

(Management Case Study) Antimicrobial Stewardship: Small Hospital Strategies

Jennifer Richardson, PharmD, BCPS, CACP Mercy Health – St. Anne Hospital

Lauryl Hanf-Kristufek, PharmD, BCPS, CACP Mercy Health – St. Charles Hospital

Disclosure

 The program chair and presenters for this continuing education activity have reported no relevant financial relationships.

Learning Objectives

- List elements necessary for successful stewardship program based on consensus guidelines.
- Describe two different approaches to development, implementation, and monitoring of stewardship programs in smaller hospitals with limited resources.
- Indicate strategies to report appropriate stewardship metrics.

Self-Assessment Question #1

(True/False). Consensus guidelines state that physician leadership, administrative support and education for health care professionals are all key elements to a successful antimicrobial stewardship program.

A. True B. False

Self-Assessment Question #2

 (T/F) Education and policy development as well as direct patient interventions are both effective approaches to antimicrobial stewardship.

- A. True
- B. False

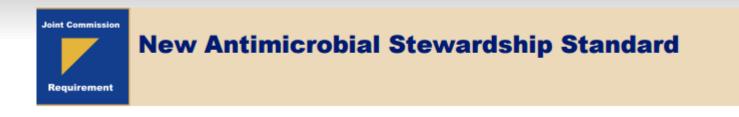
Self-Assessment Question #3

 T/F. Strategies to report antimicrobial stewardship program interventions are well defined in the literature.

- A. True
- B. False

Need for Antimicrobial Stewardship Programs (ASPs) is Well Documented

- 2 million illnesses & 23,000 deaths caused by antibioticresistant bacteria
- 20-50 percent of all antibiotics are unnecessary or inappropriate (hospital)
- 14-79% inappropriate empiric antibiotic usage, increased mortality (hospital)


CDC 2013 report, <u>http://jointcommission.new-media-release.com/</u> 2015 antibiotic resistance/, Marquet et al, Crit Care. 2015; 19(1): 63.

Consensus Guidelines

- IDSA/SHEA
- CDC Core Elements
- JCAHO

- Leadership commitment
- Accountability to a multidisciplinary team
- Action antibiotic time out
- Tracking
- Reporting
- Education Staff, licensed practitioners, patient and family
- Protocols

www.jointcommission.org/assets/1/6/HAP-CAH_Antimicrobial_Prepub.pdf

But- Who says we should measure what?

- IDSA-SHEA 2007
 - Recommend "process and outcome measures"
- Joint Commission
 - "Collect, analyze and report data"
- CMS surveyor worksheets
 - Mentor use, review appropriateness
- WHO
 - DDD
- CDC Core Elements Worksheet
 - DOT, DDD, antibiotic spend
- Whitehouse Executive Order (2014)
 - Reduce inappropriate antibiotic use by 20%

The Issue: **REPORTING**

- Process Measures
 - DOT, DDD, cost, time, appropriate use
- Outcomes Measures
 - LOS, Mortality, C.Diff

- Improved processes = Improved outcomes?
 - Which outcomes?
- Barrier: Clinical response (outcomes) is dependent on all aspects of care

Our Hospitals & Clinical Staff

St. Anne Hospital - Toledo, OH

Beds = 98 (~55) Daily Clinical = 0-4 hrs Clinical Coordinator

E ST. CHARLES MAIN ENTRANCE

St. Charles Hospital - Oregon, OH Beds = 250 (~150) ED = 40 hrs/week Daily clinical = 16 hrs Clinical Coordinator Residents = 1

Our Different Initial Approaches....

Trickle-Down Stewardship

Policies and procedures to apply to patients

Trickle-Up Stewardship

Focus on individual patients to develop good policies

Approach #1 Mercy Health St. Anne Hospital

Jen Richardson, PharmD

Starting off we "technically" had...

- Order Sets
- Formulary "restriction"
- RPh review of C&S reports/ PNA FISH

How we started - CDC Core Checklist

Pharmacy-driven interventions	Action p	ertormed	
	Yes	No	
Automatic changes from intravenous to oral antibiotic therapy in appropriate situations?	x		8/2016 – policy approved through CMCEC
Dose adjustments in cases of organ dysfunction?	х		
Dose optimization (pharmacokinetics/pharmacodynamics) to optimize the treatment of organisms with reduced susceptibility?		x	
Automatic alerts in situations where therapy might be unnecessarily duplicative?	х		
Time-sensitive automatic stop orders for specified antibiotic prescriptions?		х	
Diagnosis and infections specific interventions	Action performed		
Diagnosis and infections specific interventions	Yes	No	
Does your facility have specific interventions in place to ensure optimal use of antibiotics to treat the			
following common infections?:			
Community-acquired pneumonia		х	In progress
Urinary tract infection		х	In progress
Skin and soft tissue infections		х	
Surgical prophylaxis	x		

Approach to Team and Structure

Initial Meeting – CDC Core Elements focus Monthly Meetings (Full group) Twice weekly Subcommittee (Reports to full group)

Focus Document Development

Focus Areas Document (Adult)

FOCUS AREAS:

- 1) Reduce inappropriate antibiotic use due to contaminated blood cultures
- 2) Improve use of antimicrobials in pulmonary infections
- 3) Ensure compliance with guidelines for treatment of urinary tract Infections
- 4) Improve appropriate antimicrobial therapy for patients discharged from MSAH
- 5) Promote Surviving sepsis campaign compliance
- 6) Refine antimicrobial and surgical treatment of skin and soft tissue infections
- 7) Reduce the incidence of hospital acquired clostridium difficile infections
- 8) Surgical Site Infections
- 9) Reduce unnecessary use of broad spectrum antimicrobials
- 10) Ensure proper treatment of fungal infections

Focus #1. Reduce inappropriate antibiotic use due to contaminated blood cultures.

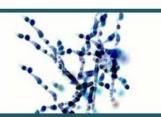
Goal 1a: Achieve and maintain goal blood culture contamination rates of 3% or less.

Opportunity/Rationale: Blood culture contamination rates have intermittently been identified as greater than 3%. Identification of true vs. false positives is critical for patient management and population based surveillance. Overresponse to false positive blood culture reports leads to patient overexposure of antimicrobials.

Plan:	Ac	tion(s)	Outcomes/Measurements
Monitor baseline and monthly blood culture contamination rates.	x	Integrated Laboratories will report monthly for rates for inpatients and Emergency Department (ED). When goal is reached – reduce report frequency to quarterly.	Started monitoring in Nov 2015. Trendline for both patient areas has continued to decrease, with both areas now currently at goal.
Ensure appropriate ordering and methods for specimen collection/venipuncture	x	Review microbiology policy on specimen collection for compliance with national standards. Policy is up to date. Ensure proper Phlebotomy competency. New hire and yearly competency was in place for lab, but ED staff competency was less structured. ED and Lab managers put an additional competency program in place for ED staff.	
	X	Policy changed to include the initials of staff drawing culture to allow for timely feed-back and notification of contaminated cultures Reduce the ordering of blood cultures for patients with a yong low likelihood	

Actions– Focus Specific

- Blood Culture Contamination
 - Staff accountability with timely feedback
- Pulmonary Infections
 - Order sets, procalcitonin
 - Specific chart reviews on pulmonary infections (48-72h)
 - o "Appropriate use"
 - MD recruitment for recommendation endorsement
- UTI
 - Urinalysis w/reflex on preference lists


What We Did – Focus Specific

- ABSSSI
 - Dalbavancin in the ED
- Reduce broad spectrum use
 - PCN Allergy testing grant
- Surgery
 - 2 -> 1 post-op doses

Actions - General

- Education
 - Patient flyers, Public postings
 - Quarterly BUG BEAT newsletter
 - Meeting minutes
 - Awareness Activities

BUG BEAT

July 2016

Mercy Health St. Anne Hospital Antimicrobial Stewardship Program Newsletter *NEWSLETTER NOT FOR GENERAL PUBLIC DISTRIBUTION*

Editors: Jen Richardson, PharmD, BCPS, CACP, Joel Kanmeyer, MD, MPH, FACP, Lisa Beauch, BSN, RN, CAPA, CPAN, CIC, Susan Lewis,

THE TRUTH ABOUT PENICILLIN ALLERGIES

Penicillin and β-Lactam Antibiotics

- Penicillin and other β-lactam antibiotics (cephalosporins, carbapenems) have many first line indications.
- Approximately 9% of patients report penicillin allergy upon hospital admission.
- Due to concern of penicillin anaphylaxis, these patients are often prescribed an antibiotic from other classes, leading to suboptimal therapy (e.g. use vancomycin for MSSA), increased cost, and potential drug-toxicity.
- Avoidance of penicillin and 1st generation cephalosporins in patients with a history of penicillin allorm is associated
- Carbapenems: ~3% of patients who were allergic to either a penicillin or cephalosporin will have a cross-reaction to a carbapenem, which is the same risk of allergic-reaction as patients who do not report a penicillin allergy.
- Monobactam: Aztreonam can be safely administered in patients with a confirmed IgE-mediated allergy to penicillin or cephalosporins except ceftazidime. Note that Aztreonam ONLY covers GRAM-NEGATIVE bacteria.

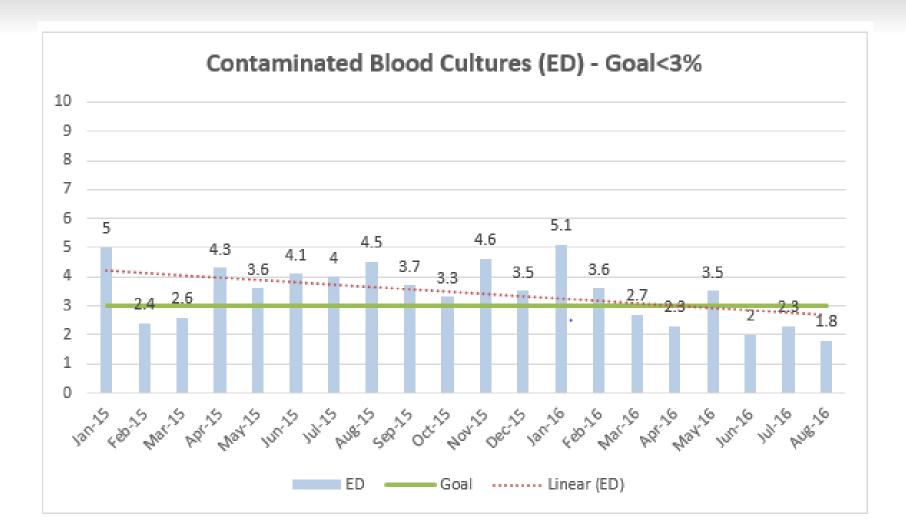
How to Manage a Penicillin Allergy?

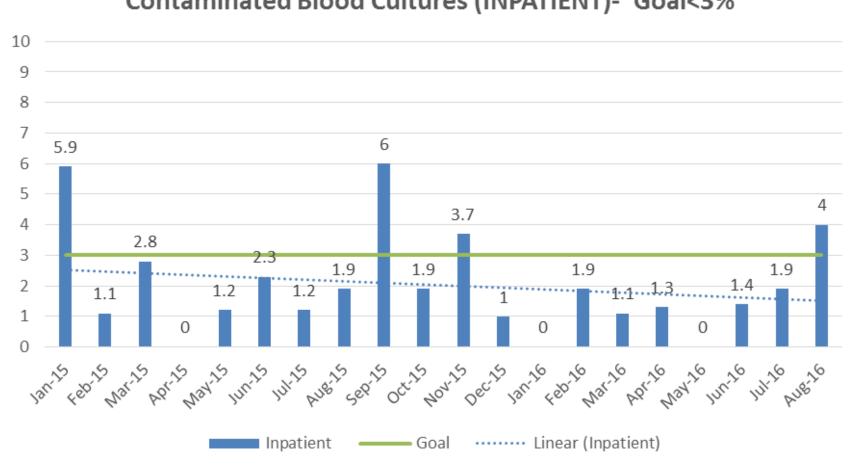
Obtaining and documenting an accurate allergy history is

Staff Educational Efforts – FAIL?

Penicillin Allergy Quiz

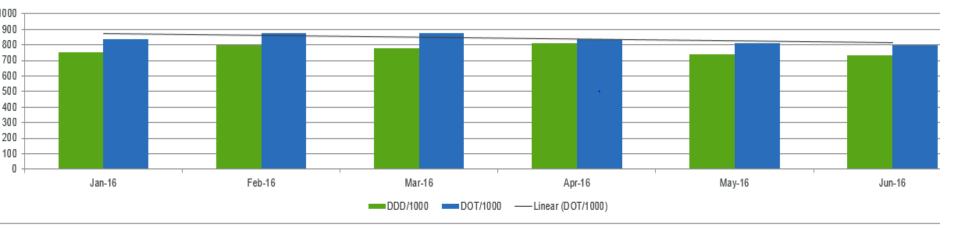
- What percentage of people who report a penicillin allergy actually HAVE a true allergy (when tested)?
 - a. 10%
 - b. 50%
- 2. True PCN allergies occur in:
 - a. Less than 6 hours
 - b. Within 1 week of starting
- 3. If a patient has a true penicillin allergy, what is the chance they will have a reaction to a cephalosporin?
 - **a**. 65%
 - b. 40-50%
 - c. 3 to 7%
- 4. Is cefazolin or vancomycin generally more effective in treating or preventing Methicillin SUSCEPTIBLE *Staphylococcus aureus* (MSSA)
 - a. Vancomycin
 - b. Cefazolin
 - c. Treatment and prevention rates are the same, with vancomycin likely superior

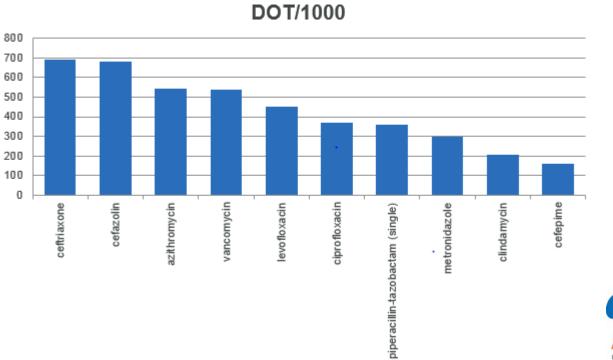

Some pretty charts and graphs...


ID Doc – Rx Agreement

Pt #	Disease/Infection	Pharmacy Intervention	ID Specialist	Response	Communication	Avoidable Dose	Days
1	COPD/PNA	Duration of Therapy	Agree	Rejected	Written	24	8
2	UTI	De-escalation	Agree	Accepted	Verbal/written		
2	PNA	De-escalation	Agree	Accepted	Verbal/written		
2	PNA	Duration of Therapy	Agree	Accepted	Verbal/written		
3	COPD	De-escalation	Agree	Accepted	Verbal/written		
3	COPD	IV to PO	Agree	Accepted	Verbal/written		
3	COPD	Duration of Therapy	Agree	Rejected	Verbal/written	4	4
4	UTI	De-escalation	Agree	Rejected	Written	2	2
5	UTI	De-escalation	Agree	Rejected	Written	14	7
6	COPD	De-escalation	Agree	Accepted	Written		
6	COPD	IV to PO	Agree	Accepted	Written		
6	COPD	Duration of Therapy	Agree	Accepted	Written		
7	Asthma/Bronchitis	De-escalation	Agree	Accepted	Written		
7	Asthma/Bronchitis	IV to PO	Disagree*	Accepted	Written		
7	Asthma/Bronchitis	Duration of Therapy	Disagree*	Rejected	Written	10	10
8	UTI	De-escalation	Agree	Rejected	Written	3	2
Tota	l					57	33
TOTA				*Would rec	ommend d/c Abx		

Contaminated Blood Cultures (INPATIENT)- Goal<3%


Blood Culture Contamination Rate = Outcomes?


- In 2015, there were 23 Contaminated blood cultures reported.
 - 4 patients received vanco
 - 17 doses
 - 12 therapy days
 - I Additional admission!!!

	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	2016 Total
Pharmacy Interventions	3	3	2	6	5	5	8	23		55
AMS Metrics										
Injectable Antimicrobials										
DDD/1000 pt days	612.8	672.6	666.1	703.9	626.5	634.4	708.2	706.6		666.4
DOT/1000 pt days	675.6	736	742.8	722.7	680.3	686	739.3	733.9		714.6
Oral Antimicrobials										
DDD/1000 pt days	152.6	163.7	160.7	135.4	147.6	126.1	192.2	140.2		152.3
DOT/1000 pt days	179.4	196.2	188.3	152.5	174	144	209.7	160.1		175.5
Total										
DDD/1000 pt days	765.4	836.3	826.8	839.3	774.1	760.5	900.4	846.8		818.7
DOT/1000 pt days	855	932.2	931.1	875.2	854.3	830	949	894		890.1
Select Broad Spectrum Antibiotic										
Ertapenem										
DDD/1000 pt days	8.6	5	3.3	6.6	3	2.8	4	6.8		5.0
DOT/1000 pt days	8.6	5	3.3	6.9	4.1	2.8	4	7		5.2
Meropenem										
DDD/1000 pt days	26.4	17.1	14.9	19.6	41.1	11.2	23.1	32.1		23.2
DOT/1000 pt days	25.4	19.5	13.2	18.5	37.6	10	24	27.2		21.9
Piperacillin/Tazobactam										
DDD/1000 pt days	18.9	29.5	45.8	24.2	44.5	39.6	59.1	39.8		37.7
DOT/1000 pt days	37.6	52.3	81.8	44.8	76.6	68.7	99.6	72.7		66.8
Vancomycin Inj.										
DDD/1000 pt days	76.7	70.7	95.7	84.3	57.3	.84	95.9	109.8		84.3
DOT/1000 pt days	84.9	82.8	99.8	96	63.5	84.2	101	119.2		91.4
Inpatient Susceptibility Data*										
S. aureus - Oxacillin % Suceptibile	46%			43%			45%			
E Coli - Cipro % Susceptibile	65%			72%			72%			· · · · · · · · · · · · · · · · · · ·
Pseud - Pip/Tazo % Susceptibile	94%			94%			93%			
Pseud - Cefepime % Susceptibile	100%			100%			100%			
Spend Data										
Antimicrob \$\$/WEIPA (2015: \$22.01)	\$24.59	\$24.06	\$17.73	\$21.22	\$20.55	\$16.11	\$16.42	\$17.68		\$ 19.80

Total Drug Utilization

CISCOPTICATION CONTRACTOR CONTRAC

C. Diff Efforts

Environment

UV Lights

Curtains

"Trouble" rooms identified

Staff movements

Pharmacy

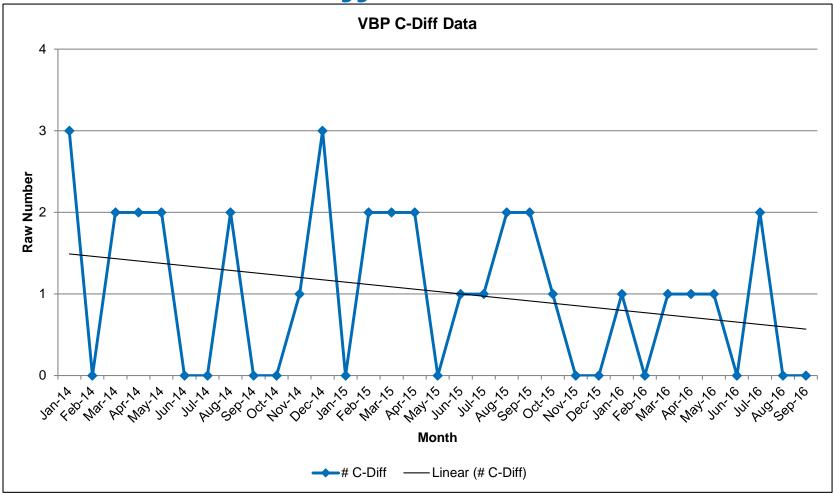
Auto D/C of PPIs (7/16)

IV to PO (7/16)

New case med review

Antimicrobial deescalation

No, we are not routinely using probiotics


NHSN – CDC Reporting

3													
4	(Housewide)	1st QTR	2ng QTR	3rd QTR	4th QTR	2015	Jan	Feb	Mar	Apr	May	June	2016
5	Number of NHSN reported infections	2	1	2	0	13	1	0	1	1	1	0	4
6	NHSN number of expected infections by quarter	3.819	3.864	3.645	3.791	15.120			4.156			4.030	8.186
7	Denominator	1838	1692	1808	1742	20858	1826	1610	1696	1552	1593	1514	9791
8	Rate (# of inf/ pt days * 10000)	10.88	5.91	11.06	0.00	6.23	5.48	0.00	5.90	6.44	6.28	0.00	4.09
9	NHSN SIR	1.047	0.776	1.372	0.264	0.860			0.481			0.496	0.489
10													

National Health and Safety Network

Rapid Organism Identification

Timely info \rightarrow Timely response!

- PNA FISH
- Coming Soon? MALDI-TOF (mass spectrometry)
 - Results <15 minutes vs. 5-48 hours

Approach #2 St. Charles Hospital

Lauryl Hanf-Kristufek, PharmD, BCPS, CACP

Approach to Team and Structure

Initial Meeting – CDC Core Elements focus Monthly Meetings – Executive Statement, ID Physician support approved Twice weekly meetings with pharmacy, CMO, ID to discuss individual patient therapy

Focus on Education and Therapy review

CMO – Chief Medical Officer

- Development of formal Antimicrobial stewardship committee
 - ID physician, CMO, pharmacy, infection control, lab, quality, nursing, environmental services
 - Monthly meetings
 - CDC Core Checklist

	CIFIC INTERVENTIONS TO IMPROVE ANTIBIOTIC USE the following actions to improve antibiotic prescribing conducted in your facility?		
BRO		TION DRMED	
C.	Is there a formal procedure for all clinicians to review the appropriateness of all antibiotics 48 hours after the initial orders (e.g. antibiotic time out)?	🛛 Yes	No No
D.	Do specified antibiotic agents need to be approved by a physician or pharmacist prior to dispensing (i.e., pre-authorization) at your facility?	🛛 Yes	No No
E.	Does a physician or pharmacist review courses of therapy for specified antibiotic agents (i.e., prospective audit with feedback) at your facility?	🛛 Yes	🛛 No

- Antimicrobial use review
 - Twice-weekly review by ID physician, CMO and pharmacist with direct recommendations to prescribers
 - Daily by decentralized clinical pharmacists
 - Review of all positive cultures
 - Automatic IV to PO and renal dosing policy

bial Monitoring (STC) 33 Patients Refreshed 5 minutes ago 📿 Search												
Room	AMS Score	AMS Last Review	Broad Spectrum Days of Therapy	Broad Spectrum	Duplicate Coverage	IV to PO	Restricted Agents	Drug-Lab	Bug-Drug	De- Escalation		
2002	4	Never reviewed	٩	٩	٩							
2076	7	Never reviewed	٩	٩	٩	٩						
2040	9	Never reviewed	٩	٩						٩		
2071	7	Never reviewed	٩	٩		_						
0902	1	Never reviewed							٩			

AMS Metrics

	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	2016 Total
Pharmacy Interventions									
Total	7	4 83	103	101	85	102	107	85	548
AMS Metrics									
Injectable Antimicrobials									
DDD/1000 pt days	320.	3 344.2	2 373.7	349.6	320.4	277.7	278.4	261.2	331.0
DOT/1000 pt days	322.	9 372.8	3 382	362.6	330.1	288.2	301.9	278.3	343.1
Oral Antimicrobials									
DDD/1000 pt days	137.	2 148.9	9 157.1	170.2	137.5	140.3	133.4	110.7	148.5
DOT/1000 pt days	15	1 167.4	4 175.1	175.7	149.9	144.6	138.6	125.1	160.6
Total									
DDD/1000 pt days	457.	5 493.:	1 530.8	519.8	457.9	418	411.8	371.9	479.5
DOT/1000 pt days	473.	9 540.2	2 557.1	538.3	480	432.8	440.5	403.4	503.7
Susceptibility Data*									
Inpatient							_		
Staph aureus - Oxacillin % Suceptibile	36%			39%			43%		
E Coli - Cipro % Susceptibile	67%			69%			67%		
Pseud - Pip/Tazo % Susceptibile	92%			92%			89%		
Pseud - Cefepime % Susceptibile	92%			92%			93%		
Spend Data									
Antimicrobial Spend/WEIPA (2015: \$26.99)	\$ 21.23	\$ 13.43	\$ 19.06	\$ 17.68	\$ 12.66	\$ 15.07	\$ 18.34	\$13.65	\$ 16.78
Antimicrobial savings	\$10,806.39	\$26,116.61	\$17,461.07	\$18,638.29	\$31,074.73	\$23,702.37	\$18,517.63		\$146,317.08

- General Staff Education
 - Pneumonia, sepsis, cellulitis, UTI, stewardship
 - Physician Grand Rounds
 - Nursing Grand Rounds
 - Resident lectures
- Pharmacy Newsletters
- Educational Flyers

Antibiogram

- Printed version
- Educational information on back
- Reviewed with incoming residents

Mercy Health - St. Charles Hospital Test period Jan 2015 thru Dec 2015 Percent of In-Patient isolates Susceptible to the following antibiotics:	Total # tested	Ampicillin	Cefazolin	Cefepime	Ceftriaxone	Ciprofloxacin	Clindamycin	Erythromycin	Gentamicin	Levofloxacin	Meropenem	Methicillin	Penicillin	Pip/Tazobactam	Tetracycline	TMX/SMX	Vancomycin	Nitrofurantoin~	
GRAM NEGATIVE																			
Enterobacter cloacae	11 #				81	72			90							72			
Escherichia coli (7% ESBLs)	165	49	83		90	66			90					97		75		92	
Klebsiella pneumoniae (5 % ESBLs)	41		95		85	85			95					85		80		36	
Proteus mirabilis	15 #	93	90		93	53			66							80			
Pseudomonas aeruginosa	25 #			92		68			80		95			92					
GRAM POSITIVE																			
Staphylococcus aureus (MSSA)	41						78	54	100						93	100	100		
Staphylococcus aureus (MRSA) ¤	71						61	13	92						87	84	100		
Coagulase-negative Staph	29 #						47	23	65			34			65	37	100		
Enterococcus, ALL isolates (11% VRE)	78	76															79	72	
Streptococcus pneumoniae (meningitis interpretations)	8#				100					100			75				100		
Streptococcus pneumoniae (nonmeningitis interpretations)					100					100			100				100		
# The calculation for percent susceptibility h	as less	stati	stical	validi	ty for	orgar	nisms	with f	ewern	than 3	80 iso	lates.							
 only reported on urinary tract isolates 																			
MRSA = 64% of Staph aureus isolated.																			
Published January 2016																			

Antibiogram St. Charles Hospital

Community-acquired pneumonia	Bacterial urinary tract infections (UTI)	Clostridium Difficile (C. Diff)	Interpreting the microbiology report					
Community-acquired pneumonia (CAP) in hospitalized patients Empiric Treatment Patient NOT in ICU • Ceftriaxone 1G IV Q24h PLUS Azithromycin 500mg IV/PO Q24h • Levofloxacin 750mg IV/PO Q24h • Duration of treatment 7-8 days ¹ Patient in ICU • Ceftriaxone 1G IV Q24h PLUS Azithromycin 500mg IV Q24h • Ceftriaxone 1G IV Q24h PLUS Levofloxacin 750mg IV Q24h • (If Allergy to Beta-Lactam antibiotics) Meropenem 1G IV Q24h PLUS Azithromycin 500mg IV Q24h • (If Allergy to Beta-Lactam antibiotics) Meropenem 1G IV Q24h PLUS Tobramycin 500mg IV Q24h • Duration of treatment 7-8 days ¹ Patient in ICU with risk of pseudomonas (structural lung disease (i.e. bronchiectasis), corticosteroid use, broad- spectrum antibiotics for > 7 days in the past month, COPD) • Ciprofloxacin 400mg IV Q12h PLUS	Asymptomatic bacteruria (Positive urine culture ≥ 100,000 CFU/ml with no Signs or symptoms) NO treatment unless the patient is: ●Pregnant ●Scheduled to have an urologic procedure ●Post renal transplant ●Neutropenic Acute cystitis (Signs and symptoms (e.g. dysuria, urgency, frequency, suprapubic pain AND positive urine culture ≥100,000 CFU/ml AND pyuria (> 10 WBC/hpf)	 S loose stools within 24hr w/symptoms Consider alternative cause of diarrhea No solid stool samples tested Do not test patients with history of C. Diff if loose stools and symptoms are not present or after only one loose stool Do not test to confirm eradication Duration of treatment 10-14 days with at least 7 days post other antibiotics¹ Mild/Moderate (WBC ≤ 15,000 cells/mm³ AND SCr < 1.5 x baseline) Metronidazole 500mg IV/PO Q8h Vancomycin 125mg PO Q6h 	Gram-positive cocci Aerobic In clusters • Coagulase (+): <i>S. aureus</i> • Coagulase (-): <i>S. epidermidis,</i> <i>S. lugdunensis</i> In pairs / chains • Diplococcus, Quellung positive: <i>S. pneumoniae</i> • Alpha-hemolytic: Viridins group <i>Streptococci, Enterococcus</i> (faecalis and faecium) • Beta-hemolytic: Group A strep (<i>S. pyogenes</i>) Group B strep (<i>S. agalactiae</i>) Group C, D, G strep	Gram-negative cocci Aerobic Diplococcus: N. meningiditis, N. Gonorrhoeae, Moraxella catarrhalis Cocco-bacillus: H. flu, Acinetobacter Spp., HACEK organisms				
	Uncomplicated: •Nitrofurantoin 100mg PO Q12h x 5 days •TMP/SMX 1 DS tab PO Q12h x 3 days •Cephalexin 500mg PO Q6h x 5-7 days •Cefazolin 1G IV Q8h x 5-7 days •Duration of treatment 3-7 days ¹ Complicated: •Ciprofloxacin 400mg IV Q12h •Ceftriaxone 1G IV Q24h •Duration of treatment 7 days ¹	Mod/Severe (WBC > 15,000 cells/mm³ OR SCr ≥ 1.5 x baseline) •Vancomycin 125mg PO Q6h Severe, complicated (Hypotension, Shock, Ileus, or Megacolon) • Vancomycin 500mg PO Q6h AND Metronidazole 500mg IV Q8h Recurrence 1st recurrence •repeat initial therapy 2 nd or more recurrence •Vancomycin oral taper	Anaerobic: Peptostreptococcus spp. Gram-positive rods Aerobic Large: Bacillus spp. Cocco-bacillus: Listeria monocytogenes, Lactobacillus spp. Small, pleomorphic: Corynebac- terium spp. Branching filaments: Nocardia spp,	Anaerobic: Veillonella spp. Gram-negative rods Aerobic Lactose fermenting: Citrobacter spp., Enterobacter spp., E. coli, Klebsiella spp., Serratia app. Non-lactose fermenting •Oxidase (-): Acinetobacter spp., Burkholderia spp.,E. coli (rare),				
Piperacillin/Tazobactam 3.375G IV Q8h • Azithromycin 500mg IV Q24h PLUS Tobramycin 5mg/kg IV Q24h PLUS Piperacillin/Tazobactam 3.375G IV Q8h • Azithromycin 500mg IV Q24h PLUS Tobramycin 5mg/kg IV Q24h PLUS Meropenem 1G IV Q8h • Duration of treatment 10-14 days ¹ Depending on patient response/symptoms	Cellulitis <u>Non-purulent</u> (Moderate to Severe) •Cefazolin 1G IV Q8h •(PCN allergy) Clindamycin 600mg IV Q8h (History of MRSA or high risk for MRSA) •Vancomycin 15mg/kg IV Q12h (Pharmacy to dose) •Duration of treatment 5-7 days ¹	Cellulitis Purulent (Mild to Moderate) Doxycycline 100mg po BID Clindamycin 300mg PO Q8h Clindamycin 600mg IV Q8h (Severe) Vancomycin 15mg/kg IV Q12h (Pharmacy to dose) •••Duration of treatment 7-14 days ¹	Streptomyces spp. Anaerobic Large: Clostridium spp. Small: pleomorphic: P. acnes, Actinomyces spp.	Proteus spp., Salmonella spp., Shigella spp., Serratia spp., Stenotrophomonas maltophilia •Oxidase (+): P. aeruginosa, Aeromonas spp., Vibrio spp., Campylobacter spp. (curved) Anaerobic: Bacteroides spp., Fusobacterium spp., Prevotella spp.				

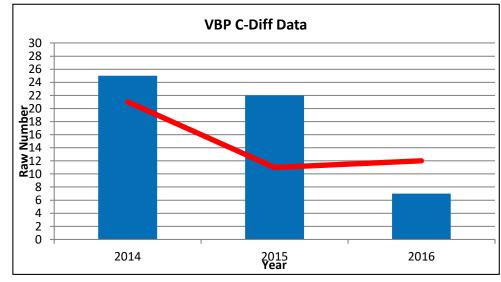
 ^{1}D

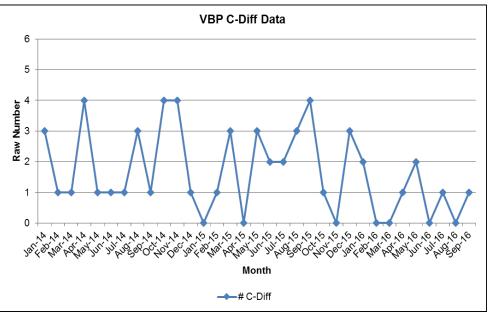
- Focus on C. Diff
 - Daily review of all positive *C. Diff* testing with documentation of appropriate treatment
 - Development of *C. Diff* order set
 - Education on appropriate *C. Diff* testing
 - Automatic stop after 48hrs if no sample obtained
 - Automatic extension of duration by RPh

If it's not loose, it's of no use!

Clostridium difficile testing guidance:

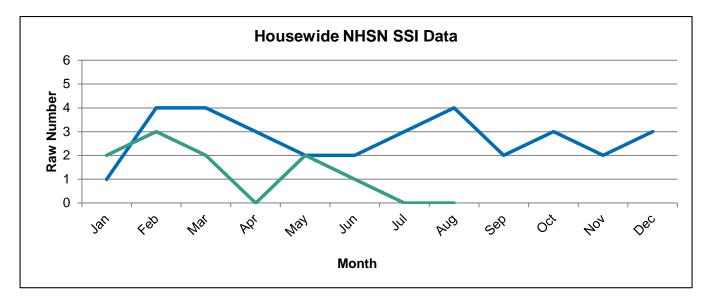
The diagnosis of *Clostridium difficile* infection (CDI) requires the detection of bacterial toxin and/or antigens in the stool. Newer diagnostic tests for CDI require less stool testing without sacrificing diagnostic accuracy. To increase the sensitivity of CDI diagnosis Mercy St. Charles uses the DNA amplification test for *C. difficile* which is highly sensitive and highly specific.


Aside from improved test characteristics, selecting the most appropriate patient population for testing will enhance the sensitivity and specificity of diagnosing CDI.


To facilitate enhanced diagnostic practices, the following recommendations are made:

ashp MDYEAR 2016 Glinical Meeting & Exhibition

- Testing for *C. difficile* should be performed on patients with <u>clinically-significant diarrhea, defined as 3 or more</u> <u>loose stools in the last 24-hours</u>. Providers should ensure that the patient has not been administered laxatives in the prior 24-48hrs as a possible explanation of diarrheal symptoms.
- 2.) Testing is only performed on loose or watery stool specimens. The microbiology lab will reject any formed


C-Diff Data

- Surgical prophylaxis
 - Pre-op antibiotic order set updated.
 - Pre-op antibiotics entered ahead of procedure with review and automatic dose adjustment by a pharmacist the day before surgery.
 - Removal of ertapenem from order set
 - Morning surgery huddles

- Focus on Sepsis
 - Appropriate antibiotics
 - Appropriate administration of antibiotics
 - Appropriate labs
- Focus on Cellulitis
 - Appropriate antibiotics
 - Early surgery consults
 - Consideration of outpatient therapy

- Other areas of focus
 - Order sets
 - Auto stop of antibiotics
 - COPD
 - UTI
 - Blood culture contamination rate
 - Fluoroquinolone use \bullet
 - FDA warning FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together

f share	Y TWEET	in linkedin	🛛 PIN IT	EMAIL						
[05-12-20	16]									
Safety	Announce	ment								
fluoroqi bronchi	uinolone an tis, and uno onditions, fl	d Drug Admir tibacterial dr complicated u luoroquinolor	ugs gener urinary tra	ally outwei	igh the ber is who hav	nefits for e other f	patient reatme	s with a nt optior	cute sinus ns. For pa	itis, acute itients with
An FDA	safety revi	iew has show	n that fluo	oroquinolor	nes when i	used sys	temical	lly (i.e. ta	ablets, cap	osules, and

Self-Assessment Question #1

(True/False). Consensus guidelines state that physician leadership, administrative support and education for health care professionals are all key elements to a successful antimicrobial stewardship program.

- A. True
- B. False

Self-Assessment Question #2

 (T/F) Education and policy development as well as direct patient interventions are both effective approaches to antimicrobial stewardship.

- A. True
- B. False

Self-Assessment Question #3

 T/F. Strategies to report antimicrobial stewardship program interventions are well defined in the literature.

- A. True
- B. False

- Key Takeaway #1
 - Getting started on a stewardship program is possible even with a limited staff.
- Key Takeaway #2
 - Small continual changes, regardless of initial approach, will have a positive impact.
- Key Takeaway #3
 - Reporting metrics are a challenge, but focusing on appropriate use will show positive changes.

(Management Case Study) **Antimicrobial Stewardship: Small Hospital Strategies**

Jennifer Richardson, PharmD, BCPS, CACP Mercy Health – St. Anne Hospital, Toledo, OH Jen_Richardson@mercy.com

INK YOU! Lauryl Hanf-Kristufek, PharmD, BCPS, CACP Mercy Health – St. Charles Hospital, Oregon, OH Lauryl_kristufek_hanf@mercy.com

References

- http://www.cdc.gov/getsmart/healthcare/implementation/checklist.html
- CDC 2013 report
- <u>http://jointcommission.new-media-release.com/ 2015_antibiotic_resistance/</u>
- Dellit TH, Owens RC, McGowan JR Jr, et al. Infections Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Chlin Infect Dis 2007;44(2):159-77. <u>http://cid.oxfordjournals.org/content/44/2/159.full.pdf+html</u>
- Marquet et al, Crit Care. 2015; 19(1): 63.
- Bal AM, Gould IM, Antibiotic stewardship:overcoming implementation barriers. Curr Opin Infect Dis 2011;24(4)357-62.
- Tamma PD, Cosgrove SE. Antimicrobial stewardship. Infect Dis Clin North Am 2011;25(1):245-60.
- Barnum TF et al. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases
 Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis; 2016
- Camins BC, King MD, Wells JB, et al. Impact of an antimicrobial utilization program on antimicrobial use at a large teaching hospital: a randomized controlled trial. Infect Control Hosp Epidemiol 2009;30(10)931-8. – Structured verbal feedback + dosing card guidance vs. just the dosing card (guidelines for antimicrobial use) – Zosyn, vanco, + levofloxacin
- http://www.cdc.gov/getsmart/week/educational-resources/index.html

