)</td>
<td>1 (20)</td>
<td>10 (27)</td>
</tr>
<tr>
<td>Corticosteroid use</td>
<td>5 (24)</td>
<td>3 (27)</td>
<td>2 (40)</td>
<td>10 (27)</td>
</tr>
<tr>
<td>T-cell immunosuppressant use</td>
<td>7 (33)</td>
<td>6 (55)</td>
<td>5 (100)</td>
<td>18 (49)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4 (19)</td>
<td>0</td>
<td>0</td>
<td>4 (11)</td>
</tr>
</tbody>
</table>

Primary Outcome

Case-control analysis

- Compared to amphotericin B historical matched controls
 - FungiScope registry, primary therapy
 - Severe-CNS/disseminated, hematologic malignancy, surgery within 7 days
 - Mortality: 7/21 (33%) Isavu vs. 13/33 (39%) AmB

- AmBizygo trial = 10mg/kg/d Liposomal Ampho B
 - Similar mortality (38% at 12 weeks)
 - 40% substantial nephrotoxicity

Safety

- 24/37 (65%) discontinued therapy (n)
- Death (11)
- Adverse events (6)
- Non-compliance (4)
- Insufficient response (2)
- Investigator’s choice (1)
Adverse events

- Relapse of progression of malignancy (2)
- Acute liver injury (2)
- Nausea (1)
- *E. coli* bacteremia (1)

- No QT prolongation
Conclusion

- Isavuconazole is effective for invasive aspergillosis and mucormycosis
- Appears safer than comparator agents
- Expensive
Case Revisited

- 55 year old male patient with diabetes
- In ICU from diverticulitis
- On broad-spectrum antibiotics and TPN
- Yeast growing from peritoneal fluid
- Suspect candidemia
- Empiric antifungal therapy needed
Treatment for Invasive Candidiasis

A. Amphotericin B, Liposomal formulation
B. Fluconazole
C. Micafungin
D. Voriconazole
Take away points

- Echinocandins are first-line therapy for candidemia
- Antifungal resistance is on the rise
 - Check with your lab about testing
 - Especially *C. glabrata*
- Invasive aspergillosis treatment/guideline updated
- Isavuconazole is a new option to consider for rare molds
Safety and Efficacy Updates in the Management of Invasive Fungal Infections

Scott J. Bergman, Pharm.D., BCPS (AQ ID), FIDSA
Nebraska Medicine-UNMC
scbergman@nebraskamed.com
Safety and Efficacy Updates in the Management of Invasive Fungal Infections

Kayla R. Stover, Pharm.D., BCPS (AQ ID)
Associate Professor of Pharmacy Practice
University of Mississippi School of Pharmacy
Self-Reflection Question: Globally, antifungals are associated most frequently with toxicity of which of the following systems?

A. Cardiac
B. Hepatic
C. Neuro
D. Renal
Patient Case: A patient with history of cirrhosis and chronic kidney disease stage 3 presents with disseminated candidiasis with Candida glabrata (susceptibilities pending). Which antifungal would you recommend?

A. Fluconazole
B. Caspofungin
C. Liposomal Amphotericin B
D. Voriconazole
Outline - Safety

- Common Systemic Antifungals
- Newer Reports
 - Cardiac Toxicity
 - Hepatotoxicity
 - Neurotoxicity
 - Renal Toxicity
Common Systemic Antifungals

- Polyenes
 - Amphotericin

- Echinocandins
 - Anidulafungin
 - Caspofungin
 - Micafungin

- Azoles
 - Fluconazole
 - Itraconazole
 - Voriconazole
 - Posaconazole
 - Isavuconazole
Polyenes Adverse Reactions

- Infusion-related reactions
 - Better with lipid formulations
 - (ABCD>C-Amb B>ABLC>L-AmB)
 - Pre-treatment helps (acetaminophen, steroids)

- Nephrotoxicity
 - Renal tubular acidosis
 - Azotemia
 - Possibly better with lipid formulations

- Electrolyte changes
 - Hypokalemia, hypomagnesemia
 - Potential for arrhythmias

- Anemia

Common Adverse Reactions

- **Azoles**
 - Hepatotoxicity
 - QT prolongation
 - Teratogenic in animals

- **Echinocandins**
 - Infusion-site reactions
 - Histamine reactions
 - Rapid infusion
Recent Toxicity Reports: Cardiac
Self-Reflection Question:
Antifungals are associated most frequently with which cardiac toxicity?

A. Arrhythmia
B. Changes in contractility
C. Heart failure
Cardiac Toxicity History

<table>
<thead>
<tr>
<th>Proposed Mechanism</th>
<th>Author</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLT causes vasodilation</td>
<td>Tofukuji</td>
<td>J Surg Res 1998</td>
</tr>
<tr>
<td>CLT inhibits calcium channels</td>
<td>Fearon</td>
<td>Br J Pharmacol 2000</td>
</tr>
<tr>
<td>CLT decreases potassium</td>
<td>Tian</td>
<td>Br J Pharmacol 2006</td>
</tr>
<tr>
<td>Econazole inhibits contractions</td>
<td>Tunctan</td>
<td>Life Sciences 2000</td>
</tr>
<tr>
<td>ITZ causes CHF</td>
<td>Ahmad</td>
<td>Lancet 2001</td>
</tr>
<tr>
<td>VCZ causes Torsades de pointes</td>
<td>Philips</td>
<td>Transplant Infect Dis 2007</td>
</tr>
<tr>
<td>AmB overdose & cardiac arrest</td>
<td>Cleary</td>
<td>Ann Pharmacother 1993</td>
</tr>
<tr>
<td>AmB causes dilated CM</td>
<td>Danaher</td>
<td>J Antimicrob Chemother 2004</td>
</tr>
</tbody>
</table>

CLT: clotrimazole; ITZ: itraconazole; VCZ: voriconazole; AmB: amphotericin B
CHF: congestive heart failure; CM: cardiomyopathy
Newer Reports- Azoles: Arrhythmias

- **Fluconazole**
 - QT prolongation
 - Torsades de pointes
- **Posaconazole**
 - QT prolongation and cardiac arrest with previous risk factors
- **Voriconazole**
 - Torsades de pointes
 - 5 adult and 3 pediatric cases since 2004
 - Most recent: prolonged QT resulting in TdP
 - Bradycardia

Newer Reports- Azoles: Contractility

- Itraconazole
 - Decreases left ventricular contractility
 - Negative inotropic effect
 - Proposed mechanism: direct heart effect

- In animal studies: fluconazole, voriconazole not associated with changes in contractility

Newer Reports- Echinocandins: Arrhythmias

- **Caspofungin**
 - Patient with AML, no past history of cardiac disease
 - Complete heart block and cardiac arrest after first dose
 - Possibly histamine-mediated?

- **Micafungin**
 - Patient with paroxysmal atrial fibrillation, systolic heart failure, peripheral vascular disease, diabetes, hypertension
 - On amiodarone and fluconazole: ventricular fibrillation
 - Switched to micafungin: polymorphic ventricular tachycardia

Newer Reports- Echinocandins: Contractility

Ex vivo Animal Studies: dose range

- Caspofungin and anidulafungin associated with decreased left ventricular contractility
 - Caspofungin: reversible; mean decrease 40.6±15.6%
 - Anidulafungin: irreversible; mean decrease 77.1±9.4%
- No changes with micafungin

In vivo Animal Studies: two clinically relevant doses

- Caspofungin: mean decrease in cardiac output 62.6±13.0%
- Anidulafungin: mean decrease in cardiac output 62.7±19.4%
- No significant change with micafungin (CO: 18% decrease, p = NS)

Newer Reports- Echinocandins: Contractility

- Anidulafungin
 - Flash pulmonary edema
 - Coughing + shortness of breath/chest tightness
 - Severe hemodynamic instability during administration
 - Hypotension, bradycardia
 - Decreased cardiac index (2 to 1.6 L/min/m²)
 - Decreased MAP despite vasopressor support
 - Decreased cardiac index (3.5 to 2.1 L/min/m²)

- Caspofungin
 - Decreased cardiac index (3.2 to 2.7 L/min/m²)

Newer Reports- Echinocandins: Contractility

- Prospective analysis of medical ICU patients receiving antifungals
 - 12 caspofungin
 - 3 anidulafungin
- Monitored using transpulmonary thermodilution
 - Systolic, diastolic, mean arterial, and central venous pressure, HR
- MAP ($p < 0.042$) and DBP ($p < 0.007$) significantly decreased immediately after infusion
 - Not significantly different from baseline at 4 hours

Newer Reports- Echinocandins: Contractility

Micafungin?

- No case reports to date
- Some evidence that it may be safe even at high doses
 - Max tolerated doses in stem cell transplantation
 - 3-8 mg/kg/day from 7-28 days around transplant
 - All 36 patients received at least 8 days (median: 18 days)
 - No patients had Grade 3 or 4 adverse effects

Sirohi B. Bone Marrow Transpl 2006;38:47-51.
Recent Toxicity Reports: Hepatic
Newer Reports - Polyenes

Amphotericin B deoxycholate

- Acute hepatic injury following administration
- Patient had previous hepatic injury but was resolved at time of administration

Newer Reports- Azoles

- Oral azoles and association with liver injury
 - Low for fluconazole, ketoconazole, itraconazole
 - 13; 19.3; 24.5/100 person-years, respectively
 - Higher for voriconazole, posaconazole
 - 181.9; 191.1/100 person-years, respectively
 - Higher association with pre-existing liver disease

- Drug-induced liver injury
 - 2.9% of all reports to AERS are antimycotics
 - 1964 cases, 112 liver failure
 - Keto, vori, posaconazole: disproportionally high incidence

Newer Reports- Azoles

- Hepatotoxicity in rats:
 - Fluconazole: No significant increases in transaminases
 - Mild degenerative changes on histology
 - Itraconazole: Statistically significant difference in ALT/AST
 - Hepatocellular necrosis, degeneration of hepatocytes, biliary cirrhosis histologically

- Voriconazole
 - 63 adults in ICU
 - Increased trough = increased hepatotoxicity
 - Significant difference with trough > 4 vs. < 4 mg/L

Newer Reports- Echinocandins

- Caspofungin vs. azoles and liver injury
 - 9.3% of caspofungin users had increased enzymes
 - No discontinuation of drug
 - Vs. 2% of fluc-; 19.7% of vori-; 17.4% of itraconazole

- Caspofungin vs. anidulafungin with liver dysfunction
 - On concomitant hepatotoxins
 - Switched from caspofungin to anidulafungin
 - Significantly decreased AST/ALT
 - 70% with favorable changes

Newer Reports- Echinocandins

- Micafungin use in pre-existing liver dysfunction: 12 patients
 - Liver function stable or improved in all patients except one

- Micafungin and liver injury vs. other parenteral antifungals
 - 2970 mica recipients vs. 6726 other
 - Hepatic injury rates similar
 - Defined as changes in liver enzymes
 - Mica: 13/100 patients; others: 12/100 patients

Recent Toxicity Reports: Neuro
Newer Reports- Azoles

- Fluconazole and paroxetine combination
 - Found to be neuroprotective despite neuroinflammation

- Itraconazole and vinca alkaloids
 - Neurotoxicity seen with vinca alkaloids
 - Constipation, paralytic ileus
 - Neurotoxicity enhanced by addition of itraconazole

- Posaconazole + vincristine
 - Life-threatening neurotoxicity in a child with ALL

Newer Reports- Azoles

- **Voriconazole**
 - Photosensitivity (UVA) and skin carcinogenesis
 - Case of phototoxicity, pseudoporphyria, photo-onycholysis
 - Psychosis in a patient with AML and febrile neutropenia
 - Hallucinations

Recent Toxicity Reports: Renal
Newer Reports- Azoles

- Voriconazole
 - Safety/tolerability with baseline renal insufficiency
 - 39% worsening renal function with voriconazole
 - Compared to 53% with amphotericin/fluconazole
 - 14 week all-cause mortality: 49% Vori vs. 65% AmB
 - Safety of IV formulation with renal impairment
 - No difference in proportion of troughs in target range between CrCl< 50 and controls
 - No significant decrease in renal function after vori
 - Systematic review found no strong evidence of renal toxicity due to IV voriconazole

Newer Reports- Echinocandins

- Micafungin and renal injury vs. other parenteral antifungals
 - 2970 mica recipients vs. 6726 other
 - Renal injury rates lower with micafungin
 - Defined as changes in GFR
 - Mica: 63/100 patients; others: 65/100 patients
 - HR = 0.93 (CI: 0.87-0.99)

Recent Toxicity Reports: Miscellaneous
Miscellaneous Reports

- Isavuconazole
 - FDA approved in 2015
 - No cardiac, renal, hepatic, neuro adverse effects reported
 - SECURE Trial
 - ADEs similar to voriconazole
 - Similar GI effects, infections reported, administrative site conditions
 - Fewer skin disorders (rash, erythema, drug eruption), cardiac disorders, eye disorders, hepatobiliary disorders

Patient Case: A patient with history of cirrhosis and chronic kidney disease stage 3 presents with disseminated candidiasis with Candida glabrata (susceptibilities pending). Which antifungal would you recommend?

A. Fluconazole
B. Caspofungin
C. Liposomal Amphotericin B
D. Voriconazole
Key Takeaways

- No antifungal is completely “safe”
- Three primary classes (polyenes, azoles, echinocandins) have adverse effects in varying systems within the body
 - Cardiac effects are shared by all three classes
 - Hepatic effects are most common with the azoles, but can occur in the other classes, too
 - Neuro effects are most common with the azoles, particularly voriconazole
 - Renal effects are most common with amphotericin, but probably are not as severe as believed with voriconazole
- It is important to be familiar with the known (and lesser-known) adverse effects
 - May impact agent selection and monitoring
Safety and Efficacy Updates in the Management of Invasive Fungal Infections

Kayla R. Stover, Pharm.D., BCPS (AQ ID)
University of Mississippi School of Pharmacy
kstover@umc.edu