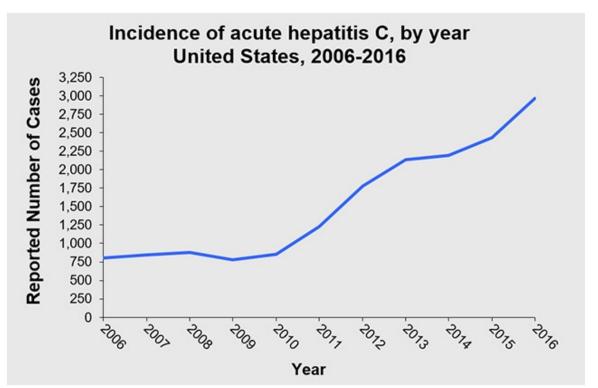


Updates in Transplantation: Current Challenges in Caring for the Hepatitis C Virus Positive Patient

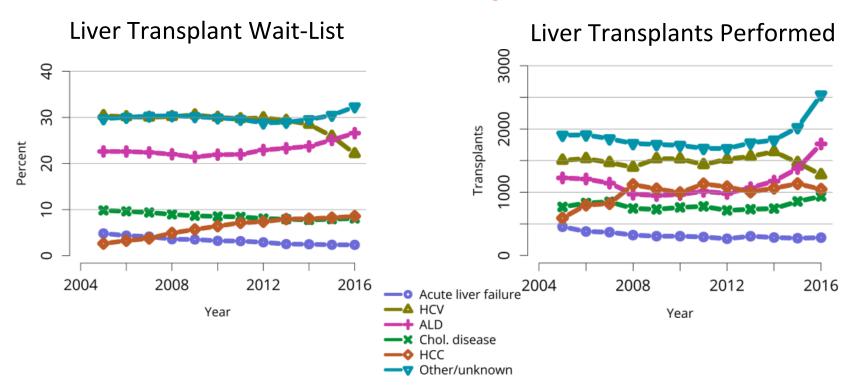
Erin H. Ticehurst, Pharm.D.
Associate Director of Pharmacy, Professional Practice
Pennsylvania Hospital

Disclosures

All planners, presenters, reviewers, and ASHP staff of this session report no financial relationships relevant to this activity.

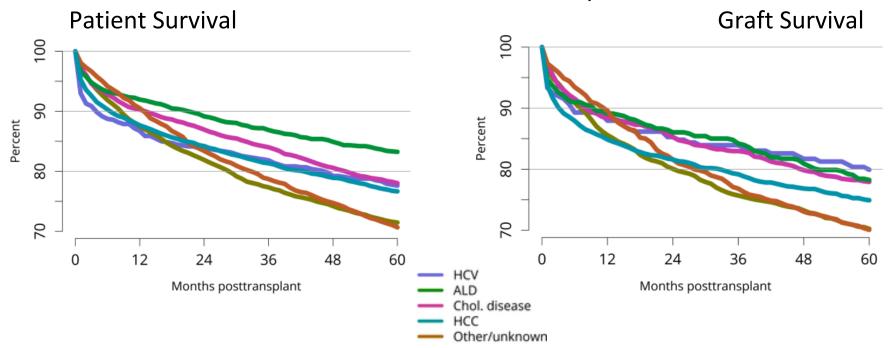


Objectives


- Describe the outcomes of solid organ transplantation in patients with hepatitis C virus (HCV)
- Assess the advantages and disadvantages of initiating treatment for HCV in a pre-transplant candidate
- Select and recommend HCV treatment for a solid organ transplant recipient
- Design an immunosuppression regimen for a transplant recipient with HCV

Hepatitis C Virus (HCV) Prevalence

HCV in Transplantation


OPTN/SRTR 2016 Annual Data Report: Liver, Volume: 18, Issue: S1, Pages: 172-253,

First published: 02 January 2018, DOI: (10.1111/ajt.14559)

Patient and Graft Survival

Deceased Donor Liver Transplant

OPTN/SRTR 2016 Annual Data Report: Liver, Volume: 18, Issue: S1, Pages: 172-253, First published: 02 January 2018, DOI: (10.1111/ajt.14559)

Where We Are Now

Organ wait list shortcut: Patients accepting kidneys, hearts infected with hepatitis C

Ken Alltucker, USA TODAY

Published 1:52 p.m. ET Sept. 17, 2018 | Updated 4:12 p.m. ET Sept. 17, 2018

Meeting Coverage > EASL

Hepatitis C Treatments Reduce Transplants

Therapies also appear to reduce liver-related mortality

by Ed Susman, Contributing Writer, MedPage Today April 15, 2018

New Hepatitis C Drugs Mean More Organs For More Transplants

It's now safe for transplant patients to receive organs from donors with hepatitis

KEY TAKEAWAYS

- Patient and graft survival outcomes are expected to greatly improve for transplant recipients with HCV based upon new therapies
- 2) Over the next decade, HCV is expected to no longer be a top indication for liver transplantation

To Treat or Not to Treat? Considerations for Transplant Candidates

Srijana Jonchhe, Pharm.D., BCPS
Clinical Pharmacy Specialist- Liver Transplant
University Hospital New Jersey

Objective

 Assess the advantages and disadvantages of initiating treatment for HCV in a pre-transplant candidate

Patient Case

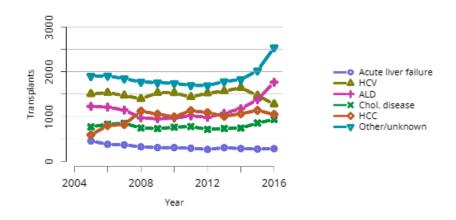
Patient JB is a 52 yo AA male who presents to hepatology clinic for his initial transplant evaluation appointment. He states he was informed of his hepatitis C infection after his primary care physician noted increased LFTs during routine blood work.

PMH: HCV cirrhosis c/b portal hypertension, history of IV drug abuse (last used

2009), anxiety, hyperlipidemia

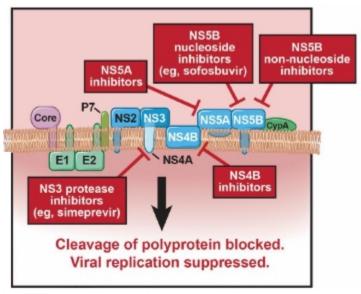
Ht: 5'10" Wt: 94 kg

Labs: **Pending**


HCV genotype: 1b

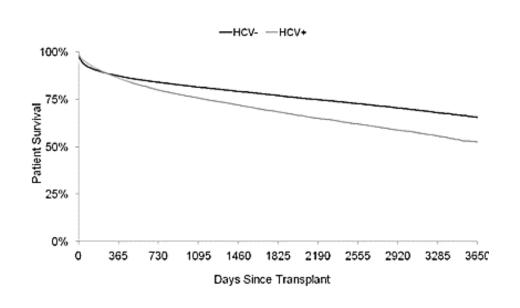
HCV viral load (7/2018): 62,240 copies/mL

Liver Transplant Candidates


- Up to 85 % with acute HCV infection develop chronic HCV infection
 - Approximately 15-30 % progress to cirrhosis over 20 years
- HCV-related cirrhosis risks:
 - End stage liver disease
 - Hepatocellular carcinoma (HCC)
- Chronic HCV infection is a leading indication for liver transplant (LT)

A New Era: Direct Acting Antivirals (DAA)

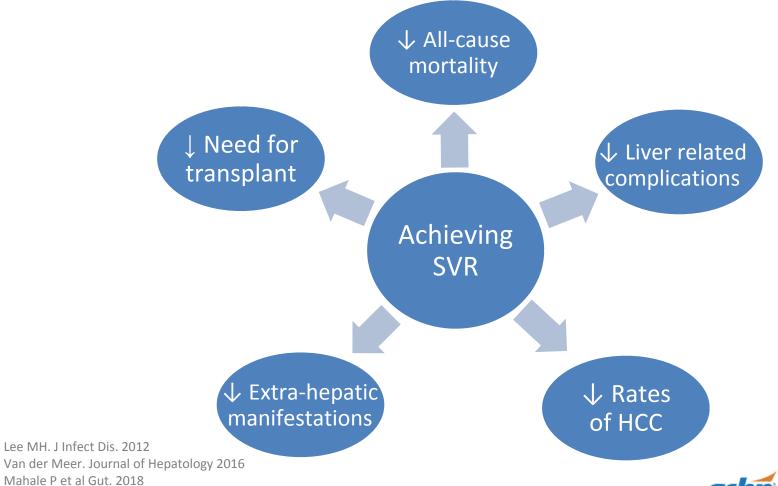
- ✓ Better safety /tolerability than interferon-based regimens
- ✓ Shorter treatment duration
- ✓ Improved efficacy
- ✓ Fewer drug-drug interactions
- ✓ Growing literature in transplant


Cleveland Clinic Journal of Medicine, 81 (3): 159-172

Drug	Brand name	Year Approved
Glecaprevir/Pibrentasvir	Mavyret	2017
Sofosbuvir/Velpatasvir/Voxilaprevir	Vosevi	2017
Sofosbuvir/Velpatasvir	Epclusa	2016
Elbasvir/Grazoprevir	Zepatier	2016
Daclatasvir	Daklinza	2015
Ombitasvir/Paritaprevir/ritonavir + Dasbuvir	Viekira pak	2014
Ledipasvir/Sofobuvir	Harvoni	2014
Sofosbuvir	Sovaldi	2013
Simeprevir	Olysio	2013

Post-transplant HCV

- Universal HCV recurrence
- Rapid progression to cirrhosis
- Fibrosing cholestatic hepatitis (FCH)
- Worse graft and patient survival



Outcomes of DAA Treatment Pre-Transplant

Study	Design	Intervention	Results	Comments	
Curry et al. Gastroentero logy 2015	Phase 2, open label study of 61 HCV/HCC patients awaiting liver transplant	Up to 48 weeks of SOF/RBV before transplant	N= 43 transplanted with HCV RNA < 25 IU/ml at time of transplant Post-transplant virologic response at 12 weeks = 75%	Recurrence (10%) inverse to number of days undetectable HCV RNA before transplant MELD exception points	
Charlton et al. Gastroentero logy 2015 (SOLAR-1)	Phase 2, multicenter, open label study including patients with decompensated cirrhosis	12 vs. 24 weeks of ledipasvir/SOF + RBV in patients with moderate and severe hepatic impairment	N= 108 SVR rate = 87-89% MELD and CTP scored decreased	Lack of long-term follow up Adverse effects mostly related to ribavirin	

SOF: sofosbuvir; RBV: ribavirin

ashp MIDYEAR 2018

Patient Case

JB returns to hepatology clinic 3 months later after recently being discharged from the hospital. He states his abdomen was "swelling like a balloon." Therapeutic paracentesis was performed (3 L removed)

PMH: HCV (1a) cirrhosis c/b portal hypertension and ascites, history of IV drug abuse (last used 2009), anxiety, hyperlipidemia

Patient Case

Home Medications:

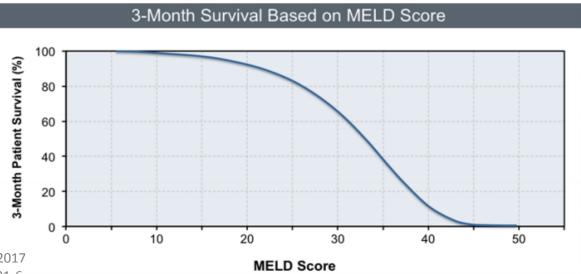
- Hydroxyzine 25 mg PO QHS
- Bupropion 100 mg PO daily
- Furosemide 40 mg PO daily
- Propranolol 10 mg PO BID
- Omeprazole 20 mg PO daily
- Spironolactone 100 mg PO daily

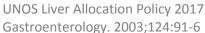
Labs: sCr 1.3, bilirubin 1.9, INR 1.4

Alk Phos: 109

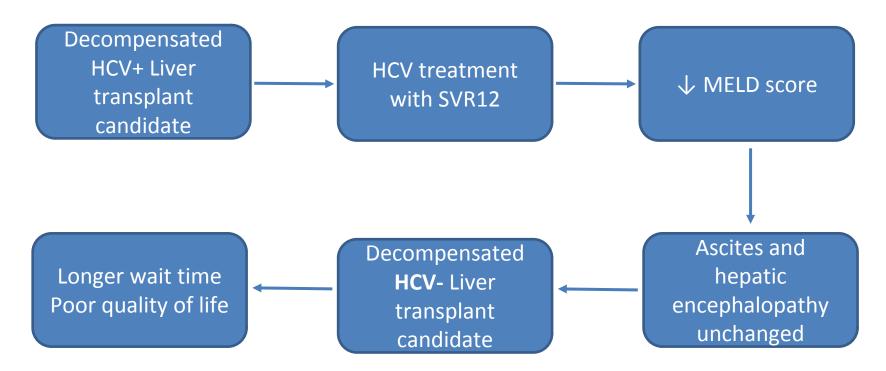
9.7 AST: 52 3.2 72 ALT: 47

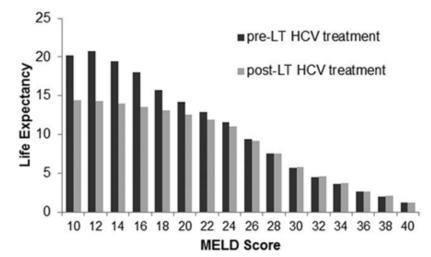
Transplant status: listed


MELD score = 17


CTP score = A

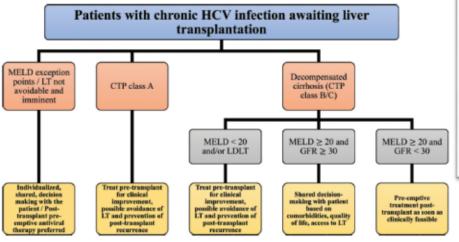
Organ Allocation: Liver Transplant

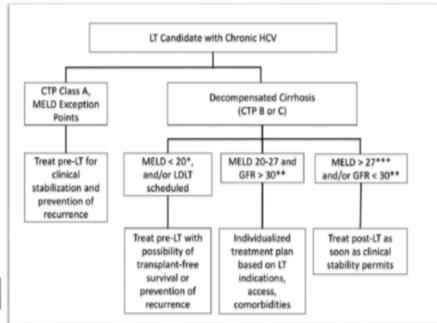

- Model of End Stage Liver Disease (MELD) score
 - Used to allocate livers to adult transplant recipients
 - Affected by: bilirubin, INR, serum creatinine and sodium



"MELD Purgatory?"

HCV Treatment Pre Vs. Post Liver Transplant




Chhatwal et al. Hepatology 2017

- Optimal MELD threshold
- Cost-effectiveness
- Quality of life-years

The ongoing debate...

Verna EC. Hepatology 2017

Fig. 1. Algorithm for treatment of HCV-infected liver transplant candidates.

Abbreviations: MELD, model for end-stage liver disease; LT, liver transplantation; CTP, Child-Turcotte-Pugh; LDLT, living donor liver transplantation; GFR, glomenular filtration rate.

Cholankeril G et al. J Clin Transl Hepatol 2017

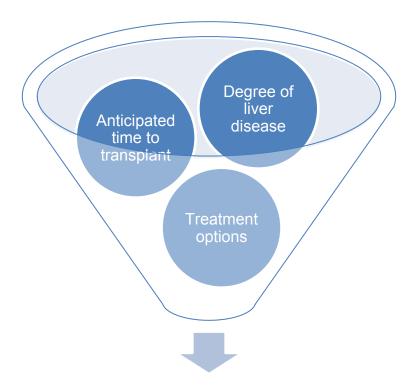
Special Considerations

	Drug Class	Decompensated cirrhosis	CKD Stage 4 or 5	Genotype	Rating
Elbasvir/Grazoprevir	NS5A NS3/4A	X	12 weeks	1a, 1 b, 4	ΙB
Glecaprevir/Pibrentasvir	NS5A NS3/4A	X	8-16 weeks	1-6	ΙB
Ledipasvir/ Sofobuvir	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)	x	1,4,5,6	IA
Daclatasvir/Sofosbuvir	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)		1-4	I/II, B II C
Velpatasvir/Sofosbuvir	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)	X	1-6	IA

Patient Case

What would be an appropriate treatment strategy for patient JB's HCV?

- A. Hold HCV treatment until after patient receives a liver transplant
- B. Start treatment with ledipasvir/sofobuvir/ribavirin for 12 weeks. Extend therapy to 24 weeks if unable to tolerate ribavirin
- C. Start treatment with sofosbuvir 400 mg/ribavirin 600 mg daily for up to 48 weeks prior to transplant
- Inform patient he will not benefit from DAA therapy due to severe decompensated cirrhosis



Pre-Transplant Treatment

- Improved graft outcomes
- Reduce all-cause mortality
- Alleviate need for transplant
- Less drug interactions- no immunosuppression

- Longer wait time without HCV donor pool
- Risk of reinfection
- Treatment failure/resistance
- Limited treatment options
- Potential peri-transplant treatment concerns

Decision to treat

Renal

Heart

Lung

Other: small bowel, pancreas

Renal Transplant Candidates

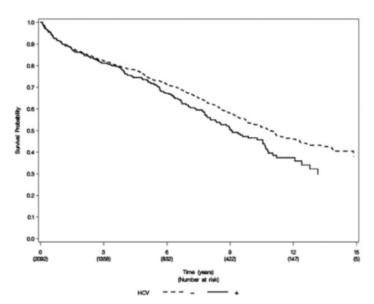
- HCV is independently associated with chronic kidney disease
 - 5-10 % in HD units
 - Higher mortality
- HCV in renal transplant recipients increases risk of:
 - 一 个 Graft loss
 - — ↑ Liver-related complications (cirrhosis, FCH, HCC)
 - → Infection, Diabetes
 - 一个 Death

Renal Transplant Candidates

- KDIGO guidelines recommend evaluating <u>all</u> chronic kidney disease patients for HCV treatment
- Treatment pre-transplant was previously limited by genotype due to lack of safety data in ESRD
 - C-SURFER
 - EXPEDITION-4

Renal Transplant Candidates

- KDIGO guidelines recommend evaluating <u>all</u> chronic kidney disease patients for HCV treatment
- Treatment pre-transplant was previously limited by genotype due to lack of safety data in ESRD
 - C-SURFER
 - EXPEDITION-4
- Kidney transplant candidates with HCV are also eligible to receive HCV positive organs, shortening the wait time significantly in some regions


Special Considerations

	Drug Class	Decompensated cirrhosis	CKD Stage 4 or 5	Genotype	Rating
Elbasvir/Grazoprevir (Zepatier®)	NS5A NS3/4A	X	12 weeks	1a, 1 b, 4	ΙB
Glecaprevir/Pibrentasvir (Mavyret ®)	NS5A NS3/4A	X	8-16 weeks	1-6	ΙB
Ledipasvir/ Sofobuvir (Harvoni ®)	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)	Х	1,4,5,6	ΙA
Daclatasvir/Sofosbuvir (Daklinza®)	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)	X	1-4	I/II, B II C
Velpatasvir/Sofosbuvir (Epclusa®)	NS5A NS5B	12 weeks (RBV) 24 weeks (no RBV)		1-6	IA

ashp MIDYEAR 2018

Cardiac Transplant Candidates

Prevalence of HCV appears to be similar to general population (~2%)

Lee et al. J Heart Lung Transplant 2011 Gasinki et al. JAMA 2006

2016 ISHLT listing criteria for heart transplantation:

- Contraindicated if signs of cirrhosis, portal hypertension, or HCC
- Liver biopsy should be performed
- Anti-viral treatment should be considered

Lung Transplant Candidates

Prevalence of HCV appears to be similar to general population (~2%)

	· ·		· · · · · ·
Study	Design*	Results	Comments
Fong TL et al. Transplantation 2011	Retrospective, multi-center, lung transplant recipients from 2000-2007	Similar patient survival rate in HCV Ab+ vs. HCV Ab-recipients 1 yr: 84.7% vs 82% 3 yr: 63.9% vs 65% 5 yr: 49.4% vs 51.4%	Most HCV+ patients were probably not viremic
Englum BR. J Heart Lung Transplant 2016	Retrospective, multicenter, lung transplant recipients from 1994-1999 and 2000-2011	Overall survival lower in HCV+ during the early era but not in recent era Median: 1.7 vs 4.5 years; p=0.004 4.4 vs 5.4 years; p = 0.100	Recent era based on improved HCV treatment options

^{*} Both studies utilized OPTN/UNOS database

ISHLT CONSENSUS

A consensus document for the selection of lung transplant candidates: 2014—An update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation

David Weill, MD (Committee Chairs), a Christian Benden, MD (Committee

Relative Contraindication:

"Lung transplant can be considered in patients without significant clinical, radiologic, or biochemical signs of cirrhosis or portal hypertension <u>and who are stable on appropriate therapy."</u>

Pre-Transplant Treatment

- Improved graft outcomes
- Reduce all-cause mortality
- Alleviate need for liver transplant
- Less drug interactions- no immunosuppression

- Longer wait time without HCV donor pool
- Risk of reinfection
- Treatment failure/resistance
- Limited treatment options
- Potential peri-transplant treatment concerns

Decision to Treat Pre-transplant

Time to transplant

- MELD score
- Regional HCV+ donor prevalence
- Living donor options
- Transplant acuity

Signs/symptoms of liver disease

- CTP score
- Fibrosis score
- Compensated vs. decompensated

Treatment options

- Renal impairment
- Hepatic impairment
- Genotype

KEY TAKEAWAYS

- 1) With the advent of DAAs, treatment of HCV in pre-transplant candidates can reduce liver-related complications, improve patient survival and prolong graft survival
- 2) The benefits of achieving SVR pre-transplant should be weighed against the potential disadvantages of a longer wait time for non-HCV organs, especially in patients where liver transplant is required to improve quality of life
- 3) Treating HCV early may alleviate the need for transplant in select liver candidates, allowing for more effective utilization of organs while providing long term cost benefits

Resources for HCV treatment

- AASLD/IDSA guidelines: https://www.hcvguidelines.org
- World Health Organization Guidelines for Hepatitis C (July 2018)
- KDIGO Clinical Practice Guideline (February 2017)
- Drug interactions: https://www.hep-druginteractions.org

Updates in Transplantation: Current Challenges in Caring for the Hepatitis C Virus Positive Patient

Vicky Kuo, Pharm.D.
Clinical Pharmacist, Solid Organ Transplantation
University of California, San Francisco

Objectives

Compare the risks and benefits of utilizing HCV positive organ donors

HCV Positive Organ Donor Utilization (2010-2014)

Donated HCV + Organ Donors

1812 HCV + donors
Age < 40
Donated at least 1 organ

Discarded HCV + Organ Donors

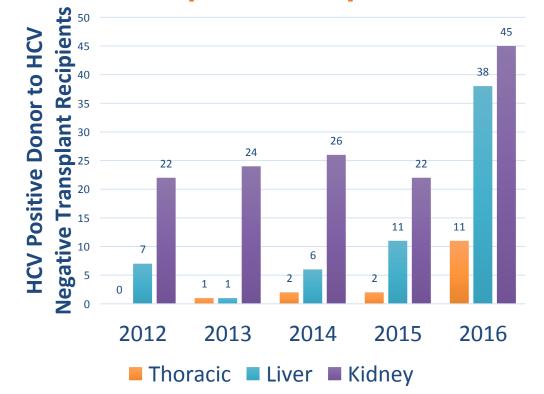
Kidneys 2075

Livers 382

Lungs 2980 Hearts 1069

Goldberg DS et al. Am J Transpl 2016; 16: 2836-41. Sibulesky L et al. Clin Transpl 2015; 29: 724-7.

Concerns with Utilizing HCV Positive Organ Donors Pre-DAA Era


Disease Transmission

Complications

- •Reduced patient and graft survival
- •Rapid progression of liver fibrosis
- Increased risk of acute rejection, graft complications
- HCV treatment failure

Use of HCV Positive Organs in HCV Negative Transplant Recipients

Opioid Epidemic

Population

Persons who inject drugs

 Young (age 20-40), white race with few other medical comorbidities

Increase in Deaths

- 3 fold increase in drug overdose related deaths
- In 2014, 47,000 deaths related to drug overdose

Increase in Donor Pool

- 17% increase per year in overdose death donors
- Resulting in 13% of donor pool

HCV "Positive" Donor

- HCV seropositive, NAT negative (nonviremic)
 - Spontaneous clearance of HCV
 - Successfully treated infection
 - False positive antibody

NAT = nucleic acid testing

Does not result in HCV transmission and is deemed safe to use

Quality of HCV Nonviremic Organs

· · · · · · · · · · · · · · · · · · ·	Retrospective case-control analysis of UNOS data Organ donors from DDRTs performed Dec 2014-2016	
Donor Characteristics	Recipient Characteristics	
 Younger lower SCr, hypertension, diabetes, DCD White race, PHS increased risk designation 	 Older, male, black race, HCV+, diabetic, previous transplant Lower PRA, reduced days on dialysis and waitlist 	

SCr = serum creatinine, DCD = donation after cardiac death, PHS = Public Health Service, PRA = panel-reactive antibody

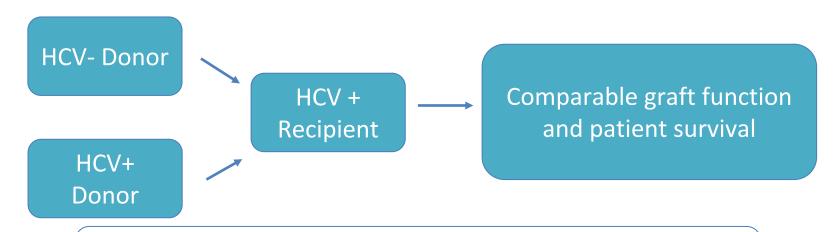
Quality of HCV Nonviremic Organs

Methods	Retrospective case-control analysis of UNOS data Organ donors from DDRTs performed Dec 2014-2016		
Findings	HCV Ab-, NAT- (N=19,633) HCV Ab+, NAT- (N=205)		
Patient Survival Acute Rejection	No difference		
Graft Survival	92.2 <u>+</u> 0.1% (P=0.08)	96 <u>+</u> 0.02%	
Incidence of DGF	33.9% (P< 0.0001)	19%	

HCV "Positive" Donor

- HCV seropositive, NAT positive (viremic) = active infection
- HCV seronegative, NAT positive (viremic) = acute infection
 - Within 2 months of exposure

Potentially providing 300-500 donation opportunities per year


HCV Positive Transplant Recipients

Patient and graft survival is lower in those who receive HCV positive donors when compared to those who receive HCV negative donors

- **TRUE**
- FALSE

Liver Transplant

 Older donor age and donors with significant fibrosis were found to have faster HCV recurrence

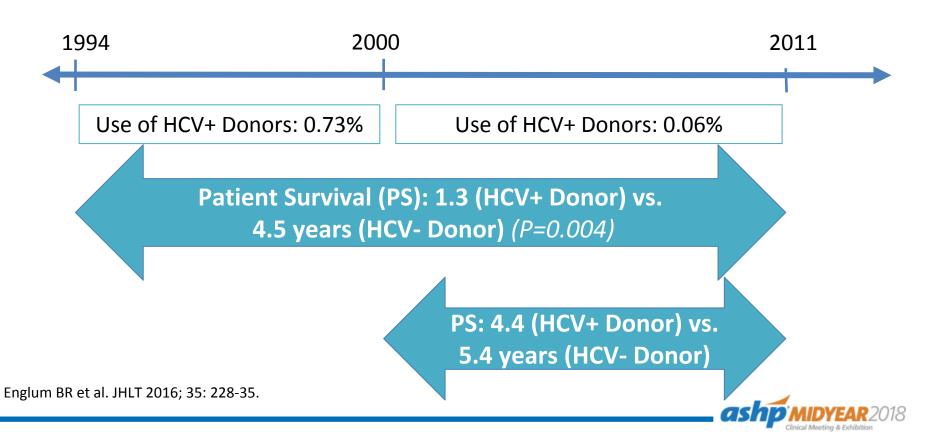
Bushyhead D et al. Curr Hepatol Rep 2017; 16: 12-17. Marroquin CE et al. Liver Transpl 2001; 7:762-8. Gane EJ et al. Am J Tranpl 2012; 12: 531-38. Stepanova M et al. BMC Gastroenterol 2016; 16:137-42.

Northup PG et al. Transpl Intl 2010;23:1038-44. Lai JC et al. Liver Transpl 2012; 18: 532-8. Berenguer et al. J Hepatol 2013; 58: 1028-41. Khapra AP et al. Liver Tranpl 2006; 12: 1496-503.

Renal Transplant

Methods	Observational, two-centers Transplanted 1990-2007 (N=468 HCV+ recipients) Group 1 HCV+ donors (N=162); Group 2 HCV- donors (N=306)		
Findings*		Patient Survival	Graft Survival (P=0.006)
	5 year (Group 1 vs. 2) 10 year (Group 1 vs. 2)	84.8% vs. 86.6% 72.7% vs. 76.5%	58.9% vs. 65.5% 34.4% vs. 47.6%
	Acute rejection 42% vs. 37%; NODAT 21% vs. 12.4% (P= 0.03); HCV-related glomerulonephritis 6.8% vs 7.2%		

^{*}Donor HCV + serology did not significantly increase risk of death, graft loss, decompensated liver disease, or incidence of NODAT



Renal Transplant

Methods	Scientific Registry of Transplant Recipients (SRTR) HCV+ recipients transplanted between 1995-2009 (N=6830) Receiving HCV+ vs. HCV- donors	
Findings	Patient Survival	HR 1.29 (p<0.001) 1% difference at 1 year survival 2% difference at 3 year survival
	Graft Survival	HR 1.18 (p=0.007) No difference at 1 year survival 3% difference at 3 year survival
	Accepting HCV+ donor ↓ average waitlist time by 395 days	

Lung Transplant

HCV Positive Organ Donors in HCV Positive Recipients

Liver

- Similar patient and graft survival
- Use of HCV+ organs is acceptable

Kidney

- Improved survival compared with waitlist mortality
- Use of HCV+ organs is generally acceptable

Thoracic

- Limited data from pre-DAA era
- Reduced patient and graft survival compared to HCV- organs, variability in complications
- HCV+ organs discarded at high rates

HCV Negative Transplant Recipients

HCV negative recipients receiving HCV positive organ donors have a higher risk of acute rejection and reduced patient and graft survival

- **TRUE**
- FALSE

Liver Transplant

- No available data on the use of HCV + livers in HCV recipients
 - Concern for risk of rapidly progressive fibrosis and HCV-related disease
- Modeling Study:
 - Projecting a possible benefit in reduced wait time by accepting HCV + organ in HCV - recipients with MELD > 20
 - Highest benefit observed at MELD of 28
 - Model analysis can help inform future trial study design

Renal Transplant Key Trial: THINKER

Methods	Prospective, open-label, single center Recipients: HCV NAT -, age 40-65 (N=20) Donors: HCV NAT+, genotype 1a or 1b
Findings	 All recipients achieved SVR12 No treatment related adverse events Excellent allograft function No cases of acute rejection at 6- and 12- month follow-up Time to transplant: 57 days (12-91 days)

DAA used: elbasvir/grazoprevir

Renal Transplant Key Trial: EXPANDER

Methods	Prospective, open-label, single center Recipients: HCV NAT -, age > 50 (N=10) Donors: HCV NAT+, all genotypes	
Findings	 Median KDPI: 45% (41-50%) No treatment related adverse events No acute rejection at 6 month follow-up Median time to transplant: 1 month (0.7-2 months) 	

DAA used: elbasvir/grazoprevir; addition of sofosbuvir if donor was genotype 3

Cardiac Transplant

Methods	Retrospective case series, single-center N=13, n=9 treated; 6 month follow-up
Findings	 Mean donor age: 29 ± 6 years Waitlist time: 11 ± 12 days (total time 256 ± 583 days) Mean time to DAA initiation: 47 days (26-95 days) 4 of 13 did not develop HCV infection 8 of 9 achieved SVR12, 1 died of pulmonary embolism No SAEs, drug interactions or delays in obtaining DAA medication noted

DAA used: ledipasvir/sofosbuvir; velpatasvir/sofosbuvir if donor genotype 3 SAEs = serious adverse events

Lung Transplant

Methods	Case report, genotype 1a	Case series, genotype 1, 2 (N=5)
Time to transplant	Not reported	51 days (24-94)
Time to DAA initiation	6 weeks post transplant	24-94 days post transplant
Safety	No SAEs or acute rejection	No SAEs or acute rejection

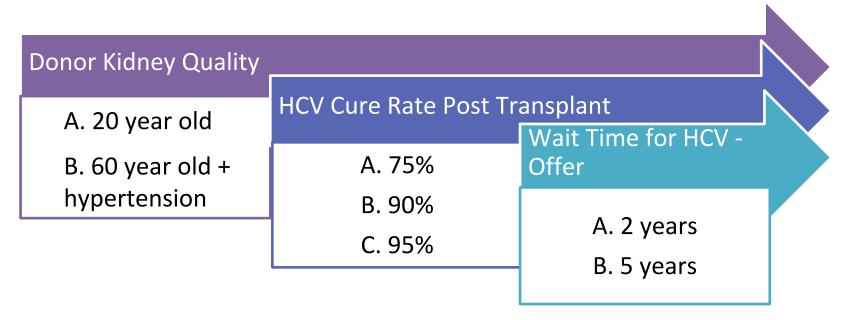
DAA used: ledipasvir/sofosbuvir; ledipasvir/sofosbuvir or velpatasvir/sofosbuvir

HCV Negative Recipients

- Further studies needed to assess use in HCV negative liver recipients
- Short term data with DAA treatment show high rates of HCV cure (SVR12)
 with good graft function and minimal side effects
- Further studies needed to assess long term data on graft and patient survival, risk of rejection, in addition to complications associated with HCV infection

Considerations for Utilizing HCV Positive Organ Donors in HCV Negative Recipients

- Risk of clinical deterioration while waiting for HCV- organ offer
- Age
- Prolonged waitlist time
- No available living donors
- No substantial risk for liver disease
- Clinical trial opportunities


Ethical Perspective

- Mismatch between organ supply and demand
- Patient willingness
- Multistep informed consent process
- Cost and obtaining DAA medication

Patient Willingness to Accept HCV Positive Organs

Survey with different scenarios from each category

Patient Willingness to Accept HCV Positive Organs

- Willingness to accept HCV positive organ
 - Under all circumstances: 53%
 - At least one circumstance: 82%
 - 18% refused all offers
- Participants highly influenced by anticipated HCV cure rate and better allograft quality
- Participant attributes associated with willingness to accept offer
 - Age > 60, transplant reevaluation, prior transplant recipient
- Most patients acknowledged limited understanding of HCV

Multi-step Patient Consent Approach

Describe HCV, risk of HCV, and possible complications

Potential Benefits: Reduced wait time vs. risk of death or health deterioration on wait list

Communicate possible adverse consequences: Treatment or graft failure risks, side effects

Cost: inform possibility of high cost or insurance approval for DAA therapy not guaranteed

ashp MIDYEAR 2018

Medication Approval and Cost Considerations

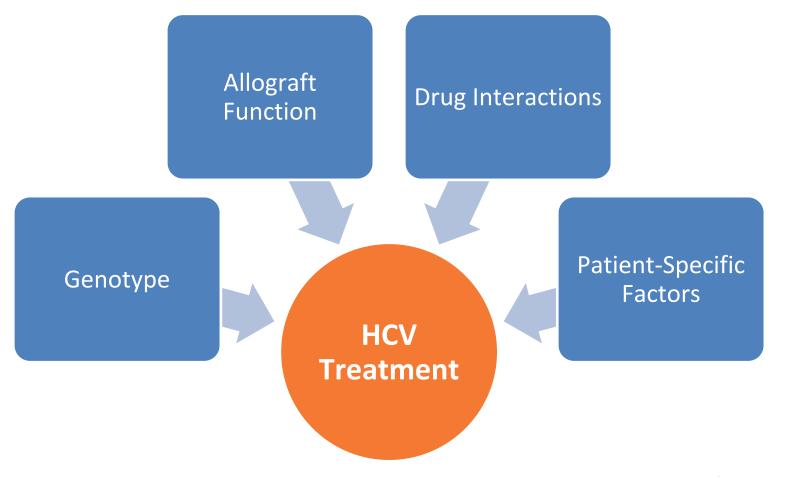
- Hepatology consult
- Obtaining appropriate documentation to initiate HCV treatment request
 - Requested information may vary based on insurance plan
- Cost to the patient
 - Financial counseling
 - Patient assistance programs, contingency plan vs. patients pay out of pocket
 - Insurance plan formulary

Utilization of HCV + Donors

Advantages	Disadvantages
 Increase donor pool Better donor quality Decrease time on waitlist Decrease waitlist mortality High cure rate with DAA treatment 	 Disease transmission Treatment cost and availability Concern for treatment failure DAA resistance HCV associated complications increased morbidity & mortality Societal barriers

KEY TAKEAWAYS

- 1) HCV positive organs are currently being underutilized. These donors are otherwise young with minimal or no other medical comorbidities
- 2) Utilizing HCV positive organs can decrease time on waitlist and possible waitlist mortality. These grafts show good short term outcomes
- 3) Larger, prospective clinical trials are needed to assess long term data of HCV impact on complications, patient and graft survival, as well as treatment failure


Updates in Transplantation: Current Challenges in Caring for the Hepatitis C Virus Positive Patient

Kimberly Boyle, Pharm.D., BCPS
Cardiothoracic Transplant Clinical Pharmacist
Vanderbilt University Medical Center

Objectives

- Select and recommend HCV treatment for a solid organ transplant recipient
- Evaluate pertinent drug interactions relevant to HCV treatment in solid organ transplant patients
- Design an immunosuppression regimen for a transplant recipient with HCV

Therapy Selection: Allograft Function & Genotype

	Genotype	Use in Hepatic Impairment	Use in Renal Impairment
Elbasvir/Grazoprevir (Zepatier®)	1, 4	Mild	Yes
Glecaprevir/Pibrentasvir (Mavyret ®)	1-6	Mild	Yes
Ledipasvir/ Sofobuvir (Harvoni ®)	1,4,5,6	Yes	CrCl ≥ 30ml/min
Velpatasvir/sofosbuvir (Epclusa ®)	1-6	Yes	CrCl ≥ 30ml/min
Paritaprevir/Ritonavir/Ombitasvir/ Dasabuvir (Viekira Pak®)	1	Mild	Yes

Overview of Drug Interactions

Absorption Interactions

Cytochrome P450 & Transporter Mediated Interactions

Amiodarone

Immunosuppressant Interactions

Polling Question

- Which of the following drug-drug interactions are contraindicated in a solid organ transplant recipient being treated for HCV?
- Glecaprevir/Pibrentasvir (Mavyret®) and pantoprazole 40mg PO daily
- Ledipsavir/Sofosbuvir (Harvoni®) and omeprazole 20mg PO daily
- Elbasvir/Grazoprevir (Zepatier®) and amiodarone 200mg PO daily
- Velpatasvir/Sofosbuvir (Epclusa®) and amiodarone 400mg PO daily

Overview of Drug Interactions

Absorption Interactions

Cytochrome P450 & Transporter Mediated Interactions

Amiodarone

Immunosuppressant Interactions

Effect of Food on DAA Absorption

With Food

Glecaprevir/Pibrentasvir (Mavyret®)

Sofosbuvir/Velpatasvir/ Voxilaprevir (Vosevi®)

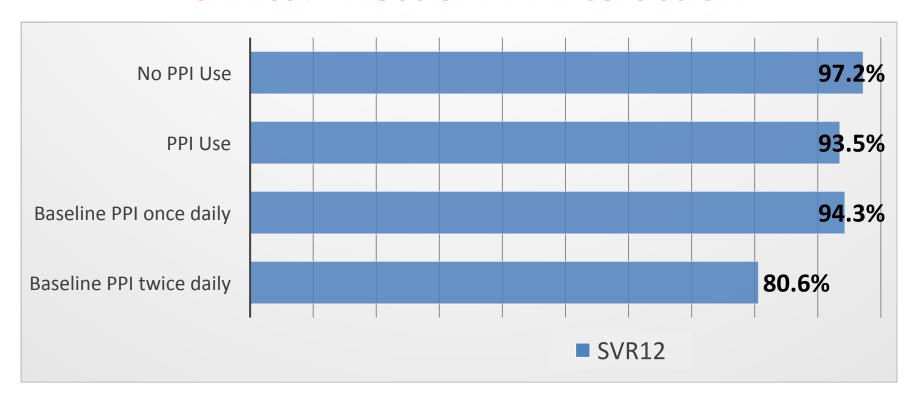
Paritaprevir/Ritonavir/Ombitasvir/
Dasabuvir
(Viekira Pak®)

With or Without Food

Ledipasvir/Sofosbuvir (Harvoni®)

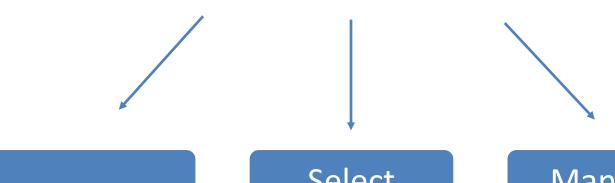
Velpatasvir/Sofosbuvir (Epclusa®)

Elbasvir/Grazoprevir (Zepatier®)



Effect of Gastric pH on DAA Absorption

- Some DAAs have gastric pH dependent absorption
- Stress-ulcer prophylaxis is commonly used after transplant
- Acid suppressants can negatively effect DAA absorption risking treatment failure


Clinical Effect of PPI Interaction

Gastroenterology 2016 Dec;151(6):1131-1140

Management of PPIs and DAAs

Stop PPI

Select another DAA

Manage Interaction

Management of PPIs and DAAs

Ledipasvir

- PPI: Give together with ≤ 20mg omeprazole once daily on empty stomach
- With or 12 hours apart at dose that ≤ 40mg BID famotidine
- Antacids: separate by 4 hours

Velpatasvir

- PPI: ≤ 20mg omeprazole 4 hours after velpatasvir with food
- With or 12 hours apart at dose that ≤ 40mg BID famotidine
- Antacids: separate by 4 hours

Overview of Drug Interactions

Absorption Interactions

Cytochrome P450 & Transporter Mediated Interactions

Amiodarone

Immunosuppressant Interactions

DAA Metabolism

	Substrate		Inhibitor		Other
DAA Agent	CYP3A4	P-gp	CYP3A4	P-gp	
Glecaprevir/ Pibrentasvir	X	X	X	X	BCRP, OATP
(Mavyret®)					
Paritaprevir/ ritonavir/ Ombitasvir/	X	X	X		BCRP, OATP
Dasabuvir (Viekira Pak®)					
Elbasvir/Grazoprevir (Zepatier®)	X		X		OATP
Voxilaprevir	X	X		X	BCRP, OATP
Ledipasvir		X		X	
Velpatasvir	X	X		X	BCRP, OATP
Sofosbuvir		X			BCRP

BCRP: breast cancer resistance protein; OATP: organic anion transporting polypeptide

Potential Drug Interactions

Inducers

- St John's Wort
- Rifampin/ Rifabutin
- Carbamazepine
- Phenytoin
- Phenobarbital
- Efavirenz

Inhibitors

- Azole antifungals
- Protease Inhibitors
- Erythromycin/Clarithromycin

Statins and DAAs

	Rosuvastatin	Atorvastatin	Pitavastatin	Simvastatin	Pravastatin	Lovastatin	Fluvastatin
Glecaprevir/ Pibrentasvir	Max 10mg	NR	Use lowest dose	NR	↓ dose by 50%	NR	Use lowest dose
Ledipasvir/ Sofosbuvir	NR	Monitor closely					
Velpatasvir/ Sofosbuvir	Max 10mg	Monitor closely					
Elbasvir/ Grazoprevir	Max 10mg	Max 20mg		Use lowest dose		Use lowest dose	Use lowest dose
Sofosbuvir/ Velpatasvir/ Voxilaprevir	NR	Use lowest dose	NR	Use lowest dose	Max 40mg	Use lowest dose	Use lowest dose
Paritaprevir/ Ritonavir/ Ombitasvir/ Dasabuvir	Max 10mg				Max 40mg		

NR: not recommended, Per Package Labeling

Overview of Drug Interactions

Absorption Interactions

Cytochrome P450 & Transporter Mediated Interactions

Amiodarone

Immunosuppressant Interactions

Amiodarone-Sofosbuvir Induced Bradycardia

- Post-marketing reports of life-threatening bradycardia
- May occur within first few hours up to 2 weeks
- Exact mechanism unknown

Management of Amiodarone and Sofosbuvir

- Avoid coadministration
- When discontinuing amiodarone prior to starting sofosbuvir, consider long half-life of amiodarone
- If coadministration is unavoidable
 - Counsel patients about risk of serious symptomatic bradycardia
 - Cardiac monitoring in an in-patient setting for first 48 hours of coadministration followed by daily heart rate monitoring

Overview of Drug Interactions

Absorption Interactions

Cytochrome P450 & Transporter Mediated Interactions

Amiodarone

Immunosuppression Interactions

Cyclosporine and DAAs

 Cyclosporine is an inhibitor of CYP3A4 (weak), P-glycoprotein, OATP1B1, and BCRP

Glecaprevir/ Pibrentasvir

 Use not recommended in patients requiring >100mg cyclosporine per day

Elbasvir/ Grazoprevir

 Cyclosporine may increase risk of ALT elevations due to OATP inhibition

Sofosbuvir/ Velpatasvir/ Voxilaprevir

- Cyclosporine increases
 Voxilaprevir concentrations
- Use not recommended

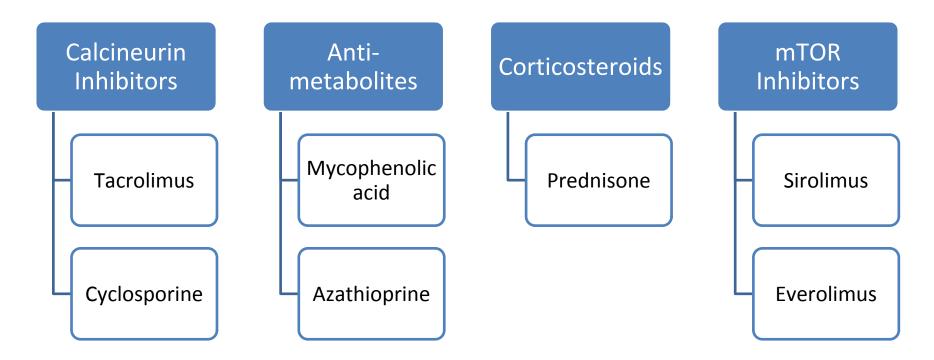
Calcineurin Inhibitor Dose Adjustments

	Cyclosporine		Tacrolimus	
DAA Therapy	AUC	Dosing	AUC	Dosing
Ritonavir- boosted	^482%	1/5 total daily dose	↑ 5613%	0.5mg every 7 days
Elbasvir/ Grazoprevir			^ 43%	Monitor levels closely

Hepatology 2016;63:634-643

https://www.hcvguidelines.org/unique-populations/post-liver-transplant

Polling Question


- Which of the following drug-drug interactions are contraindicated in a solid organ transplant recipient being treated for HCV?
- Glecaprevir/Pibrentasvir (Mavyret®) and pantoprazole 40mg PO daily
- Ledipsavir/Sofosbuvir (Harvoni®) and omeprazole 20mg PO daily
- Elbasvir/Grazoprevir (Zepatier®) and amiodarone 200mg PO daily
- Velpatasvir/Sofosbuvir (Epclusa®) and amiodarone 400mg PO daily

Common Adverse Effects

- Fatigue
- Headache
- Nausea
- Diarrhea
- Skin reactions (rare)

Overview Maintenance Immunosuppression

Cyclosporine vs Tacrolimus

	Levy et al.	Liu et al.			
Design	Prospective, randomized, open label, 356 liver txp recipients for HCV	Meta-analysis of 9 randomized and quasi-randomized controlled trials			
Intervention	Tacrolimus vs Cyclosporine	Tacrolimus vs Cyclosporine			
Outcome	Fibrosis ≥ stage 2 @ 12months FK vs CyA 67.5% vs 71.6% (P=0.759) HCV Viral Load @ 12 months FK vs CyA 3.13 U/μL vs 3.17 U/μL (P=0.866)	No difference found in: -mortality -graft loss -histological HCV recurrence			

_ ashp midyear 20

Steroid Withdrawal

	Segev et al.
Design	Meta-analysis of 30 publications (19 RCT)
Intervention	Steroid-free vs Steroid-based
Outcome	↓ HCV recurrence with steroid avoidance (RR 0.90, P=0.03)

mTOR Inhibitors

	McKenna et al.	Soliman et al.
Design	Single center, retrospective, 455 liver txp recipients with HCV	Single center, open-label, prospective, 25 renal txp recipients with HCV
Intervention	Sirolimus within 7 days of txp vs Non-sirolimus	Conversion to Sirolimus vs Cyclosporine
Outcome	Fibrosis on biopsy SRL vs Non-SRL 1 year: 15.3% vs 36.2% (p<0.0001) 2 year: 30.1% vs 50.5% (p=0.001)	HCV PCR @ 6 months: SRL 700,000 → 400,000 IU/mL (P<0.001) CyA 680,000 → 660,000 IU/mL (P=NS)

Am J Transplant. 2011 Nov;11(11):2379-87, Exp Clin Transplant. 2013 Oct;11(5):408-11

Patient Case Discussion

RH is a 54yo male with ICM now s/p OHT 6 weeks ago from a HCV positive donor. His post-op course was complicated by persistent afib. He presents to clinic for a routine cardiac biopsy and to see hepatology for initiation of hepatitis C therapy.

PMH GERD, gout, and hypothyroidism

Medications

- Tacrolimus 3mg PO q12h
- Mycophenolate mofetil 1000mg PO q12h
- Prednisone 15mg PO daily
- Valganciclovir 450mg PO daily
- Nystatin Swish and swallow 5mL TID
- Bactrim DS qMWF

- Rosuvastatin 5mg PO qhs
- Aspirin 81mg PO daily
- Pantoprazole 40mg PO BID
- Levothyroxine 88mcg PO daily
- Allopurinol 300mg PO daily
- Amiodarone 200mg PO daily

Pertinent Labs

Serum Cr: 2.1 LFTs: WNL Hepatitis C PCR: 2 million

CrCl = 45ml/min TFTs: WNL HCV Genotype: 1

Patient Case Discussion

RH is a 54yo male with ICM now s/p OHT 6 weeks ago from a HCV positive donor. His post-op course was complicated by persistent afib. He presents to clinic for a routine cardiac biopsy and to see hepatology for initiation of hepatitis C therapy.

- What are some patient-specific issues to consider in selecting his hepatitis C therapy?
- Which DAA would you select? Are there any changes you would recommend to his other medication therapy?

Challenges of Hepatitis C Therapy After Transplant

- Compliance with Complicated Medication Regimens
- Complex Drug Interactions involving DAAs and transplant medications

- Side Effect Management
- Cost

Key Takeaways

- There are a variety of drug interactions with DAAs that require careful consideration of patient-specific factors, especially after solid organ transplant
- In the current era of DAAs, standard immunosuppression should be used post-transplant for patients receiving hepatitis C positive donors

Acknowledgements

- ASHP Section of Clinical Specialists and Scientists
- American Society of Transplantation Transplant Pharmacist Community of Practice Education Workgroup

