Assessment of Evidence for COVID-19-Related Treatments: Updated 6/16/2020

The information contained in this evidence table is emerging and rapidly evolving because of ongoing research and is subject to the professional judgment and interpretation of the practitioner due to the uniqueness of each medical facility’s approach to the care of patients with COVID-19 and the needs of individual patients. ASHP provides this evidence table to help practitioners better understand current approaches related to treatment and care. ASHP has made reasonable efforts to ensure the accuracy and appropriateness of the information presented. However, any reader of this information is advised ASHP is not responsible for the continued currency of the information, for any errors or omissions, and/or for any consequences arising from the use of the information in the evidence table in any and all practice settings. Any reader of this document is cautioned that ASHP makes no representation, guarantee, or warranty, express or implied, as to the accuracy and appropriateness of the information contained in this evidence table and will bear no responsibility or liability for the results or consequences of its use.

AHFS Clinical Drug Information® is now available for a 90-day trial period. Take a survey (https://bit.ly/ahfscdi) to get access. ASHP’s patient medication information is available at http://www.safemedication.com/.

Visit our website for the latest information on current drug shortages.

Select entries were updated on 6/16/2020; these can be identified by the date that appears in the Drug(s) column.

TABLE OF CONTENTS

ANTIVIRAL AGENTS
- **BALOXAVIR**
- **CHLOROQUINE PHOSPHATE**
- **FAVIPIRAVIR** *(Avigan®, Favilavir)*
- **HIV PROTEASE INHIBITORS** *(e.g., LPV/RTV, Kaletra®)*
- **HYDROXYCHLOROQUINE** *(Plaquenil®)*
- **NEURAMINIDASE INHIBITORS** *(e.g., oseltamivir)*
- **REMDESIVIR**
- **UMIFENOVIR** *(Arbidol®)*

SUPPORTING AGENTS
- **ANAKINRA**
- **ASCORBIC ACID**
- **AZITHROMYCIN**
- **BARICITINIB** *(Olumiant®)*
- **COLCHICINE**
- **CORTICOSTEROIDS** *(general)*
- **EPoprostenol** *(inhaled)*
- **INTERFERONS**
- **METHYLPREDNISOLONE** *(inhaled)*
- **NITRIC OXIDE** *(inhaled)*
- **RUXOLITINIB** *(Jakafi®)*
- **SARILUMAB** *(Kefzara®)*
- **SILTUXIMAB** *(Sylvant®)*
- **SIROLIMUS** *(Rapamune®)*
- **TOCILIZUMAB** *(Actemra®)*

OTHER
- **ACE INHIBITORS, ANGIOTENSIN II RECEPTOR BLOCKERS** *(ARBs)*
- **ANTIPLATELET AGENTS**
- **COVID-19 CONVALESCENT PLASMA**
- **FAMOTIDINE**
- **HMG-CoA REDUCTASE INHIBITORS** *(statins)*
- **IMMUNE GLOBULIN**
- **IVERMECTIN**
- **NEBULIZED DRUGS**
- **NICLOSAMIDE**
- **NITRATES**
- **NONSTEROIDAL ANTI-INFLAMMATORY AGENTS** *(NSAIAs)*
- **TISSUE PLASMINOGEN ACTIVATOR** *(t-PA; alteplase)*
ANTIVIRAL AGENTS

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Baloxavir
Updated 5/13/20 | 8:18.92 Antiviral | Antiviral active against influenza viruses
In vitro antiviral activity against SARS-CoV-2 demonstrated in one trial ³ | Only limited clinical trial data available to date to evaluate use of baloxavir for treatment of COVID-19
Exploratory, open-label, randomized controlled study at a single center in China (ChiCTR2000029544): 29 adults hospitalized with COVID-19 receiving antiviral treatment with lopinavir/ritonavir, darunavir/cobicistat, or umifenovir (Arbidol®), in combination with inhaled interferon-α, were randomized to treatment with baloxavir marboxil (80 mg orally on day 1 and on day 4, and 80 mg orally on day 7 as needed) (n=10), favipiravir (1600 or 2200 mg orally on day 1, followed by 600 mg three times daily for up to 14 days) (n=9), or control (standard antiviral treatment) (n=10). Percentage of pts with viral conversion (2 consecutive tests with undetectable viral RNA results) after 14 days of treatment was 70, 77, and 100% in the baloxavir, favipiravir, and control groups, respectively, with median time to clinical improvement of 14, 14, and 15 days, respectively. ³
Another randomized controlled trial registered in China: ¹
Protocol for two registered Chinese trials (ChiCTR2000029544, ChiCTR2000029548) specifies an oral baloxavir marboxil dosage of 80 mg on day 1 and on day 4, and another dose of 80 mg on day 7 (as needed); not to exceed 3 total doses. ¹, ³ | No data to date support use in the treatment of COVID-19 |

| Chloroquine Phosphate
Updated 6/16/20 | 8:30.08 Antimalarial (4-aminoquinoline derivative) | In vitro activity against various viruses, including coronaviruses 1, 3, 13, 14
In vitro activity against SARS-CoV-2 in infected Vero E6 cells reported; some evidence it may block infection in Vero E6 cells exposed to SARS-CoV-2 ¹, 3, ⁴, ¹²
Active in vitro against SARS-CoV-1 and MERS-CoV ², ³, ⁵, ⁹
Has immunomodulatory activity that theoretically could contribute to an
Optimal dosage and duration of treatment not known ²⁵
Consider: 500 mg of chloroquine phosphate is equivalent to 300 mg of chloroquine base ¹⁷
Oral chloroquine phosphate dosage suggested in the EUA (now revoked): For treatment of hospitalized adults and adolescents weighing 50 kg or more when a clinical trial is not available or participation not feasible, suggested dosage was 1 g on day 1, then 500 mg daily for 4-7 days of total treatment based on clinical evaluation. ²⁵ FDA now states that this dosage is unlikely to have efficacy and safety of chloroquine for treatment or prevention of COVID-19 not established ¹⁰, ²⁴, ³⁹
No data to date indicating that in vitro activity against SARS-CoV-2 corresponds with clinical efficacy for treatment or prevention of COVID-19 |
Data from randomized, controlled clinical trials needed to substantiate initial reports of efficacy of 4-aminoquinoline antimalarials for treatment of COVID-19, guide decisions regarding the most appropriate pts for treatment with such drugs, and identify optimal dose and treatment duration |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>anti-inflammatory response in patients with viral infections 1-3, 15-16 Known pharmacokinetics and toxicity profile based on use for other indications 17</td>
<td>and 5 with severe COVID-19) received LPV/RTV (lopinavir 400 mg/ritonavir 100 mg twice daily for 10 days). All 10 pts treated with chloroquine had negative RT-PCR results for SARS-CoV-2 by day 13 and were discharged from the hospital by day 14; 11/12 pts (92%) treated with LPV/RTV were negative for SARS-CoV-2 at day 14 and only 6/12 (50%) were discharged from the hospital by day 14. Note: Results suggest that chloroquine for the treatment of COVID-19 resulted in shorter time to RT-PCR conversion and quicker recovery than LPV/RTV; however, this study included a limited number of pts and the median time from onset of symptoms to initiation of treatment was shorter in those treated with chloroquine than in those treated with LPV/RTV (2.5 vs 6.5 days, respectively).20 Double-blind randomized phase 2b study in Brazil, (Borba et al) to evaluate two different chloroquine dosages as adjunctive therapy in hospitalized patients with severe COVID-19 (NCT04323527): The first 81 enrolled pts were randomized 1:1 to receive high-dose chloroquine (600 mg twice daily for 10 days) or lower-dose chloroquine (450 mg twice daily on day 1, then 450 mg once daily on days 2-5); all pts also received azithromycin and ceftriaxone and some also received oseltamivir. An unplanned interim analysis was performed and the high-dose arm of the study was halted because of toxicity concerns, particularly QTc prolongation and ventricular tachycardia, and because more deaths were reported in this arm. By day 13, 16/41 pts (39%) treated with the high-dose regimen had died vs 6/40 (15%) treated with the lower-dose regimen. QTc >500 msec occurred more frequently in the high-dose group (18.9%) than in the lower-dose group (11.1%). The high-dose arm included more pts prone to cardiac complications than the lower-dose arm. Data were insufficient to evaluate efficacy. Study continuing using only the lower dosage. 27 See Hydroxychloroquine in this Evidence Table for additional information on clinical</td>
<td>an antiviral effect in pts with COVID-19 based on a reassessment of in vitro EC50/EC90 data and calculated lung concentrations; it is unclear whether this dosage would provide any beneficial immunomodulatory effects. 57 Oral chloroquine phosphate dosage in Chinese guidelines: 500 mg twice daily for 7 days (adults 18-65 years weighing >50 kg); 500 mg twice daily on days 1 and 2, then 500 mg once daily on days 3-7 (adults weighing <50 kg) 11 Oral chloroquine phosphate dosage used in some clinical trials: Initial dose of 600 mg (of chloroquine) followed by 300 mg (of chloroquine) 12 hours later on day 1, then 300 mg (of chloroquine) twice daily on days 2-5 4</td>
<td>Additional data needed regarding toxicity profile when used in patients with COVID-19 Chloroquine suggested as possible option and included in Chinese guidelines for treatment of COVID-19 44 NIH COVID-19 Treatment Guidelines Panel recommends against use of chloroquine for the treatment of COVID-19, except in a clinical trial; the panel recommends against use of high-dose chloroquine (i.e., 600 mg twice daily for 10 days) for the treatment of COVID-19 because such dosage has been associated with more severe toxicities compared with lower-dose chloroquine. 45 IDSA recommends that chloroquine be used for the treatment of COVID-19 in the context of a clinical trial. 38 IDSA recommends that a combined regimen of chloroquine and azithromycin be used for the treatment of COVID-19 only in the context of a clinical trial. 38 NIH COVID-19 Treatment Guidelines Panel does not recommend the use of any agents, including chloroquine, for preexposure prophylaxis (PrEP) or post-exposure prophylaxis (PEP) for prevention of SARS-CoV-2 infection outside of clinical trials. The panel states that, to date, no agent is known to be effective for preventing SARS-CoV-2 infection when given before or after an exposure. 35 Because 4-aminoquinolines (chloroquine, hydroxychloroquine) are associated with QT prolongation, caution is advised if considering use of the drugs in pts with COVID-19 at risk for QT prolongation or receiving other drugs associated with arrhythmias; 13, 17, 36, 39 diagnostic testing and monitoring recommended to minimize risk of adverse effects, including drug-induced cardiac effects. 35, 36, 39 (See Hydroxychloroquine in this Evidence Table.)</td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>trials and experience with 4-aminoquinoline antimalarials in the management of COVID-19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multiple clinical trials to evaluate chloroquine for the treatment of COVID-19 are registered at clinicaltrials.gov (some listed below):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04323527</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04328493</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04331600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04362332</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04428268</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Several clinical trials to evaluate chloroquine for prevention of COVID-19 in the healthcare setting are registered at clinicaltrials.gov:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04303507</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04333732</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT0449371</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NIH panel states that 4-aminoquinolines (chloroquine, hydroxychloroquine) should be used concomitantly with drugs that pose a moderate to high risk for QTc prolongation (e.g., antiarrhythmics, antipsychotics, antifungals, fluoroquinolones, macrolides [including azithromycin]) only if necessary. The panel states that use of doxycycline (instead of azithromycin) should be considered for empiric therapy of atypical pneumonia in COVID-19 pts receiving chloroquine (or hydroxychloroquine).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FDA issued a safety alert regarding adverse cardiac effects (e.g., prolonged QT interval, ventricular tachycardia, ventricular fibrillation) reported with use of chloroquine or hydroxychloroquine (either alone or in conjunction with azithromycin or other drugs known to prolong QT interval) in hospital and outpatient settings; FDA cautions against use of chloroquine or hydroxychloroquine outside of a clinical trial or hospital setting and urges healthcare professionals and pts to report adverse effects involving these drugs to FDA MedWatch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emergency use authorization (EUA) for chloroquine (now revoked): Effective June 15, 2020, FDA has revoked the EUA for chloroquine and hydroxychloroquine previously issued on March 28, 2020 that permitted distribution of the drugs from the strategic national stockpile (SNS) for use in adults and adolescents weighing 50 kg or more hospitalized with COVID-19 for whom a clinical trial was not available or participation not feasible. Based on a review of new information and reevaluation of information available at the time the EUA was issued, FDA concluded that the original criteria for issuance of the EUA for these drugs are no longer met. Based on the totality of scientific evidence available, FDA concluded that it is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage<sup>a</sup></td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Favipiravir (Avigan®, Favilavir)</td>
<td>8:18.32 Antiviral</td>
<td>Broad-spectrum antiviral with in vitro activity against various viruses, including coronaviruses<sup>1–5</sup></td>
<td>Only very limited clinical trial data available to date to evaluate use of favipiravir in the treatment of COVID-19<sup>14</sup></td>
<td>A favipiravir dosage of 1600 mg twice daily on day 1, then 600 mg twice daily thereafter for 7–10 or 14 days was used in several open-label COVID-19 studies in China<sup>6,15</sup></td>
<td>Not commercially available in the US<sup>17,18</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vitro evidence of activity against SARS-CoV-2 in infected Vero E6 cells reported with high concentrations of the drug<sup>1–5</sup></td>
<td>Only very limited clinical trial data available to date to evaluate use of favipiravir in the treatment of COVID-19<sup>14</sup></td>
<td>Protocol in one ongoing trial (NCT04346628) for treatment of mild COVID-19 specifies a favipiravir dosage of 1800 mg on day 1, then 800 mg twice daily on days 2–10<sup>7</sup></td>
<td>Efficacy and safety of favipiravir for treatment of COVID-19 not established<sup>19</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Licensed in Japan and China for treatment of influenza<sup>2,4,6</sup></td>
<td>Only very limited clinical trial data available to date to evaluate use of favipiravir in the treatment of COVID-19<sup>14</sup></td>
<td>Protocol in one ongoing trial (NCT04358549) for treatment of COVID-19 specifies a favipiravir dosage of 1800 mg twice daily on day 1, then 1000 mg twice daily on days 2–14<sup>7</sup></td>
<td>Additional data needed to substantiate initial reports of efficacy for treatment of COVID-19 and identify optimal dosage and treatment duration<sup>20</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In a small, open-label, nonrandomized study in patients with non-severe COVID-19 in China (ChiCTR2000029600), favipiravir (1600 mg orally twice daily on day 1, then 600 mg orally twice daily on days 2–14) (n=35) was associated with decreased median time to viral clearance (4 vs 11 days) and higher improvement rate on chest CT imaging on day 14 (91 vs 62%) compared with the control group receiving lopinavir/ritonavir (n=45); both groups also received aerosolized interferon α-1b<sup>15</sup></td>
<td>Because high favipiravir concentrations are required for in vitro activity against SARS-CoV-2<sup>1,5,17</sup> it has been suggested that high favipiravir dosages, like those used in the treatment of Ebola virus disease, should be considered for the treatment of COVID-19<sup>11,19,20</sup></td>
<td>Protocol in one ongoing trial (NCT04373733; PIONEER) for early treatment of suspected or confirmed COVID-19 specified a favipiravir dosage of 1800 mg twice daily on day 1, followed by 800 mg twice daily on days 2–10<sup>7</sup></td>
<td>Given the lack of pharmacokinetic and safety data for the high favipiravir dosages proposed for treatment of COVID-19, the drug should be used with caution at such dosages<sup>19,20</sup>. Favipiravir is associated with QT prolongation<sup>21</sup>. Some have suggested close cardiac and hepatic monitoring during treatment, as well as monitoring of plasma and tissue concentrations of the drug and, if possible, the active metabolite<sup>12,20,21</sup>. Some data suggest that favipiravir exposure may be greater in Asian populations<sup>17,19</sup>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Because high favipiravir concentrations are required for in vitro activity against SARS-CoV-2<sup>1,5,17</sup> it has been suggested that high favipiravir dosages, like those used in the treatment of Ebola virus disease, should be considered for the treatment of COVID-19<sup>11,19,20</sup></td>
<td>Early embryonic deaths and teratogenicity observed in animal studies. Favipiravir is contraindicated in women with known or suspected pregnancy and precautions should be taken to avoid pregnancy during treatment with the drug<sup>14</sup>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If favipiravir is used in pts receiving acetaminophen, the maximum recommended daily dosage of acetaminophen is 3 g<sup>17,18</sup>.</td>
</tr>
</tbody>
</table>

^a This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV Protease Inhibitors</td>
<td>8:18.08.08 HIV Protease Inhibitors</td>
<td>Updated 5/21/20</td>
<td>Lopinavir (LPV): In vitro activity against SARS-CoV-2 in Vero E6 cells; also has in vitro activity against SARS-CoV-1 and MERS-CoV; some evidence of benefit in animal studies for treatment of MERS-CoV.</td>
<td>US: Randomized, controlled open-label proof-of-concept trial (NCT04358549) of favipiravir for the treatment of COVID-19. 7, 10</td>
<td>2400 mg, 2400 mg, and 1200 mg given 8 hours apart on day 1, then a maintenance dosage of 1200 mg every 12 hours on days 2–10.12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US: Randomized, open-label trial (NCT04346628) to evaluate efficacy of favipiravir in pts with mild, uncomplicated COVID-19. 7</td>
<td>For the treatment of COVID-19, one pharmacokinetic simulation model suggested that a dosage of 2400 mg twice daily on day 1, followed by 1600 mg twice daily on days 2–10 should achieve adequate favipiravir trough plasma concentrations and may be more pharmacologically relevant than lower dosages. 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multiple clinical trials initiated in pts with COVID-19 in China, Japan, and other countries to evaluate favipiravir alone or in conjunction with other antivirals or other agents (some listed below): 7, 9</td>
<td>Pharmacokinetic data are available from a study in critically ill pts with COVID-19 requiring mechanical ventilation who received a favipiravir dosage of 1600 mg twice daily on day 1, then 600 mg twice daily on days 2–5 (or longer if needed) via NG tube. Trough serum concentrations of the drug in most samples were lower than the lower limit of quantification and lower than the in vitro EC50 of the drug reported for SARS-CoV-2; trough concentrations in these critically ill pts also were much lower than those previously reported in healthy individuals who received the same dosage. 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04310228 NCT04319900 NCT04333589 NCT04358549 NCT04373733 NCT04376814 ChICTR2000030113 ChICTR2000030894 ChICTR2000030987 ChICTR2000029996 JapicCTI-205238 JPRN-RCTs031190226 JPRN-RCTs041190120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atazanavir (ATV): ATV alone or with ritonavir (ATV/RTV) has in vitro activity against SARS-CoV-2 in Vero E6 cells, human epithelial pulmonary cells (A549), and human monocytes.</td>
<td>**Lopinavir and Ritonavir (LPV/RTV; Kaletra®) randomized, open-label trial in China (Cao et al) in hospitalized adults with severe COVID-19 compared LPV/RTV in conjunction with standard care (99 pts) vs standard care alone (100 pts). Primary end point was time to clinical improvement (time from randomization to improvement of two points on a seven-category ordinal scale or hospital discharge, whichever came first). In ITT population, time to clinical improvement was not shorter with LPV/RTV compared with standard care (median time to clinical improvement 16 days in both groups); in modified ITT population, median time to clinical improvement 15 days in LPV/RTV group and 16 days in standard care only group. The 28-day mortality rate was numerically lower in LPV/RTV group (19.2% vs 25% in ITT)</td>
<td>LPV/RTV (COVID-19): LPV 400 mg/RTV 100 mg orally twice daily for 10–14 days.5, 16, 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LPV/RTV (COVID-19): LPV 400 mg/RTV 100 mg orally twice daily with or without umifenovir (Arbidol® 200 mg every 8 hours).6</td>
<td>LPV/RTV (COVID-19): LPV 400 mg/RTV 100 mg orally twice daily for no longer than 10 days.15 with or without interferon (5 million units of interferon-α or equivalent twice daily given in 2 mL of sterile water by nebulization) and with or without ribavirin for up to 10 days.5, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LPV/RTV (SARS): LPV 400 mg/RTV 100 mg orally twice daily for 14 days</td>
<td>LPV/RTV: Efficacy for the treatment of COVID-19, with or without other antivirals, not definitely established</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Darunavir: No data to date to support use in the treatment of COVID-19. Manufacturer states they have no clinical or pharmacologic evidence to support use of DRV/cobicistat for treatment of COVID-19 and initial unpublished results from a study in China indicated that a 5-day regimen of DRV/cobicistat was not effective for treatment of COVID-19.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Darunavir: In initial unpublished results from a study in China indicated that a 5-day regimen of DRV/cobicistat was not effective for treatment of COVID-19.</td>
<td>Atazanavir, Nelfinavir, Saquinavir, Tipranavir: No data to date to support use in the treatment of COVID-19</td>
<td></td>
</tr>
</tbody>
</table>

NIH COVID-19 Treatment Guidelines Panel recommends against the use of

Updated 6-16-20. The current version of this document can be found on the [ASHP COVID-19 Resource Center](https://www.ashp.org/Covid-19). This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>against SARS-CoV-2 at clinically relevant concentrations in Caco-2 cells; in another study, high DRV concentrations were required for in vitro inhibition of SARS-CoV-2 in Vero E6 cells</td>
<td></td>
<td></td>
<td>population; 16.7% vs 25% in modified ITT population. Some evidence that LPV/RTV initiation within 12 days after symptom onset is associated with shorter time to clinical improvement. No significant differences in reduction of viral RNA load, duration of viral RNA detectability, duration of oxygen therapy, duration of hospitalization, or time from randomization to death. LPV/RTV stopped early in 13 pts because of adverse effects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelfinavir (NFV), Saquinavir (SQV), and Tipranavir (TPV):</td>
<td></td>
<td></td>
<td>In vitro activity against SARS-CoV-2 in Vero E6 cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPV/RTV vs chloroquine in small, randomized study in hospitalized adults with COVID-19 in China (Huang et al):</td>
<td></td>
<td></td>
<td>10 pts (7 with moderate and 3 with severe disease) received chloroquine (500 mg twice daily for 10 days) and 12 pts (7 with moderate and 5 with severe disease) received LPV/RTV (lopinavir 400 mg/ritonavir 100 mg twice daily for 10 days). All 10 pts treated with chloroquine had negative RT-PCR results for SARS-CoV-2 by day 13 and were discharged from the hospital by day 14; 11/12 pts (92%) treated with LPV/RTV were negative for SARS-CoV-2 at day 14 and only 6/12 (50%) were discharged from the hospital by day 14. Note: Results suggest that chloroquine was associated with shorter time to RT-PCR conversion and quicker recovery than LPV/RTV; however, this study included a limited number of pts and the median time from onset of symptoms to initiation of treatment was shorter in those treated with chloroquine than in those treated with LPV/RTV (2.5 vs 6.5 days, respectively).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPV/RTV with ribavirin and interferon β-1b vs LPV/RTV alone in open-label, randomized trial in adults with mild to moderate COVID-19 in Hong Kong (Hung et al; NCT04276688):</td>
<td></td>
<td></td>
<td>127 pts were randomized 2:1 to receive LPV/RTV (LPV 400 mg/RTV 100 mg orally twice daily for 14 days) with ribavirin (400 mg twice daily) and interferon β-1b (8 million IU sub-Q on alternate days for up to 3 doses depending on how soon treatment initiated after symptom onset) or a 14-day regimen of LPV/RTV alone. Median time to negative RT-PCR results for SARS-CoV-2 in nasopharyngeal samples was</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with ribavirin (4-g oral loading dose, then 1.2 g orally every 8 hours or 8 mg/kg IV every 8 hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPV/RTV (MERS):</td>
<td></td>
<td></td>
<td>LPV 400 mg/RTV 100 mg orally twice daily with ribavirin (various regimens) and/or interferon-α; LPV 400 mg/RTV 100 mg orally twice daily with interferon β-1b (0.25 mg/mL sub-Q on alternate days) for 14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDSA recommends that LPV/RTV be used for the treatment of COVID-19 only in the context of a clinical trial</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage(^a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 days in pts treated with the 3-drug regimen vs 12 days in those treated with LPV/RTV alone; median duration of hospitalization was 9 or 14.5 days, respectively. Adverse effects reported in 48% of those treated with the 3-drug regimen and in 49% of those treated with LPV/RTV alone. Note: Results indicate a 3-drug regimen that included LPV/RTV, ribavirin, and interferon β-1b was more effective than LPV/RTV alone in pts with mild to moderate COVID-19, especially when treatment was initiated within 7 days of symptom onset.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LPV/RTV retrospective cohort study in China (Deng et al) evaluated use of LPV/RTV with or without umifenovir (Arbidol\(^\text{®}\)) in adults. Primary end point was negative conversion in nasopharyngeal samples and progression or improvement of pneumonia. At 7 days, SARS-CoV-2 undetectable in nasopharyngeal specimens in 6/17 pts (35%) treated with LPV/RTV alone vs 12/16 (75%) treated with both drugs; chest CT scans were improving in 29% of pts treated with LPV/RTV alone vs 69% of pts treated with both drugs. \(^6\) (See Umifenovir in this Evidence Table.)

LPV/RTV Clinical Experience (COVID-19): Only limited data on LPV/RTV used with or without interferon in pts with COVID-19 outside of clinical trials. \(^5,\ 12,\ 14,\ 16\)

LPV/RTV Clinical Experience (SARS and MERS): Evidence of some clinical benefit when used in conjunction with ribavirin and/or interferon. \(^5,\ 6,\ 11\)

LPV/RTV COVID-19 Clinical Trials: Multiple trials registered at clinicaltrials.gov (some listed below): \(^15\)
- NCT04307693 (LPV/RTV vs hydroxychloroquine in pts with mild disease)
- NCT04255017 (LPV/RTV vs umifenovir vs oseltamivir)
- NCT04372628 (LPV/RTV vs hydroxychloroquine vs placebo)
- NCT04328012 (LPV/RTV vs hydroxychloroquine vs losartan vs placebo) \(^15\)
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine (Plaquenil®)</td>
<td>8:30.08 Antimalarial (4-aminoquinoline derivative)</td>
<td>In vitro activity against various viruses, including coronaviruses 5, 8, 12-14</td>
<td>Hydroxychloroquine COVID-19 Clinical Trials: NCT04252274: Open-label randomized trial in China to evaluate DRV/cobicistat 15 NTC04303299: Open-label randomized trial in Thailand to evaluate DRV/RTV in conjunction with other antivirals 16</td>
<td>Optimal dosage and duration of treatment not known 26</td>
<td>Efficacy and safety of hydroxychloroquine for treatment or prevention of COVID-19 not established 10, 24, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vitro activity against SARS-CoV-2 in infected Vero E6 cells reported; may be more potent than chloroquine in vitro, but some data are conflicting and additional study needed 8, 12</td>
<td>Clinical experience in treating pts with COVID-19: Majority of data to date involves use in pts with mild or moderate COVID-19; 7, 18, 31, 35, 47, 49</td>
<td>Oral hydroxychloroquine sulfate dosage suggested in the EUA (now revoked): For treatment of hospitalized adults and adolescents weighing 50 kg or more when a clinical trial is not available or participation not feasible, suggested dosage was 800 mg on day 1, then 400 mg daily for 4-7 days of total treatment based on clinical evaluation. 28 FDA now states that this dosage is unlikely to have an antiviral effect in pts with COVID-19 based on a reassessment of in vitro EC50/EC90 data and calculated lung concentrations; it is unclear whether this dosage would provide any beneficial immunomodulatory effects. 57</td>
<td>No data to date indicating that in vitro activity against SARS-CoV-2 corresponds with clinical efficacy for treatment or prevention of COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Has immunomodulatory activity that theoretically could contribute to an anti-inflammatory response in patients with viral infections 3, 8, 13, 15, 16</td>
<td>Hydroxychloroquine small pilot study conducted in China: 15 treatment-naïve pts received hydroxychloroquine sulfate (400 mg daily for 5 days) with conventional treatments and 15 pts received conventional treatments alone; 15 both groups received interferon and most pts also received umifenovir (Arbidol®) or LPV/RTV. 30 Primary end point was conversion to negative PCR in pharyngeal swabs on day 7. Negative PCR reported at day 7 in 13 pts (86.7%) treated with hydroxychloroquine and 14 pts (93.3%) not treated with the drug (data unclear for 3 pts); median duration from hospitalization to negative conversion and to temperature normalization were similar in both groups; evidence of radiologic progression on CT in 5 pts treated with the drug and 7 pts not treated with the drug (all pts showed improvement at follow-up). 18</td>
<td>Oral hydroxychloroquine sulfate dosage used or being investigated in clinical trials: 400 mg once or twice daily for 5-10 days 10, 18</td>
<td>Data from randomized, controlled clinical trials needed to substantiate initial reports of efficacy of 4-aminoquinoline antimalarials for treatment of COVID-19, guide decisions regarding the most appropriate pts for treatment with such drugs, and identify optimal dose and treatment duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Known pharmacokinetics and toxicity profile based on use for other indications 13</td>
<td>Hydroxychloroquine randomized, parallel-group study in adults in China (ChiCTR2000029559): 31 pts with COVID-19 and pneumonia received hydroxychloroquine sulfate (200 mg twice daily for 5 days) and standard treatment (O2, antibacterial agents, antiviral agents, interferon, and additional study needed 15). 31 other pts received standard treatment alone (control group). Exclusion</td>
<td>Additional data needed from randomized, controlled clinical trials before any conclusions can be made regarding possible benefits and safety of using hydroxychloroquine with azithromycin. (See Azithromycin in this Evidence Table.)</td>
<td>Additional data needed regarding toxicity profile when used in patients with COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydroxy analog of chloroquine with similar mechanisms of action and adverse effects; 13, 14 may have more favorable dose-related toxicity profile than chloroquine, 13, 16 but cardiotoxicity (e.g., prolonged QT interval) is a concern with both drugs 13, 35</td>
<td>Hydroxychloroquine randomized, parallel-group study in adults in China (ChiCTR2000029559): 31 pts with COVID-19 and pneumonia received hydroxychloroquine sulfate (200 mg twice daily for 5 days) and standard treatment (O2, antibacterial agents, antiviral agents, interferon, and additional study needed 15). 31 other pts received standard treatment alone (control group). Exclusion</td>
<td>Additional data needed regarding toxicity profile when used in patients with COVID-19</td>
<td>NIH COVID-19 Treatment Guidelines Panel recommends against use of hydroxychloroquine for the treatment of COVID-19, except in a clinical trial. 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only limited clinical trial data available to date to evaluate use of hydroxychloroquine for treatment or prevention of COVID-19</td>
<td>Optimal dosage and duration of treatment not known 26</td>
<td>NIH COVID-19 Treatment Guidelines Panel recommends against the use of a</td>
<td>IDSA recommends that hydroxychloroquine be used for the treatment of COVID-19 in the context of a clinical trial. 38</td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the [ASHP COVID-19 Resource Center](https://www.ashp.org/). This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
criteria included severe and critical illness. Pts assessed at baseline and 5 days after treatment initiation for time to clinical recovery (TTCR; defined as normalization of fever and cough relief maintained for >72 hours), clinical characteristics, and changes on chest CT. It was concluded that hydroxychloroquine was associated with symptom relief since time to fever normalization was shorter in hydroxychloroquine group (2.2 days) vs control group (3.2 days), time to cough remission was shorter in hydroxychloroquine group, and pneumonia improved in 25/31 pts (80.6%) in hydroxychloroquine group vs 17/31 pts (54.8%) in control group. Total of 4 pts progressed to severe illness (all in the control group). \[\text{Note: This study did not include pts with severe disease and pts received other anti-infectives in addition to hydroxychloroquine. At study entry, 9 pts without fever and 9 pts without cough were included in hydroxychloroquine group and 14 pts without fever and 16 pts without cough were included in control group; unclear how these pts were addressed in TTCR calculations. Although initial registered study protocol specified 2 different hydroxychloroquine treatment groups and a placebo group (each with 100 pts) and primary end points of time to negative nucleic acid and T-cell recovery, data provided only for certain clinical symptoms in 62 pts without severe disease and PCR results not reported.}\]

Hydroxychloroquine randomized, parallel-group, open-label study in hospitalized adults with mild to moderate COVID-19 in China (ChiCTR2000029868): 150 pts (148 with mild to moderate disease and 2 with severe disease) were randomized 1:1 to receive hydroxychloroquine (1200 mg daily for 3 days, then 800 mg daily for total treatment duration of 2-3 weeks) with standard of care or standard of care alone. Mean time from onset of symptoms to randomization was 16.6 days (range: 3-41 days). Standard of care included IV fluids, O2, various antivirals (e.g., umifenovir, LPV/RTV), antibiotics, and/or glucocorticoid therapy. By day 28, 73% of pts (53 treated with hydroxychloroquine with standard of care combined regimen of hydroxychloroquine and azithromycin for the treatment of COVID-19, except in the context of a clinical trial, because of the potential for toxicities. 35

IDSA recommends that a combined regimen of hydroxychloroquine and azithromycin be used for the treatment of COVID-19 only in the context of a clinical trial. 38

NIH COVID-19 Treatment Guidelines Panel does not recommend the use of any agents, including hydroxychloroquine, for preexposure prophylaxis (PrEP) or postexposure prophylaxis (PEP) for prevention of SARS-CoV-2 infection outside of clinical trials. 35 The panel states that, to date, no agent is known to be effective for preventing SARS-CoV-2 infection when given before or after an exposure. 43

Because 4-aminoquinolines (hydroxychloroquine, chloroquine) and azithromycin are independently associated with QT prolongation and because concomitant use of the drugs may further increase the risk of QT prolongation, caution is advised if considering use of hydroxychloroquine (with or without azithromycin) in pts with COVID-19, especially in outpatients who may not receive close monitoring and in those at risk for QT prolongation or receiving other drugs associated with arrhythmias. 35, 36, 38, 39, 41-44

NIH panel states that 4-aminoquinolines (hydroxychloroquine, chloroquine) should be used concomitantly with drugs that pose a moderate to high risk for QT prolongation (e.g., antiarrhythmics, antipsychotics, antifungals, fluoroquinolones, macrolides [including azithromycin]) only if necessary. In addition, because of the long half-lives of both hydroxychloroquine (up to 40 days) and azithromycin (up to 72 hours), caution is warranted even when these drugs are used sequentially. The panel states that use of doxycycline (instead of azithromycin) should be considered

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug(s)</td>
<td>-16 -20</td>
<td>-16 -20</td>
<td>-16 -20</td>
<td>-16 -20</td>
<td>-16 -20</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and 56 treated with standard of care alone) had converted to negative for SARS-CoV-2. The probability of negative conversion by day 28 in those treated with hydroxychloroquine was similar to that in those treated with standard of care alone; the median time to negative seroconversion (6 and 7 days) also was similar in both groups. Adverse effects reported in 30% of those treated with hydroxychloroquine and 9% of those treated with standard of care alone. Note: Results indicate that use of hydroxychloroquine in pts with mild to moderate COVID-19 did not provide additional benefits compared with use of standard of care alone.</td>
<td>Hydroxychloroquine with azithromycin open-label, nonrandomized study in France (Gautret et al): Preliminary data from an ongoing study in hospitalized pts with confirmed COVID-19 was used to assess efficacy of hydroxychloroquine used alone or with azithromycin; untreated pts were used as a negative control. The primary end point was negative PCR results in nasopharyngeal samples at day 6. Data from 14 pts treated with hydroxychloroquine sulfate (200 mg 3 times daily for 10 days), 6 pts treated with hydroxychloroquine and azithromycin (500 mg on day 1, then 250 mg daily on days 2-5), and 16 pts in the control group were analyzed. At day 6, 8/14 (57%) in the hydroxychloroquine group, 6/6 (100%) in the hydroxychloroquine and azithromycin group, and 2/16 (12.5%) in the control group had negative PCR results. At day 8, a positive PCR was reported in a pt treated with both drugs who had tested negative at day 6. Note: This was a small nonrandomized study that didn’t appear to be designed to compare hydroxychloroquine vs hydroxychloroquine and azithromycin (pts received antibiotics to prevent bacterial superinfection based on clinical judgment). Data on disease severity were unclear (some asymptomatic pts were included when study initiated) and information on disease progression and clinical outcomes was not presented.</td>
<td>for empiric therapy of atypical pneumonia in COVID-19 pts receiving hydroxychloroquine (or chloroquine). The benefits and risks of hydroxychloroquine (with or without azithromycin) should be carefully assessed; diagnostic testing and monitoring are recommended to minimize risk of adverse effects, including drug-induced cardiac effects. FDA issued a safety alert regarding adverse cardiac effects (e.g., prolonged QT interval, ventricular tachycardia, ventricular fibrillation) reported with use of chloroquine or hydroxychloroquine (either alone or in conjunction with azithromycin or other drugs known to prolong QT interval) in hospital and outpatient settings; FDA cautions against use of chloroquine or hydroxychloroquine outside of a clinical trial or hospital setting and urges healthcare professionals and pts to report adverse effects involving these drugs to FDA MedWatch. Emergency use authorization (EUA) for hydroxychloroquine (now revoked): Effective June 15, 2020, FDA has revoked the EUA for hydroxychloroquine and chloroquine previously issued on March 28, 2020 that permitted distribution of the drugs from the strategic national stockpile (SNS) for use in adults and adolescents weighing 50 kg or more hospitalized with COVID-19 for whom a clinical trial was not available or participation not feasible. Based on a review of new information and reevaluation of information available at the time the EUA was issued, FDA concluded that the original criteria for issuance of the EUA for these drugs are no longer met. Based on the totality of scientific evidence available, FDA concluded that it is unlikely that hydroxychloroquine and chloroquine may be effective in treating COVID-19 and, in light of ongoing reports of serious cardiac adverse events and several newly reported cases of prolonged QT interval, ventricular tachycardia, and ventricular fibrillation, FDA has taken action and has revoked the EUA for these drugs.**</td>
</tr>
</tbody>
</table>
open-label, uncontrolled study in France (Molina et al): 11 adults hospitalized with COVID-19 received hydroxychloroquine (600 mg daily for 10 days) and azithromycin (500 mg on day 1, then 250 mg daily on days 2-5). At time of treatment initiation, 8/11 pts had significant comorbidities associated with poor outcomes and 10/11 had fever and received O₂. Within 5 days, 1 pt died and 2 transferred to ICU; the regimen was discontinued in 1 pt after 4 days because of prolonged QT interval. Nasopharyngeal samples were still PCR positive at days 5 and 6 in 8/10 pts tested. ³³ Note: In this small uncontrolled study, hydroxychloroquine and azithromycin regimen did not result in rapid viral clearance or provide clinical benefit.

Hydroxychloroquine with azithromycin uncontrolled, retrospective, observational study in France (Gautret et al): 80 adults with confirmed COVID-19 (including 6 pts included in a previous study by the same group) were treated with hydroxychloroquine sulfate (200 mg 3 times daily for 10 days) and azithromycin (500 mg on day 1, then 250 mg daily on days 2-5). Majority (92%) were considered low risk for clinical deterioration (low national early warning score for COVID-19 based on age, respiratory rate, O₂ saturation, temperature, BP, pulse, level of consciousness); only 15% had fever; 4 pts were asymptomatic carriers; mean time from onset of symptoms to treatment initiation was 4.9 days. Clinical outcome, contagiousness as assessed by nasopharyngeal PCR assay and culture, and length of stay in infectious disease (ID) unit were evaluated in pts who were treated for at least 3 days and followed for at least 6 days. Favorable outcome was reported for 81.3%; 15% required O₂; 3 pts transferred to ICU; 1 pt died; mean time to discharge from ID unit was 4.1 days. At day 8, PCR results were negative in 93% of those tested; at day 5, viral cultures were negative in 97.5% of those tested. ³⁴ Note: Almost all pts were considered low risk for clinical deterioration (including 4 pts described as asymptomatic carriers) and it is unclear how many would have had spontaneous

reported cases of methemoglobinemia in COVID-19 patients, the known and potential benefits of hydroxychloroquine and chloroquine do not outweigh the known and potential risks associated with the use authorized by the EUA. ⁵⁷

The basis for the FDA decision to revoke the EUA for hydroxychloroquine and chloroquine is summarized below:

1) Suggested hydroxychloroquine and chloroquine dosage regimens as detailed in the EUA fact sheets for healthcare providers are unlikely to produce an antiviral effect. ⁵⁷

2) Earlier observations of decreased viral shedding with hydroxychloroquine or chloroquine treatment have not been consistently replicated and recent data from a randomized controlled trial assessing probability of negative conversion showed no difference between hydroxychloroquine and standard of care alone. ⁵⁷

3) Current US treatment guidelines do not recommend the use of chloroquine or hydroxychloroquine in hospitalized patients with COVID-19 outside of a clinical trial and the NIH guidelines now recommend against such use outside of a clinical trial. ⁵⁷

4) Recent data from a large, randomized, controlled trial showed no evidence of benefit in mortality or other outcomes such as hospital length of stay or need for mechanical ventilation for hydroxychloroquine treatment in hospitalized patients with COVID-19. ⁵⁷

Consult the FDA letter regarding the revocation of the EUA for hydroxychloroquine and chloroquine and the FDA memorandum explaining the basis for the revocation for additional information. ⁵⁷
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>conversion to negative nasopharyngeal samples during same time frame. Although 80 pts were enrolled, PCR results available for fewer pts beginning on day 3 and only 60 pts represented in day 6 data. This was an uncontrolled study and data presented cannot be used to determine whether a regimen of hydroxychloroquine with azithromycin provides benefits in terms of disease progression or decreased infectiousness, especially for pts with more severe disease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxychloroquine with azithromycin uncontrolled, observational, retrospective analysis in France (Million et al): Data for 1061 pts with PCR-documented SARS-CoV-2 RNA who were treated with a regimen of hydroxychloroquine sulfate (200 mg 3 times daily for 10 days) and azithromycin (500 mg on day 1, then 250 mg daily on days 2-5) were analyzed for clinical outcomes and persistence of viral shedding. Pts were included in the analysis if they received the combined regimen for at least 3 days and were clinically assessable at day 9. There were 56 asymptomatic and 1005 symptomatic pts; the majority (95%) had relatively mild disease and were considered low risk for clinical deterioration; median age was 43.6 years (range: 14-95 years) and mean time between onset of symptoms and initiation of treatment was 6.4 days. Within 10 days of treatment, good clinical outcome reported in 973 pts (91.7%) and poor clinical outcome reported in 46 pts (4.3%). Persistent nasal carriage of SARS-CoV-2 reported at completion of treatment in 47 pts (4.4%); 8 pts died.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxychloroquine (with or without azithromycin) in a retrospective analysis of patients hospitalized with COVID-19 in US Veterans Health Administration medical centers (Magagnoli et al): Data for 368 males (median age >65 years) treated with hydroxychloroquine in addition to standard supportive management were analyzed for death rate and need for mechanical ventilation. Death rate was 27.8% (27/97) in those treated with hydroxychloroquine, 22.1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trials or Clinical Experience

- (25/113) in those treated with hydroxychloroquine and azithromycin, and 11.4% (18/158) in those not treated with hydroxychloroquine; rate of ventilation was 13.3, 6.9, and 14.1%, respectively. Use of hydroxychloroquine alone (but not use of hydroxychloroquine and azithromycin) was associated with increased overall mortality compared with no hydroxychloroquine; use of hydroxychloroquine with or without azithromycin did not reduce the risk of mechanical ventilation. **Note:** The pt population included only elderly males 59-75 years of age, many with significant comorbidities. This analysis did not look at efficacy measures.

Two different retrospective studies analyzed outcome data for hospitalized pts with confirmed COVID-19 in New York to assess the effects of treatment with hydroxychloroquine with or without azithromycin (Rosenberg et al, Geleris et al): Results of these studies suggest that use of hydroxychloroquine with or without azithromycin is **not** associated with decreased in-hospital mortality.

Rosenberg et al analyzed data for 1438 pts (735 received hydroxychloroquine with azithromycin, 271 received hydroxychloroquine alone, 211 received azithromycin alone, 221 received neither drug) and assessed in-hospital mortality (primary outcome). Overall, in-hospital mortality was 20.3%; in-hospital mortality was 25.7, 19.9, 10, or 12.7% in those treated with hydroxychloroquine with azithromycin, hydroxychloroquine alone, azithromycin alone, or neither drug, respectively.

Geleris et al analyzed data for 1376 pts (811 received hydroxychloroquine [486 of these also received azithromycin] and 565 did not receive hydroxychloroquine [127 of these received azithromycin]) and assessed the primary end point of time from study baseline to intubation or death. Overall, 346 pts (25.1%) progressed to a primary end point of intubation and/or death and the composite end point of intubation or
death was not affected by hydroxychloroquine treatment (intubation or death reported in 32.3% of pts treated with hydroxychloroquine and 14.9% of pts not treated with the drug). 46

Large, randomized, controlled, adaptive trial evaluating efficacy of 6 different treatments for prevention of death in hospitalized pts with COVID-19 compared with usual care alone (NCT04381936; RECOVERY): Study protocol included a treatment arm to evaluate efficacy of hydroxychloroquine sulfate (two 800-mg doses given 6 hours apart followed by two 400-mg doses given 12 and 24 hours after the initial dose on day 1, then 400 mg every 12 hours thereafter for 9 days). 53, 54 The investigators announced preliminary results for the hydroxychloroquine treatment arm. A total of 1542 pts were randomized to receive hydroxychloroquine with usual care and 3132 pts were randomized to usual care alone. Data for these pts indicate that hydroxychloroquine did not provide a significant difference in the primary end point of 28-day mortality (25.7% in those treated with hydroxychloroquine with usual care compared with 23.5% in those treated with usual care alone). In addition, there was no evidence of beneficial effects on duration of hospitalization or other outcomes. 53 **Note:** Data regarding pt demographics and clinical characteristics (e.g., age, disease severity, comorbidities) and time from diagnosis to study enrollment have not been provided to date.

Large, multinational, retrospective study analyzed outcome data for hospitalized pts with confirmed COVID-19 to assess the effects of hydroxychloroquine or chloroquine used with or without a macrolide (Mehra et al; now retracted): Original publication included data obtained worldwide for 96,032 pts hospitalized with COVID-19 between Dec 20, 2019 and Apr 14, 2020, including 14,888 pts who received chloroquine or hydroxychloroquine with or without a macrolide (azithromycin or clarithromycin) initiated within 48 hours of diagnosis (treatment group) and 81,144

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage**</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
pts who did not receive these drugs (control group). Based on those data, in-hospital mortality rate in the control group was 9.3% compared with 18% in those treated with hydroxychloroquine alone (n=3016), 23.8% in those treated with hydroxychloroquine and a macrolide (n=6221), 16.4% in those treated with chloroquine alone (n=1868), and 22.2% in those treated with chloroquine and a macrolide (n=3783). **Note: This published study has now been retracted by the publisher at the request of 3 of the original authors.**

Concerns were raised with respect to the veracity of the data and analyses conducted by a global healthcare data collaborative. Hydroxychloroquine for postexposure prophylaxis of COVID-19 randomized, placebo-controlled trial in the US and Canada (NCT04308668): Asymptomatic adults with occupational or household exposure to an individual with COVID-19 were randomly assigned 1:1 to receive postexposure prophylaxis with a 5-day regimen of hydroxychloroquine sulfate (initial 800-mg dose followed by a 600-mg dose given 6-8 hours after first dose on day 1, then 600 mg once daily for 4 additional days) or placebo (folate tablets). A total of 821 asymptomatic adults were enrolled within 4 days after COVID-19 exposure (414 randomized to hydroxychloroquine and 407 randomized to placebo); 66% were healthcare workers. Overall, 88% of participants reported high-risk exposures (occurred at a distance of <6 feet for >10 minutes while not wearing a face mask or eye shield) and the others reported moderate-risk exposures (occurred at a distance of <6 feet for >10 minutes while wearing a face mask but no eye shield). **Note: Participants were recruited primarily through social media outreach and traditional media platforms and were enrolled using an internet-based survey. The exposure event and subsequent onset of new symptoms and illness compatible with COVID-19 after enrollment were self-reported using email surveys on days 1, 5, 10, and 14 and at 4-6 weeks.** Results of these surveys and

Hydroxychloroquine for postexposure prophylaxis of COVID-19 randomized, placebo-controlled trial in the US and Canada (NCT04308668): Asymptomatic adults with occupational or household exposure to an individual with COVID-19 were randomly assigned 1:1 to receive postexposure prophylaxis with a 5-day regimen of hydroxychloroquine sulfate (initial 800-mg dose followed by a 600-mg dose given 6-8 hours after first dose on day 1, then 600 mg once daily for 4 additional days) or placebo (folate tablets). A total of 821 asymptomatic adults were enrolled within 4 days after COVID-19 exposure (414 randomized to hydroxychloroquine and 407 randomized to hydroxychloroquine and 407 randomized to placebo); 66% were healthcare workers. Overall, 88% of participants reported high-risk exposures (occurred at a distance of <6 feet for >10 minutes while not wearing a face mask or eye shield) and the others reported moderate-risk exposures (occurred at a distance of <6 feet for >10 minutes while wearing a face mask but no eye shield). **Note: Participants were recruited primarily through social media outreach and traditional media platforms and were enrolled using an internet-based survey. The exposure event and subsequent onset of new symptoms and illness compatible with COVID-19 after enrollment were self-reported using email surveys on days 1, 5, 10, and 14 and at 4-6 weeks.** Results of these surveys and
Information obtained using additional forms of follow-up indicated that confirmed or probable COVID-19 (based on self-reported symptoms or PCR testing) developed in 13% of participants overall (107/821) and did not differ significantly between those who received hydroxychloroquine prophylaxis (11.8%) and those who received placebo (14.3%).

Note: The various limitations of the trial design should be considered when interpreting the results. Exposure to someone with confirmed COVID-19, time from the exposure event to initiation of prophylaxis, and all outcome data (including possible COVID-19 symptoms and PCR test results) were self-reported by study participants. COVID-19 was confirmed with PCR testing in only a small percentage (<3%) of participants who self-reported COVID-19 symptoms. Survey results indicated that full adherence to the 5-day prophylaxis regimen was reported by only 75% of patients randomized to hydroxychloroquine and 83% of those randomized to placebo. In addition, a total of 52 participants did not complete any surveys after study enrollment.

Efficacy measures: Initial studies evaluating hydroxychloroquine based efficacy of the drug on negative conversion in nasopharyngeal samples at day 6 or 7. RT-PCR tests using upper and lower respiratory specimens (including nasopharyngeal and oropharyngeal swabs) are recommended for diagnosis of COVID-19; however, dynamics of SARS-CoV-2 in infected patients (untreated or treated) and presence of the virus at various body sites over the course of infection have not been fully determined.

Hydroxychloroquine with azithromycin randomized, double-blind, placebo-controlled trial sponsored by NIAID (A5395; NCT04358068): Symptomatic adults with COVID-19 not currently requiring hospitalization will be randomized to receive hydroxychloroquine (400 mg twice daily on day 1, then 200 mg twice daily for 6 days) and azithromycin (500 mg on day 1, then 250 mg once daily for 4 days) or placebo and followed for 23 weeks to determine

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Neuramini-</td>
<td>8:18.28</td>
<td>Antivirals active against influenza viruses</td>
<td>In a retrospective case series of 99 patients with COVID-19 at single center in Wuhan from 1/1/20 to 1/20/20, 76% of patients received antiviral treatment, including oseltamivir (75 mg orally every 12 hours). At the time of evaluation, 58% of patients remained hospitalized, 31% had been discharged, and 11% had died. While oseltamivir is noted to have been widely used for confirmed or suspected COVID-19 cases in hospitals in China, there has been no exact evidence to date that oseltamivir is effective in the treatment of COVID-19. Neither oseltamivir nor zanamivir has demonstrated inhibition of cytopathic effect against SARS-CoV in in vitro cell culture.</td>
<td>Dosage of oseltamivir in the case series of 99 patients was 75 mg orally every 12 hours. Dosages of oseltamivir from registered trials (either recruiting, or not yet recruiting) vary, but include 300 mg orally daily, 75 mg orally once or twice daily, and 4–6 mg/kg orally (frequency not specified). No data to date support use in the treatment of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>8:18.32</td>
<td>Antiviral</td>
<td>Various clinical trials initiated in US, China, and other countries</td>
<td>Optimal dosage and duration of treatment not known<sup>25, 26</sup></td>
<td>Not commercially available; most promising direct-acting antiviral (DAA) currently being investigated for COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinicaltrials.gov trials for COVID-19 that include oseltamivir<sup>5</sup>: NCT04303299, NCT04261270, NCT04255017, NCT04338698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phase 3 randomized, open-label trial in hospitalized pts with severe COVID-19 (NCT04292899; GS-US-540-5773; SIMPLE-Severe) sponsored by the manufacturer (Gilead): Initial study protocol was designed to evaluate safety and antiviral activity of 5- and 10-day regimens of remdesivir (200 mg IV on day 1, followed by 100 mg IV once daily for total of 5 or 10 days) in conjunction with standard of care in adults with severe COVID-19 not receiving mechanical ventilation at study entry. Protocol was subsequently modified to include pts 12 years of age or older, add an extension phase, and include a cohort of pts receiving mechanical ventilation. Data for the initial 397 pts not requiring mechanical ventilation at study entry (200 received a 5-day regimen and 197 received a 10-day regimen) indicate similar clinical improvement with both treatment durations after adjusting for baseline clinical status. Pt demographics and clinical characteristics at baseline generally were similar in both groups, although the 10-day group included a higher percentage of pts in the most severe disease categories and a higher proportion of men (who are known to have worse COVID-19 outcomes than women); median duration of symptoms before first dose of remdesivir was similar in both groups (8 or 9 days). At day 14, 129/200 pts (65%) in the 5-day group and 106/197 pts (54%) in the 10-day group achieved clinical recovery (defined as an improvement of at least 2 points from baseline on a 7-point ordinal scale). After adjusting for baseline imbalances in disease severity, data indicate that clinical status at day 14, time to clinical improvement, recovery, and death (from any cause) were similar in both groups. Although eligibility criteria according to the initial study protocol excluded pts receiving invasive mechanical ventilation, 4 pts in the 5-day group and 9 pts in the 10-day group were receiving invasive mechanical ventilation or ECMO (need identified after initial screening and before treatment initiation or pts were accepted as protocol deviations). There also were more pts in the 10-day group (30%) who required high-flow oxygen support at follow-up.</td>
<td>followed by 2.5 mg/kg by IV infusion once daily on days 2-10 (for pts requiring invasive mechanical ventilation and/or ECMO) or followed by 2.5 mg/kg by IV infusion once daily on days 2-5 with option to extend treatment up to day 10 if needed (for pts not requiring mechanical ventilation and/or ECMO).</td>
<td>providers administering remdesivir comply with certain mandatory record keeping and reporting requirements (including adverse event reporting to FDA MedWatch. Consult the EUA, EUA fact sheet for healthcare providers,[25] and EUA fact sheet for patients and parent/caregivers[27] for additional information.</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>baseline compared with the 5-day group (24%). Post-hoc analysis among pts receiving mechanical ventilation or ECMO at day 5 indicate that, by day 14, 40% of such individuals who had received the 5-day regimen had died compared with 17% of those who had received the 10-day regimen. Treatment with remdesivir beyond 5 days did not appear to improve outcomes among pts who were receiving noninvasive positive-pressure ventilation or high-flow oxygen, low-flow oxygen, or breathing ambient air. Note: Results for the initial 397 study pts with severe COVID-19 not requiring mechanical ventilation at study entry cannot be extrapolated to critically ill pts receiving mechanical ventilation. 23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 3 randomized, open-label trial in hospitalized pts with moderate COVID-19 (NCT04292730; GS-US-540-5774; SIMPLE-Moderate) sponsored by the manufacturer (Gilead): Initial protocol was designed to evaluate safety and antiviral activity of 5- and 10-day regimens of remdesivir (200 mg IV on day 1, followed by 100 mg IV once daily for total of 5 or 10 days) in conjunction with standard of care compared with standard of care alone in adults with moderate COVID-19 (i.e., hospitalized with evidence of pulmonary infiltrates but without reduced oxygen levels); 11 **protocol was subsequently modified to include pts 12 years of age or older and add an extension phase to include additional pts.** 11 **Manufacturer announced preliminary data** for the initial group of pts who received a 5-day regimen of remdesivir with standard of care (n=191), 10-day regimen of the drug with standard of care (n=194), or standard of care alone (n=200). At day 11, data indicate that 70, 65, or 61% of pts in the 5-day, 10-day, or standard of care alone group, respectively, had clinical improvement based on at least a 2-point improvement from baseline on a 7-point ordinal scale. When clinical improvement at day 11 was based on at least a 1-point improvement, data indicate a statistically significant improvement in clinical status in those treated with a 5-day regimen of remdesivir compared with standard of care alone (76% of
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>pts in the 5-day group and 66% in the standard of care alone group had clinical improvement. Oxygen support of any kind was required in 11% of pts treated with standard of care alone compared with 6 or 7% of pts in the 5- or 10-day group, respectively. Although the differences were not statistically significant, at least a 1-point worsening of clinical status was reported in 11% of pts treated with standard of care alone compared with 3 or 6% of pts in the 5- or 10-day group, respectively. There were 4 deaths reported in the standard of care alone group compared with none in the 5-day group and 2 in the 10-day group. Note: Data regarding pt demographics and clinical characteristics at study enrollment (e.g., age, comorbidities, time to initiation of treatment after symptom onset) and information on any additional supportive treatment received not provided to date.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 3 adaptive, randomized, double-blind, placebo-controlled trial (NIAID Adaptive COVID-19 Treatment Trial 1 [ACTT-1]; NCT04280705) in hospitalized adults with COVID-19: 1063 pts were randomized 1:1 to receive remdesivir (200 mg IV on day 1, then 100 mg once daily on days 2-10 or until hospital discharge or death) or placebo. **13, 22** All pts received supportive care according to the standard of care for the trial site hospital. Baseline demographics and clinical characteristics (e.g., age, disease severity, comorbidities at study enrollment, time to initiation of treatment after symptom onset) were similar in both groups. Overall, 88.7% of pts had severe disease at study enrollment and the median time from symptom onset to randomization was 9 days (range: 6-13 days). Preliminary data analysis that included 1059 pts (538 randomized to remdesivir and 521 randomized to placebo) indicated shorter median time to recovery in the remdesivir group (11 days) vs the placebo group (15 days) and suggested that remdesivir treatment may have provided a survival benefit (Kaplan-Meier estimates of mortality by day 14 were 7.1% in the remdesivir group vs 11.9% in the placebo group). **22**

Dosage
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Expanded access IND protocol (NCT04323761): The manufacturer (Gilead) established a protocol for emergency access to remdesivir for the treatment of severe acute COVID-19 in hospitalized adults and children 12 years of age or older.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compassionate use access: The manufacturer (Gilead) has transitioned from individual compassionate use requests to expanded access programs for emergency access to the drug for the treatment of severe COVID-19. The only individual compassionate use requests for the drug still being reviewed by the manufacturer are those for pregnant women and children <18 years of age with confirmed COVID-19 and severe manifestations of the disease. (https://rdvcu.gilead.com/)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compassionate use access (NCT04302766): May be available for DoD personnel through treatment IND protocol sponsored by US Army Medical Research and Development Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data from the manufacturer’s compassionate use program: Preliminary data are available for a cohort of 53 adults from multiple sites in the US, Italy, Japan, and other countries who were hospitalized with severe COVID-19 and received treatment with remdesivir; 40 pts received the full 10-day regimen (200 mg IV on day 1, then 100 mg IV on days 2-10), 10 pts received 5-9 days and 3 pts received less than 5 days of treatment with the drug. At baseline, 30 pts (57%) were receiving mechanical ventilation and 4 (18%) were receiving extracorporeal membrane oxygenation (ECMO). Over a median follow-up of 18 days after first dose, 36 pts (68%) showed clinical improvement based on oxygen-support status and 8 pts (15%) worsened. There were 7 deaths (13%), including 6 pts receiving invasive ventilation. Adverse effects (e.g., increased hepatic enzymes, diarrhea, rash, renal impairment, hypotension) were reported in 32 pts (60%); 12 pts (23%) had serious adverse effects (e.g., multiple organ dysfunction syndrome, septic shock, acute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Umifenovir Arbidol®</td>
<td>8:18.92</td>
<td>Antiviral</td>
<td>Broad-spectrum antiviral with in vitro activity against various viruses, including coronaviruses. Although data limited, in vitro activity against SARS-CoV-1 and SARS-CoV-2 reported. Licensed in China, Russia, Ukraine, and possibly other countries for prophylaxis and treatment of influenza.</td>
<td>Retrospective cohort study in 50 adults with COVID-19 in China suggests better viral suppression with umifenovir vs LPV/RTV. All pts received conventional therapy, including interferon α-2b. At 7 days after hospital admission, SARS-CoV-2 was undetectable in 50% of pts treated with umifenovir vs 23.5% treated with LPV-RTV; at 14 days, viral load undetectable in all pts treated with umifenovir vs 44.1% treated with LPV/RTV. Duration of positive SARS-CoV-2 RNA positive test was shorter with umifenovir vs LPV-RTV. Retrospective cohort study in 33 adults with COVID-19 in China suggests more favorable outcome with LPV/RTV plus umifenovir vs LPV/RTV alone: Primary end point was negative conversion in</td>
<td>Dosage recommended for treatment of COVID-19 in China: Adults, 200 mg orally 3 times daily for no more than 10 days. Included in some guidelines for treatment of COVID-19. Efficacy for the treatment of COVID-19 not established.</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nasopharyngeal samples and progression or improvement of pneumonia. At 7 days, SARS-CoV-2 undetectable in nasopharyngeal specimens in 12/16 pts (75%) treated with LPV/RTV plus umifenovir vs 6/17 pts (35%) treated with LPV/RTV alone; at 14 days, undetectable in 15/16 pts (94%) treated with both drugs vs 9/17 pts (53%) treated with LPV/RTV alone. At 7 days, chest CT scans were improving in 11/16 pts (69%) treated with both drugs vs 5/17 pts (29%) treated with LPV/RTV alone.¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retrospective cohort study in 81 hospitalized, non-ICU adults with COVID-19 in China found no difference in clearance of SARS-CoV-2 virus between pts receiving umifenovir vs those who did not. At 7 days, SARS-CoV-2 undetectable in pharyngeal specimens in 33/45 pts (73.3%) treated with umifenovir vs 28/36 pts (77.8%) who did not receive umifenovir. No difference in median time from onset of symptoms to negative SARS-CoV-2 test (18 vs 16 days).⁹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open-label, prospective, randomized, multicenter study in 236 adults with COVID-19 in China (ChiCTR200030254): When favipiravir was compared with umifenovir, clinical recovery rate was greater in those treated with favipiravir than in those treated with umifenovir.⁶ (See Favipiravir in this Evidence Table.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Randomized, single-center, partially blinded trial in China (NCT0425885) evaluated efficacy of umifenovir in conjunction with standard care vs LPV/RTV in conjunction with standard care vs standard care without an antiviral in hospitalized adults with mild/moderate COVID-19.²¹⁰ Data for the 86 enrolled pts suggest no difference in mean time for positive-to-negative conversion of SARS-CoV-2 nucleic acid in respiratory specimens and no difference in clinical outcomes between pts treated with umifenovir or LPV/RTV compared with no antiviral therapy.¹⁰</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04260594 (not yet recruiting): Randomized, open-label trial evaluating efficacy and safety of umifenovir in conjunction with standard of care in adults with COVID-19.¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Updated 6-16-20. The current version of this document can be found on the [ASHP COVID-19 Resource Center](https://www.ashp.org/Pages/default.aspx). This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
SUPPORTING AGENTS

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anakinra
Updated 5/28/20</td>
<td>92:36 Disease-modifying Anti-rheumatic Drug</td>
<td>Recombinant human interleukin-1 (IL-1) receptor antagonist</td>
<td>Currently no known published controlled clinical trial evidence supporting efficacy or safety of anakinra in treating COVID-19<sup>1</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Insufficient clinical data to recommend either for or against use in the treatment of COVID-19<sup>7</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-1 levels are elevated in patients with COVID-19; anakinra may potentially combat cytokine release syndrome (CRS) symptoms in severely ill COVID-19 patients<sup>5, 1, 4, 7</sup></td>
<td>Encouraging preliminary results reported in China with another disease-modifying antirheumatic drug, tocilizumab<sup>5, 6</sup></td>
<td>Trial protocol in Italy (COVID-19 with hyperinflammation and respiratory distress): 100 mg by IV infusion every 6 hours (total of 400 mg daily) for 15 days<sup>1</sup></td>
<td>Safety profile: Well established in adults with sepsis and has been studied extensively in severely ill pediatric patients with complications of rheumatologic conditions; pediatric data on use in acute respiratory distress syndrome/sepsis are limited<sup>7</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>France: A small case series (9 patients) of open-label anakinra treatment in hospitalized (non-ICU) adults with moderate to severe COVID-19 pneumonia has been published with encouraging results<sup>8</sup></td>
<td>Italy: Phase 3 randomized, open-label, multicenter trial (NCT04324021) initiated by the manufacturer (Swedish Orphan Biovitrum) to evaluate efficacy and safety of anakinra or emapalumab with standard of care in reducing hyperinflammation and respiratory distress in patients with COVID-19 is recruiting<sup>3</sup></td>
<td>Some studies under way in Greece and Belgium are evaluating 100 mg given subcutaneously once daily for 10 or 28 days, respectively, or until hospital discharge<sup>3</sup></td>
<td>Pregnancy: Limited evidence to date: unintentional first trimester exposure considered unlikely to be harmful<sup>7</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In a French case series, anakinra was given subcutaneously in a dosage of 100 mg every 12 hours on days 1-3, then 100 mg once daily from day 4-10<sup>8</sup></td>
<td>In a French case series, anakinra was given subcutaneously in a dosage of 100 mg every 12 hours on days 1-3, then 100 mg once daily from day 4-10<sup>8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note: Anakinra is approved only for subcutaneous administration in the U.S.)<sup>1, 7</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td>Various dosage regimens are being studied<sup>1,8</sup></td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid
Updated 6/11/20</td>
<td>88:12 Vitamin C</td>
<td>Antioxidant and cofactor for numerous physiologic reactions; may support host defenses against infection and protect host cells against infection-induced oxidative stress<sup>3, 5, 7</sup></td>
<td>Phase 3 randomized, blinded, placebo-controlled trial (NCT03680274; LOVIT) evaluating effect of high-dose IV ascorbic acid on mortality and persistent organ dysfunction in septic ICU patients (including COVID-19 patients); other clinical trials of high-dose IV ascorbic acid for treatment of COVID-19 registered, including:</td>
<td>Various dosages of IV ascorbic acid used in COVID-19 studies; 50 mg/kg IV every 6 hours for 4 days used in NCT03680274 and NCT04401150<sup>1</sup></td>
<td>Current data not specific to COVID-19; additional study needed<sup>6</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presence of infection may decrease vitamin C concentrations<sup>2, 5</sup></td>
<td>NCT04264533 NCT04323514 NCT04363216 NCT04401150 (LOVIT-COVID) NCT04395768</td>
<td>Various dosages of IV ascorbic acid used in sepsis studies; 50 mg/kg every 6 hours for 4 days used in CITRIS-ALLI study; 1.5 g every 6 hours until shock resolution or for up to 10 days used in VITAMINS study<sup>4, 8-10</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV ascorbic acid:</td>
<td>Oral ascorbic acid:</td>
<td>Oral ascorbic acid:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Randomized, open-label study (NCT04342728; COVIDAtoZ) initiated to evaluate oral ascorbic acid (8 g daily), zinc, or both in combination in symptomatic outpatients receiving a positive COVID-19 test result; other clinical trials of outpatient oral ascorbic acid treatment registered, including NCT04395768<sup>1</sup></td>
<td>NCT04342728: Oral ascorbic acid dosage of 8 g daily, given in 2 or 3 divided doses<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCT04395768 (outpatients): Ascorbic acid 1 g orally 3 times daily for 7 days following initial 200-mg/kg IV dose</td>
<td>NCT04395768 (outpatients): Ascorbic acid 1 g orally 3 times daily for 7 days following initial 200-mg/kg IV dose</td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Azithromycin | 8:12,12 | Macrolides | Antibacterial with some in vitro activity against some viruses (e.g., influenza A H1N1, Zika) | Included at lower dosages as an active or placebo-equivalent comparator (control) in other COVID-19 prevention or treatment studies 1
Included as a component of some hydroxychloroquine-based combination regimens being studied for prevention or treatment of COVID-19 7
Other infections: Sepsis: Meta-analysis of several small studies suggested beneficial effects from IV ascorbic acid; however, primary end points not improved in CITRIS-ALI study (NCT02106975) in patients with sepsis and ARDS or in VITAMINS study (NCT03333278) in patients with septic shock; additional studies under way 1, 6, 8-10
Pneumonia: Limited study data available regarding ascorbic acid (oral) in hospitalized patients with pneumonia 4, 6
Common cold: Effect of oral supplementation studied extensively; decreases duration of symptoms, may decrease incidence of common cold in individuals under heavy physical stress but not in overall population 2, 3 reactions (e.g., blood and urine glucose testing, nitrite and bilirubin concentrations, leukocyte counts). Manufacturer states to delay oxidation-reduction reaction-based tests until 24 hours after infusion, if possible 11 | Adjunctive treatment in certain respiratory viral infections: Although contradictory results reported, some evidence of beneficial immunomodulatory or anti-inflammatory effects when used in pts with some viral infections (e.g., influenza). 10, 12, 13 However, in a retrospective cohort study in critically ill pts with laboratory-confirmed MERS, there was no statistically significant difference in 90-day mortality rates or clearance of MERS-CoV RNA between those who received macrolide therapy and those who did not. 12 |

Adjunctive therapy in certain respiratory conditions: Some evidence of beneficial immunomodulatory or anti-inflammatory effects when used in pts with certain respiratory conditions (e.g., ARDS). 5 In a retrospective cohort study in pts with moderate or severe ARDS, a statistically significant improvement in 90-day survival was | Adjunctive treatment in certain viral infections: 500 mg once daily has been used 13
COVID-19: 500 mg on day 1, then 250 mg once daily on days 2-5 in conjunction with a 5-, 7-, or 10-day regimen of hydroxychloroquine has been used or is being investigated 7, 18, 19, 23, 24, 29 Current data insufficient to establish pros and cons of adjunctive use of azithromycin in management of COVID-19 Additional data needed from randomized, controlled clinical trials before any conclusions can be made regarding possible benefits of using a combined regimen of hydroxychloroquine and azithromycin in pts with COVID-19 NIH COVID-19 Treatment Guidelines Panel recommends against the use of a combined regimen of hydroxychloroquine and azithromycin for the treatment of COVID-19, except in the context of a clinical trial, because of the potential for toxicities. 22 (See Hydroxychloroquine in this Evidence Table.) |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>reported in those who received adjunctive azithromycin. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical experience in pts with COVID-19: Has been used for antibacterial coverage in hospitalized pts with COVID-19 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use in conjunction with hydroxychloroquine in pts with COVID-19: Azithromycin (500 mg on day 1, then 250 mg daily on days 2-5) has been used in addition to a 10-day regimen of hydroxychloroquine (600 mg daily) in an open-label nonrandomized study in France (6 pts), 7 open-label uncontrolled study in France (11 pts), 18 uncontrolled observational study in France (80 pts), 19 and larger uncontrolled observational study in France (1061 pts). 23 Data presented to date are insufficient to evaluate possible clinical benefits of azithromycin in pts with COVID-19. (See Hydroxychloroquine in this Evidence Table.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use in conjunction with hydroxychloroquine in hospitalized pts with COVID-19: Data from 2 retrospective studies that analyzed outcome data for hospitalized pts in New York treated with hydroxychloroquine with or without azithromycin indicate that use of the 4-aminoquinoline antimalarial with or without azithromycin is not associated with decreased in-hospital mortality. 20, 31 (See Hydroxychloroquine in this Evidence Table.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Randomized, double-blind, placebo-controlled trial sponsored by NIAID is evaluating efficacy of hydroxychloroquine with azithromycin for prevention of hospitalization and death in symptomatic adult outpatients with COVID-19 (A5395; NCT04358068). 24, 25 (See Hydroxychloroquine in this Evidence Table.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multiple clinical trials to evaluate azithromycin alone or azithromycin with hydroxychloroquine or chloroquine for treatment of COVID-19 are registered at clinicaltrials.gov (some listed below): 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IDSA recommends that a combined regimen of hydroxychloroquine (or chloroquine) and azithromycin be used for the treatment of COVID-19 only in the context of a clinical trial. 22 Because azithromycin and 4-aminoquinolines (hydroxychloroquine, chloroquine) are independently associated with QT prolongation, caution is advised if considering use of azithromycin with one of these drugs in pts with COVID-19, especially in outpatients who may not receive close monitoring and in those at risk for QT prolongation or receiving other drugs associated with arrhythmias. 20-22, 25-28 NIH panel states that macrolides (including azithromycin) should be used concomitantly with hydroxychloroquine (or chloroquine) only if necessary. In addition, because of the long half-lives of both azithromycin (up to 72 hours) and hydroxychloroquine (up to 40 days), caution is warranted even when the drugs are used sequentially. The panel states that use of doxycycline (instead of azithromycin) should be considered for empiric therapy of atypical pneumonia in COVID-19 pts receiving hydroxychloroquine (or chloroquine). 21 The benefits and risks of a combined regimen of azithromycin and hydroxychloroquine (or chloroquine) should be carefully assessed; if the regimen is used, diagnostic testing and monitoring are recommended to minimize risk of adverse effects, including drug-induced cardiac effects. 20, 22, 25-28 (See Hydroxychloroquine in this Evidence Table.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage(^a)</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Baricitinib (Olumiant(^\text{®}))</td>
<td>92:36 Disease-modifying Anti-rheumatic Drug</td>
<td>Janus kinase (JAK) 1 and 2 inhibitor; disrupts regulators of endocytosis (AP2-associated protein kinase 1 [AAK1] and cyclin G-associated kinase [GAK]), which may help reduce viral entry and inflammation; also may interfere with intracellular virus particle assembly.(^1,2) Inhibits JAK1 and JAK2-mediated cytokine release; may combat cytokine release syndrome (CRS) in severely ill patients.(^1,2,4,5) Ability to inhibit a variety of proinflammatory cytokines, including interferon, has been raised as a possible concern with the use of JAK inhibitors in the management of hyperinflammation resulting from viral infections such as COVID-19.(^2) Currently no known published controlled clinical trial evidence supporting efficacy or safety in patients with COVID-19.</td>
<td>NCT04329832, NCT04332107, NCT04334382, NCT04335552, NCT04336332, NCT04341727, NCT04358081, NCT04370782</td>
<td>Therapeutic dosages of baricitinib (2 or 4 mg orally once daily) are sufficient to inhibit AAK1.(^1,2,5) Dosage information not yet available (see Trials or Clinical Experience)</td>
<td>Minimal interaction with CYP enzymes and drug transporters and low protein binding of baricitinib allow for combined use with antiviral agents and other drugs.(^4,14) NIH COVID-19 Treatment Guidelines Panel recommends against use of JAK inhibitors for the treatment of COVID-19 except in the context of a clinical trial; the panel states that at present the broad immunosuppressive effect of JAK inhibitors outweighs the potential for benefit.(^11)</td>
</tr>
</tbody>
</table>

Updated 5/15/20

Adaptive phase 2/3 clinical trial: Open-label study planned to evaluate safety and efficacy of baricitinib in hospitalized patients with COVID-19 (NCT04340232)\(^6\) Other planned clinical trials will evaluate baricitinib in combination with or without an antiviral agent for the treatment of COVID-19 (NCT04346147, NCT04320277, NCT04345289, NCT04321993)\(^7,10\)
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colchicine</td>
<td>92:16 Antigout Agents</td>
<td>Exerts broad anti-inflammatory and immunomodulatory effects through multiple mechanisms, including inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome assembly and disruption of cytoskeletal functions through inhibition of microtubule polymerization</td>
<td>Minimal anecdotal experience and no clinical trial data reported to date in COVID-19</td>
<td>Minimal anecdotal experience and no clinical trial data reported to date in COVID-19</td>
<td>Safety and efficacy for treatment of COVID-19 not established</td>
</tr>
<tr>
<td>Updated 6/3/20</td>
<td></td>
<td>May combat the hyper-inflammatory state of COVID-19 (e.g., cytokine storm) by suppressing proinflammatory cytokines and chemokines</td>
<td>Retrospective review of computerized healthcare database found no difference in baseline use of colchicine (0.53 vs 0.48%) between patients with a positive RT-PCR result for SARS-CoV-2 (n = 1317) and those with a negative result (n = 13,203), suggesting a lack of protective effect for colchicine against SARS-CoV-2 infection; indications for and duration of colchicine use were unknown</td>
<td>Dosage in NCT04322682: Colchicine 0.5 mg orally twice daily for 3 days, then 0.5 mg once daily for 27 days</td>
<td>The potential for toxic doses of colchicine to affect alveolar type II pneumocytes (which may inhibit surfactant release and contribute to ARDS) and increase the risk of multiple-organ failure and disseminated intravascular coagulation (DIC) has been raised as a possible concern with the use of colchicine in COVID-19 patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NLRP3 inflammasome activation results in release of interleukins, including IL-1β</td>
<td>Phase 3, randomized, double-blind, placebo-controlled study (NCT04322682; COL-CORONA) initiated in adults with COVID-19 and at least one high-risk criterion to evaluate effect of colchicine on mortality, hospitalization rate, and need for mechanical ventilation; study excludes enrollment of currently hospitalized patients; enrollment target is approximately 6000 pts</td>
<td>Other studies are evaluating various colchicine dosages and durations for treatment of COVID-19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In experimental models of acute respiratory distress syndrome/acute lung injury (ARDS/ALI), the NLRP3 inflammasome had a major role in the development of lung injury</td>
<td>Consider possible need for colchicine dosage adjustment; manufacturer-recommended dosages for labeled indications depend on patient’s age, renal and hepatic function, and concomitant use of interacting drugs, including protease inhibitors (e.g., lopinavir/ritonavir), other moderate or potent CYP3A4 inhibitors, and P-glycoprotein (P-gp) inhibitors</td>
<td>Use of colchicine in patients with renal or hepatic impairment receiving P-gp inhibitors or potent CYP3A4 inhibitors is contraindicated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential to limit COVID-19-related myocardial damage also has been hypothesized based on the drug’s mechanisms of action and promising results of ongoing research on colchicine in various cardi-ac conditions</td>
<td>Other registered randomized, parallel-group studies are evaluating the effects of colchicine on various outcome measures (e.g., mortality, markers of myocardial damage, clinical status, need for mechanical ventilation, duration of hospitalization) in patients with COVID-19: NCT04326790, NCT04322565, NCT04328480, NCT04350320, NCT04355143, NCT04392141, NCT04375202, NCT04360980, NCT04367168, NCT04403243, NCT04363437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SARS-CoV-1 envelope (E) protein, a viroporin involved in replication and virulence, activates the NLRP3 inflammasome in vitro in Vero E6 cells by forming calcium-permeable ion channels, leading to increased IL-1β production</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids (general)</td>
<td>68:04</td>
<td>Potent anti-inflammatory and antifibrotic properties; use of corticosteroids may prevent an extended cytokine response and may accelerate resolution of pulmonary and systemic inflammation in pneumonia.</td>
<td>Observational studies: Evidence suggests that corticosteroid use in patients with SARS, MERS, and influenza was associated with no survival benefit and possible harm (e.g., delayed viral clearance, avascular necrosis, psychosis, diabetes).[^1]^[^25] Uncontrolled observational data from the recent COVID-19 outbreak in China suggest a possible treatment benefit of methylprednisolone in COVID-19 patients with acute respiratory distress syndrome (ARDS).[^3]^[^13] (See Methylprednisolone in this Evidence Table.) Pending results of randomized controlled clinical studies specifically evaluating corticosteroids for COVID-19, indirect evidence from studies in patients with community-acquired pneumonia, ARDS, and other viral infections has been used to inform treatment decisions for COVID-19 patients.[^3]^[^5]^[^8]^[^9]^[^12]^[^15]^[^17]^[^25] Systemic corticosteroid therapy has been studied in several randomized controlled studies for the treatment of ARDS; overall evidence is low to moderate in quality and most studies were performed prior to the prelung protection strategy era. In a recent multicenter, unblinded, randomized controlled study (DEXA-ARDS trial), the effects of dexamethasone in conjunction with conventional care were evaluated in hospitalized patients with moderate-to-severe ARDS receiving lung-protective mechanical ventilation.[^17] Treatment with IV dexamethasone at a dosage of 20 mg once daily on days 1-5, followed by 10 mg once daily on days 6-10 resulted in reduced duration of mechanical ventilation and reduced overall mortality (i.e., 15% increase in 60-day survival) compared with conventional treatment alone.[^17] Based on results of this study, a clinical trial (NCT04325061) has been initiated to specifically evaluate the use of dexamethasone in patients with ARDS due to COVID-19[^21]. Other clinical trials have been initiated in various countries to evaluate use of IV dexamethasone.[^3]^[^5]^[^7]^[^8]^[^12]^[^17]^[^24]^[^25] In general, low to moderate dosages of corticosteroids are recommended in intubated patients with ARDS.[^8] Regimens used in China were typically methylprednisolone 40-80 mg IV daily for a course of 3-6 days.[^8] Some experts suggest that equivalent dosages of dexamethasone (i.e., 7-15 mg daily, typically 10 mg daily) may have an advantage of producing less fluid retention, since dexamethasone has less mineralocorticoid activity.[^8] This dosage of dexamethasone is consistent with those used in the DEXA-ARDS trial.[^8]^[^17] Higher dosages have been suggested for cytokine storm.[^1] (See Comments column.) Data on the use of corticosteroids in COVID-19 are limited.[^3]^[^5]^[^7]^[^24]^[^25] The benefits and risks of corticosteroid therapy should be carefully weighed before use in patients with COVID-19.[^1]^[^7] NIH, CDC, WHO, IDSA, and other experts have issued guidelines for the use of corticosteroids in patients with COVID-19 based on the currently available information. Recommendations are made according to the severity of illness, indications, and underlying medical conditions and should be considered on a case-by-case basis.[^1]^[^2]^[^8]^[^12]^[^24]^[^25] General recommendations: WHO, CDC, NIH, and IDSA generally recommend against the routine use of corticosteroids for the treatment of COVID-19 unless indicated for another reason (e.g., asthma or COPD exacerbation, refractory septic shock). Non-critical patients: Corticosteroids generally should not be used in the treatment of early or mild disease since the drugs can inhibit immune response, reduce pathogen clearance, and increase viral shedding.[^1]^[^8]^[^24] NIH recommends against the routine use of systemic corticosteroids for the treatment of COVID-19 in hospitalized patients unless they are in the intensive care unit.[^24] Critically ill patients: The Surviving Sepsis Campaign COVID-19 subcommittee (a joint initiative of the Society of Critical Care Medicine and the European Society of Intensive Care Medicine) recommends against the routine use of systemic corticosteroids in mechanically ventilated adults with COVID-19 and respiratory failure (without ARDS).[^12] However, these experts generally support a weak recommendation to use low-dose, short-duration systemic corticosteroids in the sickest patients with COVID-19 and ARDS.[^12]</td>
<td>Updated 6/3/20</td>
<td>Adrenals</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage⁸</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>corticosteroids (e.g., dexamethasone, hydrocortisone), oral corticosteroids (e.g., prednisone), or inhaled corticosteroids (e.g., budesonide, ciclesonide) for treatment of COVID-19 pneumonia or ARDS, including the following trials registered at clinicaltrials.gov:</td>
<td></td>
<td></td>
<td>NCT04327401 NCT04344288 NCT04344730 NCT04348305 NCT04355637 NCT04359511 NCT04360876 NCT04381364</td>
<td>NIH also recommends against the routine use of systemic corticosteroids for the treatment of mechanically ventilated COVID-19 patients without ARDS. However, the NIH panel states that there is insufficient evidence for or against the use of systemic corticosteroids in mechanically ventilated patients with COVID-19 and ARDS.²⁴</td>
<td></td>
</tr>
<tr>
<td>Randomized controlled studies evaluating use of corticosteroids (e.g., hydrocortisone, dexamethasone, methylprednisolone) in septic shock suggest a small, but uncertain mortality reduction.³,⁴</td>
<td></td>
<td></td>
<td></td>
<td>IDSA suggests against using corticosteroids in hospitalized patients with COVID-19 pneumonia; however, in those with ARDS due to COVID-19, systemic corticosteroids may be used in the context of a clinical trial.²⁵</td>
<td></td>
</tr>
<tr>
<td>Cytokine storm: There is no well-established or evidence-based treatment for cytokine storm in patients with COVID-19.⁸ However, some experts suggest that use of more potent immunosuppression with corticosteroids may be beneficial in such patients.⁸ These experts suggest higher dosages of corticosteroids (e.g., IV methylprednisolone 60-125 mg every 6 hours for up to 3 days) followed by tapering of the dose when inflammatory markers (e.g., C-reactive protein levels) begin to decrease.⁸ The decision to use corticosteroids in patients with early signs of cytokine storm should be balanced with the known adverse effects.²⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic shock: The effect of corticosteroids in COVID-19 patients with sepsis or septic shock may be different than the effects seen in those with ARDS.¹² The Surviving Sepsis Campaign and NIH suggest the use of low-dose corticosteroid therapy (e.g., hydrocortisone 200 mg daily as an IV infusion or intermittent doses) over no corticosteroid therapy in adults with COVID-19 and refractory shock.¹²,²⁴ Clinicians considering corticosteroids for such patients with COVID-19 should balance the potential small reduction in mortality with potential effects of prolonged coronavirus shedding.¹ If corticosteroids are prescribed, monitor and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage<sup>a</sup></td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

treat adverse effects including hyperglycemia, hypernatremia, and hypokalemia.¹⁻⁴

Patients receiving corticosteroid therapy for chronic conditions: NIH states that oral corticosteroids used for the treatment of an underlying condition prior to COVID-19 infection (e.g., primary or secondary adrenal insufficiency, rheumatologic diseases) should not be discontinued. Supplemental or stress dosages of corticosteroids may be indicated on an individual basis in patients with such conditions. The guidelines also recommend that inhaled corticosteroids used daily for the management of asthma and COPD to control airway inflammation should not be discontinued in patients with COVID-19.²⁴

Rheumatology experts, including members of the American College of Rheumatology COVID-19 Clinical Guidance Task Force, state that abrupt discontinuance of corticosteroid therapy in patients with rheumatologic diseases should be avoided regardless of COVID-19 exposure or infection status. These experts also state that if indicated, corticosteroids should be used at the lowest effective dosage to control manifestations, but also acknowledge that higher dosages may be necessary in the context of severe, vital organ-threatening rheumatologic disease even following COVID-19 exposure.²⁸⁻³⁰

Endocrinology experts state that patients with primary or secondary adrenal insufficiency who are receiving prolonged corticosteroid therapy should follow usual steroid “sick day rules” since these individuals may not be able to mount a normal stress response in the event of COVID-19 infection.^{19,26} If such individuals develop symptoms such as fever and a dry continuous cough, they should immediately double their daily oral corticosteroid dosage and continue with this regimen until the fever subsides.¹⁹ These guidelines also
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
</table>

apply to patients who are receiving prolonged therapy (> 3 months) with corticosteroids for underlying inflammatory conditions, including asthma, allergy, and rheumatoid arthritis. In such patients whose condition worsens or in those experiencing vomiting or diarrhea, treatment with parenteral corticosteroids may be necessary. Administration of physiologic stress doses of corticosteroids (e.g., IV hydrocortisone 50-100 mg 3 times daily) and not pharmacologic doses should be considered in all cases to avoid potentially fatal adrenal failure. Additional study is needed to determine the optimum corticosteroid stress dosage regimen in patients with COVID-19. There is some evidence suggesting that continuous IV infusion of hydrocortisone (following an initial IV bolus dose) may provide more stable circulating cortisol concentrations in patients with adrenal insufficiency and reduce the potentially harmful effects of peak and trough concentrations of cortisol on the immune system.

Pregnancy considerations: For pregnant women with COVID-19, NIH guidelines state that the antenatal use of corticosteroids that cross the placenta (i.e., betamethasone, dexamethasone) is generally reserved for when administration is required for fetal benefit. Other systemic corticosteroids do not cross the placenta, and pregnancy is not a reason to restrict their use if otherwise indicated. ACOG recommends against administration of antenatal corticosteroids for fetal benefit in the late preterm period (i.e., 34 weeks and 0 days through 36 weeks and 6 days) in patients with suspected or confirmed COVID-19 because the benefits of such therapy in late preterm are less well established. Treatment should be individualized, weighing the neonatal benefits of antenatal corticosteroid therapy with the risks of potential harm to the pregnant patient.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoprostenol (inhaled)</td>
<td>48:48</td>
<td>Selective pulmonary vasodilator; may be useful in the adjunctive treatment of acute respiratory distress syndrome (ARDS), a potential complication of COVID-19 [1-9]</td>
<td>No studies evaluating use specifically in COVID-19 patients [9] Experience in patients with ARDS indicates that inhaled epoprostenol can substantially reduce mean pulmonary artery pressure and improve oxygenation in such patients; however, data demonstrating clinical benefit are lacking [1, 4-9]</td>
<td>Various dosages of inhaled epoprostenol have been used in ARDS studies [2, 9] Dosages up to 50 ng/kg per minute have been used (titrated to response) in patients with ARDS. [1, 4-6, 9] To provide a clinically important increase in PaO₂ and reduction in pulmonary artery pressure, data from these studies suggest that the most effective and safe dosage appears to be 20-30 ng/kg per minute in adults and 30 ng/kg per minute in pediatric patients [9]</td>
<td>The Surviving Sepsis Campaign states that due to the lack of adequately powered randomized controlled studies, a recommendation cannot be made for or against the use of inhaled prostacyclins in COVID-19 patients with severe ARDS [10]</td>
</tr>
<tr>
<td>Updated 5/28/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferons</td>
<td>8:18:20</td>
<td>Interferons (IFNs) modulate immune responses to some viral infections; in vitro studies indicate only weak induction of IFN following SARS-CoV-2 infection, and a possible role for IFNs in prophylaxis or early treatment of COVID-19 has been suggested to compensate for possibly insufficient endogenous IFN production [1, 3, 4, 7, 18]</td>
<td>Only limited clinical trial data available to date specifically evaluating efficacy of IFNs for treatment of COVID-19; for information on additional studies including IFN alfa or IFN beta as a component of combination therapy (e.g., background regimen), see antiviral entries in this Evidence Table</td>
<td>IFN beta: Various sub-Q dosages of IFN beta-1a and IFN beta-1b are being evaluated for treatment of COVID-19 [10, 16] Open-label, randomized study in hospitalized adults with COVID-19, mainly mild disease (NCT04276688): IFN beta-1b 8 million units was given sub-Q on alternate days for 1, 2, or 3 doses (when initiated on day 5-6, 3-4, or 1-2, respectively, following symptom onset) in conjunction with 14-day regimen of LPV/RTV and ribavirin [10, 16] Open-label, randomized study in hospitalized adults with COVID-19, except in the context of a clinical trial, because no benefit was observed with use of IFNs for treatment of other coronavirus infections (SARS, MERS), clinical trial results for treatment of COVID-19 are lacking, and toxicity of IFNs outweighs the potential for benefit</td>
<td>Efficacy and safety of IFNs for treatment or prevention of COVID-19 not established Relative effectiveness of different IFNs against SARS-CoV-2 not established</td>
</tr>
<tr>
<td>Added 5/28/20</td>
<td>10:00</td>
<td>Antineoplastic Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferons</td>
<td>92:20</td>
<td>Immunomodulatory Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinically relevant concentrations; in vitro study suggests SARS-CoV-2 is more sensitive than SARS-CoV-1 to IFN alfa but limited clinical data presented to date. In a retrospective study of 77 hospitalized adults with moderate COVID-19 disease who received aerosolized IFN alfa-2b (5 million units twice daily) (n = 7), umifenovir (Arbidol®) (n = 24), or both drugs (n = 46), time from symptom onset to negative RT-PCR result in throat swab appeared to be shorter in those receiving IFN alfa-2b alone or in combination with umifenovir compared with those receiving umifenovir alone; this exploratory study was small and nonrandomized, and treatment groups were of unequal size and determined to be of unknown whether limited receptor distribution might also affect efficacy.

Sub-Q peginterferon lambda-1a (not commercially available in U.S.) is being evaluated for treatment (e.g., NCT04354259, NCT04388709) and postexposure prophylaxis (e.g., NCT04344600) of SARS-CoV-2 infection.

IFN alfa: Chinese guidelines suggest IFN alfa dosage of 5 million units (or equivalent) twice daily via atomization inhalation for treatment of COVID-19.

Peginterferon lambda-1a: For treatment of COVID-19 in adults (NCT04354259, NCT04388709): Peginterferon lambda-1a 180 mcg sub-Q; number of doses (1 dose or 2 doses given 1 week apart) depends on the protocol.

For postexposure prophylaxis of CoV-2 infection in adults (NCT04344600): Two 180-mcg sub-Q doses of peginterferon lambda-1a given 1 week apart.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylprednisolone (DEPO-Medrol®, SOLU-Medrol®)</td>
<td>68:04 Adrenal</td>
<td>Potent anti-inflammatory and antifibrotic properties; use of corticosteroids may prevent an extended cytokine response and may accelerate resolution of pulmonary and systemic inflammation in pneumonia. ¹, ⁹ (See Corticosteroids in this Evidence Table.)</td>
<td>Retrospective, observational, single-center study: In 201 patients with confirmed COVID-19 pneumonia who developed ARDS, methylprednisolone appeared to reduce the risk of death. ⁶ Among patients with ARDS, of those who received methylprednisolone treatment, 23 of 50 (46%) patients died, while of those who did not receive methylprednisolone, 21 of 34 (61.8%) died. ⁶ Retrospective, observational, single-center study: In 46 patients with confirmed severe COVID-19 pneumonia that progressed to acute respiratory failure, use of methylprednisolone was associated with improvement in clinical symptoms (i.e., fever, hypoxia) and a shortened disease course in patients who received the drug compared with those who did not. ¹³ Death occurred in 3 patients during hospitalization; 2 of these patients received methylprednisolone. ¹³ Open-label, multicenter, randomized controlled study (NCT04244591) was recently completed in China that compared use of methylprednisolone in conjunction with standard care in patients with confirmed COVID-19 infection that progressed to acute respiratory failure; results have not yet been posted. ²³ Multiple clinical trials have been initiated in various countries to evaluate use of methylprednisolone for treatment of COVID-19 pneumonia or severe acute respiratory syndrome, including the following trials registered at clinicaltrials.gov: ²² NCT03852537 NCT04263402 NCT04273321 NCT04323392 NCT04329650 NCT04343729 NCT04374071 A non-randomized pilot study registered at clinicaltrials.gov (NCT04355247) has been initiated to evaluate use of methylprednisolone for the prevention of COVID-19 cytokine storm and progression to respiratory failure. ²²</td>
<td>Dosage used in the retrospective study (Wang et al) was 1-2 mg/kg daily IV for 5-7 days. ¹³ Dosage used in the randomized, controlled study (NCT04244591) was 40 mg IV every 12 hours for 5 days. ²³</td>
<td>Findings from observational studies suggest that for patients with COVID-19 pneumonia who progress to ARDS, methylprednisolone treatment may be beneficial. However, results should be interpreted with caution because of potential bias (drug used in sickest patients) and small sample size. Confirmation from randomized controlled studies is needed. ⁶, ¹³ (See Corticosteroids in this Evidence Table for general recommendations on corticosteroid use in patients with COVID-19.)</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage<sup>a</sup></td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Nitric oxide (inhaled)</td>
<td>48:48 Vasodilator Agent</td>
<td>Selective pulmonary vasodilator with bronchodilatory and vasodilatory effects in addition to other systemic effects mediated through cGMP-dependent or independent mechanisms; may be useful for supportive treatment of acute respiratory distress syndrome (ARDS), a potential complication of COVID-19<sup>2</sup>,<sup>3</sup>,<sup>5</sup>,<sup>9</sup>,<sup>11</sup>,<sup>14</sup> Also has been shown to have antiviral effects<sup>1</sup>,<sup>14</sup>. In vitro evidence of direct antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV-1)<sup>1</sup>,<sup>14</sup> In a small pilot study (Chen et al.) conducted during the SARS outbreak, treatment with inhaled nitric oxide was found to reverse pulmonary hypertension, improve severe hypoxia, and shorten the duration of ventilatory support in critically-ill SARS patients<sup>2</sup>. Genetic similarity between SARS-CoV and SARS-CoV-2 suggests potential benefit in patients with COVID-19<sup>1</sup>,<sup>14</sup></td>
<td>No published studies evaluating use specifically in COVID-19 patients<sup>10</sup>. One case report described possible benefit in a SARS-CoV-2-positive outpatient who also had idiopathic pulmonary arterial hypertension<sup>13</sup> Randomized controlled studies of inhaled nitric oxide in ARDS patients generally demonstrated modest improvements in oxygenation, but no effect on mortality and possible harm (e.g., renal impairment)<sup>4</sup>,<sup>5</sup>,<sup>6</sup>. Clinical trials evaluating inhaled nitric oxide for the treatment or prevention of COVID-19 are planned or underway, including the following trials: NCT04388683, NCT04383002, NCT04358588 (Expanded Access), NCT04397692, NCT04398290, NCT0438828, NCT04305477, NCT04306393, NCT04312243<sup>3</sup>,<sup>7</sup></td>
<td>In the Chen et al. study in severe SARS patients, inhaled nitric oxide therapy was given for ≥3 days (30 ppm on day 1, followed by 20 and 10 ppm on days 2 and 3, respectively, then weaned on day 4; therapy was resumed at 10 ppm if deteriorating oxygenation occurred)<sup>2</sup> Various dosing protocols using different methods of delivery are being evaluated in ongoing studies in COVID-19 patients<sup>5</sup></td>
<td>The NIH COVID-19 Treatment Guidelines Panel and the Surviving Sepsis Campaign recommend against the routine use of inhaled nitric oxide in mechanically ventilated COVID-19 patients with ARDS; however, a trial of inhaled pulmonary vasodilator as rescue therapy may be considered in mechanically ventilated adults with COVID-19, severe ARDS, and hypoxemia despite optimized ventilation and other rescue strategies; if no rapid improvement in oxygenation is observed, the patient should be tapered off treatment<sup>10</sup>,<sup>12</sup></td>
</tr>
<tr>
<td>Ruxolitinib (Jakafi®)</td>
<td>10:00 Antineoplastic Agents</td>
<td>Janus kinase (JAK) 1 and 2 inhibitor; may potentially combat cytokine release syndrome (CRS) in severely ill patients<sup>4</sup>,<sup>5</sup> Ability to inhibit a variety of proinflammatory cytokines, including interferon, has been raised as a possible concern with the use of JAK inhibitors in the</td>
<td>Currently no known published clinical trial evidence supporting efficacy or safety in patients with COVID-19</td>
<td>Various dosages are being evaluated<sup>3</sup>,<sup>6</sup>,<sup>10</sup></td>
<td>NIH COVID-19 Treatment Guidelines Panel recommends against use of JAK inhibitors for the treatment of COVID-19 except in the context of a clinical trial; the panel states that at present the broad immunosuppressive effect of JAK inhibitors outweighs the potential for benefit<sup>8</sup> Severe reactions requiring drug discontinuation observed in 2 COVID-19 patients following initiation of ruxolitinib: purpuric lesions with thrombocytopenia</td>
</tr>
</tbody>
</table>

^aNIH COVID-19 Resource Center; ¹ASHP COVID-19 Resource Center; ²CoV-19 Resource Center; ³NIH COVID-19 Treatment Guidelines Panel; ⁴Surviving Sepsis Campaign.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarilumab (Kefzara®) Updated 5/1/20</td>
<td>92:36 Disease-modifying Anti-rheumatic Drug</td>
<td>Recombinant humanized monoclonal antibody specific for the interleukin-6 (IL-6) receptor; may potentially combat cytokine release syndrome (CRS) and pulmonary symptoms in severely ill patients (^{1,2,5})</td>
<td>Currently no known published clinical trial evidence supporting efficacy or safety in treatment of patients with COVID-19 However, based on encouraging results in China with a similar drug, tocilizumab, a U.S.-based, phase 2/3, randomized, double-blind, placebo-controlled study evaluating efficacy and safety of sarilumab in patients hospitalized with severe COVID-19 is currently under way (^{3,4}). Clinicaltrials.gov link: https://clinicaltrials.gov/ct2/show/NCT04315298?term=sarilumab&draw=2&rank=4 For compassionate use access or investigator-sponsored clinical studies, contact the manufacturer (Sanofi Genzyme) for further information (1-800-633-1610) (^{5})</td>
<td>Not available (see Trials or Clinical Experience)</td>
<td>NIH COVID-19 Treatment Guidelines Panel states that there are insufficient clinical data to recommend either for or against use of sarilumab in the treatment of COVID-19 (^{7})</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage*</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Siltuximab</td>
<td>10:00</td>
<td>Antineoplastic agents</td>
<td>Italy: Early (non-peer-reviewed) findings from an observational case-control study of the first 21 patients with COVID-19 and pneumonia/acute respiratory distress syndrome (ARDS) who participated in a compassionate use program (SISCO study; NCT04322188) in one hospital and were followed for up to 7 days showed reduced and normalized C-reactive protein (CRP) levels (a marker of systemic inflammation) by day 5 in all 16 siltuximab-treated patients with sufficient available data. An interim analysis revealed that the condition of 33% of the siltuximab-treated patients improved and no clinically relevant change in condition was reported in 43% of patients while 24% of patients worsened, including one patient who died and another with a cerebrovascular event. This cohort study with patients treated with standard therapy is ongoing. 4, 6 Other clinical trials evaluating siltuximab in the treatment of COVID-19 currently are recruiting in Belgium (NCT04330638) 7 and Spain (NCT04329650) 8</td>
<td>In the SISCO study in Italy, patients received an initial dose of siltuximab 11 mg/kg by IV infusion over 1 hour; a second dose could be administered at the physician’s discretion (5 of the first 21 patients received a second dose after 2-3 days) 4 Other clinical studies under way are evaluating a single siltuximab dose of 11 mg/kg by IV infusion 7, 8</td>
<td>Efficacy and safety of siltuximab in the treatment of COVID-19 not established; additional study needed</td>
</tr>
<tr>
<td>Sirolimus</td>
<td>92:44</td>
<td>Immunosuppressiv e agent (mTOR inhibitor)</td>
<td>mTOR complex 1 (mTORC1) is involved in the replication of various viruses, including coronavirus 1, 2, 5

In vitro studies demonstrated inhibitory activity against MERS-CoV infection 2

Limited experience in patients with H1N1 pneumonia suggests possible benefit; in one study, treatment with sirolimus 2 mg daily in conjunction with corticosteroids for 14 days was associated with improved patient outcomes (e.g., shortened duration of mechanical ventilation, improved hypoxia and multiorgan function) 3</td>
<td>Clinical trials evaluating sirolimus for the treatment of COVID-19 are planned or underway including the following trials: 4 NCT04341675 NCT04374903 NCT04371640</td>
<td>Dosage being investigated in a randomized, double-blind, placebo-controlled trial (NCT04341675): 6 mg orally on day 1 followed by 2 mg daily for a maximum treatment duration of 14 days or until hospital discharge 4</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Tocilizumab (Actemra®)
Updated 5/1/20 | 92:36 Disease-modifying Anti-rheumatic Drug | Recombinant humanized monoclonal antibody specific for the interleukin-6 (IL-6) receptor; may potentially combat cytokine release syndrome (CRS) symptoms in severely ill COVID-19 patients | Case reports and observational studies describing use of tocilizumab in patients with COVID-19 reported from various areas of the world ¹ ³ ⁶ ¹⁰ ¹²
In preliminary data from a non-peer-reviewed, single-arm, observational Chinese trial (Xu et al.) involving 21 patients with severe or critical COVID-19 infection, patients demonstrated rapid fever reduction and a reduced need for supplemental oxygen within several days after receiving tocilizumab (initially given as a single 400-mg dose by IV infusion; this dose was repeated within 12 hours in 3 patients because of continued fever) ³
In a retrospective, observational study in China (Luo et al.) involving 15 patients moderately to critically ill with COVID-19, tocilizumab (80-600 mg per dose) was given, and was used in conjunction with methylprednisolone in 8 of the patients. About one-third of the patients received 2 or more doses of tocilizumab. Elevated C-reactive protein (CRP) levels rapidly decreased in most patients following treatment, and a gradual decrease in IL-6 levels was noted in patients who stabilized following tocilizumab administration. Clinical outcomes were equivocal. ¹⁰
A single-center, retrospective observational study of 20 kidney transplant recipients in Italy with COVID-19 hospitalized for pneumonia included 6 patients who received tocilizumab. Half of the patients experienced reduced oxygen requirements and 2 (33%) showed improved radiologic findings following administration; 2 (33%) of the 6 tocilizumab-treated patients died. ¹²
Zhang et al. from China reported on a patient with COVID-19 and multiple myeloma who appeared to be successfully treated with tocilizumab ¹³
Currently, there are no well-controlled published studies on the efficacy and safety of tocilizumab for the treatment of COVID-19; however, numerous clinical trials are planned or under way ¹ ³ ⁶ ¹⁰ ¹² | IV infusion: China recommends an initial dose of 4–8 mg/kg infused over more than 60 minutes. If initial dose not effective, may administer second dose (in same dosage as initial dose) after 12 hours. No more than 2 doses should be given; maximum single dose is 800 mg. ²
US/Global randomized, placebo-controlled trial (manufacturer sponsored; COVACTA): Will evaluate an initial IV infusion of 8 mg/kg (up to a maximum dose of 800 mg); one additional dose may be given if symptoms worsen or show no improvement ⁸ |
In China, tocilizumab can be used to treat severely or critically ill COVID-19 patients with extensive lung lesions and high IL-6 levels ²
NIH COVID-19 Treatment Guidelines Panel states that there are insufficient clinical data to recommend either for or against use of tocilizumab in the treatment of COVID-¹⁹
The role of routine cytokine measurements (e.g., IL-6, CRP) in determining the severity of and treating COVID-19 requires further study ¹⁴ |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>US/Global randomized, placebo-controlled trial: Manufacturer (Roche) conducting a randomized, double-blind, placebo-controlled phase 3 trial (COVACTA; NCT04320615) in collaboration with the US Health and Human Services’ Biomedical Advanced Research and Development Authority (BARDA); the study will evaluate safety and efficacy of tocilizumab in combination with standard of care compared with placebo. Expected to enroll about 330 patients globally, including in the U.S., beginning in April 2020.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE Inhibitors, Angiotensin II Receptor Blockers (ARBs)
Updated 4/29/20</td>
<td>24:32 Renin-Angiotensin-Aldosterone System Inhibitor</td>
<td>Hypothetical harm: Human pathogenic coronaviruses bind to their target cells through angiotensin-converting enzyme 2 (ACE2). Expression of ACE2 may be increased in patients treated with ACE inhibitors or ARBs. Increased expression of ACE2 may potentially facilitate COVID-19 infections.</td>
<td>Data are lacking; no evidence of harm or benefit with regards to COVID-19 infection. Clinical trial underway: Initiation of losartan in adult patients with COVID-19 requiring hospitalization; primary outcome measure: sequential organ failure assessment (SOFA) respiratory score. (NCT04312009)</td>
<td></td>
<td>American Heart Association (AHA), American College of Cardiology (ACC), Heart Failure Society of America (HFSA), European Society of Cardiology (ESC) recommend to continue treatment with renin-angiotensin-alderosterone system (RAAS) antagonists in those patients who are currently prescribed such agents. NIH COVID-19 Treatment Guidelines Panel states patients who are receiving an ACE inhibitor or ARB for cardiovascular disease (or other indications) should continue receiving these drugs; recommends against use of ACE inhibitors or ARBs for the treatment of COVID-19 except in the context of a clinical trial. Patients with cardiovascular disease are at an increased risk of serious COVID-19 infections. Abrupt withdrawal of RAAS inhibitors in high-risk patients (e.g., heart failure patients, patients with prior myocardial infarction) may lead to clinical instability and adverse health outcomes.</td>
</tr>
<tr>
<td>Anticoagulants
Updated 6/11/20</td>
<td>20:12.04 Anticoagulants</td>
<td>Patients with COVID-19, particularly those with severe disease, may develop a hypercoagulable state, which has been associated with poor outcomes (e.g., progressive respiratory failure, acute respiratory distress syndrome [ARDS], death). Observed coagulation abnormalities include prothrombotic disseminated intravascular coagulation (DIC), elevated D-dimer levels, high fibrinogen levels, and microvascular and macrovascular thrombosis. Limited data from a retrospective study in China showed reduced mortality in COVID-19 patients with severe sepsis-induced coagulopathy or markedly elevated D-dimer levels (>6 x ULN) who received prophylactic anticoagulation (low molecular weight heparin [LMWH] or unfractionated heparin [UFH]). Observational data derived from a large US cohort of hospitalized patients with COVID-19 suggest possible benefit of therapeutic-dose anticoagulation; however, the study had important limitations (e.g., indications for anticoagulation initiation and details on patient characteristics not reported). Several clinical trials have been initiated or currently underway to evaluate anticoagulant strategies in patients with COVID-19,</td>
<td></td>
<td>Additional study is needed to understand the anticoagulant needs of COVID-19 patients. VTE risk should be assessed in all patients on an individual basis. Several organizations have published interim guidance for the management of COVID-19-associated coagulopathy. The NIH COVID-19 Treatment Guidelines Panel recommends VTE prophylaxis according to the usual standard of care in all hospitalized adults with COVID-19 unless contraindicated. The International Society for Thrombosis and Haemostasis, American College of Cardiology, and American Society of Hematology recommend that all hospitalized COVID-19 patients receive</td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage<sup>a</sup></td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High rates of VTE have been reported in critically ill patients with COVID-19. 7, 8, 11, 15, 18, 28, 36</td>
<td>including the following: NCT04373707, NCT04372589, NCT04345848, NCT04412304, NCT04416048<sup>12</sup></td>
<td>prophylactic-dose LMWH unless contraindicated (e.g., active bleeding, severe thrombocytopenia, fibrinogen <0.5 g/L). 4, 5, 30</td>
<td>WHO recommends pharmacologic prophylaxis with LMWH (preferred) or UFH (5000 units sub-Q twice daily) in adults and adolescents with COVID-19 who do not have contraindications. 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pathogenesis of COVID-19-related coagulopathy not completely known, but may be related to an uncontrolled immunothrombotic response to viral infection. 16, 17, 27-29, 32</td>
<td></td>
<td></td>
<td>LMWH or UFH may be preferred over oral anticoagulants in critically ill hospitalized patients with COVID-19 because of their shorter half-lives, ability to be administered parenterally, and fewer drug-drug interactions. 28 Patient-specific factors (e.g., renal function) and practical concerns (e.g., need for frequent monitoring, convenience of administration, risk of medical staff exposure) may influence choice of anticoagulant. 14, 15, 20, 27, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anticoagulant therapy may reduce the risk of thrombotic complications and improve clinical outcomes. 2, 4, 5, 14, 25, 27</td>
<td></td>
<td></td>
<td>Because of the severity of coagulopathy in critically ill COVID-19 patients and reports of high rates of VTE despite routine prophylaxis, some clinicians have used (or suggested the use of) higher prophylactic doses or even therapeutic doses of anticoagulants to prevent thromboembolic complications in such patients; however, prospective studies are needed to evaluate these approaches. 8, 11, 14-17, 20-24, 26-28, 30, 31, 32, 34, 36 Pending additional data, use of higher-intensity nonstandard VTE prophylaxis or therapeutic-dose anticoagulation should ideally be done in the context of a clinical trial. 24, 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on expert opinion, the Anticoagulation Forum suggests increased doses of VTE prophylaxis (e.g., enoxaparin 40 mg BID, enoxaparin 0.5 mg/kg BID, heparin 7500 units sub-Q 3 times daily, or low-intensity heparin infusion) for critically ill patients (e.g., in the ICU) with confirmed or suspected COVID-19. 32</td>
<td></td>
<td></td>
<td>NIH and other experts state that the current data are insufficient to</td>
</tr>
</tbody>
</table>

^a Indicates dosage based on expert opinion or clinical trial evidence.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 Convalescent Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recommend for or against the use of therapeutic anticoagulation in COVID-19 patients in the absence of confirmed or suspected thrombosis.<sup>4, 28, 30</sup> The efficacy of intermediate or full-dose therapeutic anticoagulation for critically ill COVID-19 patients without documented VTE is currently being evaluated. <sup>4, 12</sup> Patients who are already on anticoagulant therapy for an existing condition (e.g., VTE, atrial fibrillation) should continue to receive such treatment unless significant bleeding occurs or other contraindications are present. <sup>4, 28</sup></td>
</tr>
</tbody>
</table>

Uncontrolled pilot study in China (Duan et al): 10 adults with severe COVID-19 received a single transfusion of COVID-19 convalescent plasma (containing SARS-CoV-2 neutralizing antibody titers of 1:640 or greater) with standard care; all patients received antiviral therapy (e.g., umifenovir [Arbidol®], ribavirin, oseltamivir, peramivir, interferon α) and 6 patients also received methylprednisolone. The median time from onset of symptoms to transfusion of convalescent plasma was 16.5 days. COVID-19 symptoms (fever, cough, shortness of breath, chest pain) improved in all patients within 1-3 days after the transfusion and all patients showed radiologic improvement in pulmonary lesions. Titers of neutralizing antibody increased in 5 patients after the transfusion.

Efficacy and safety of COVID-19 convalescent plasma for the treatment of COVID-19 not established.^{11, 25} The NIH COVID-19 Treatment Guideline Panel states that there are insufficient data to recommend for or against the use of convalescent plasma in patients with COVID-19. ²⁵

Appropriate criteria for selection of patients to receive investigational COVID-19 convalescent plasma, optimal time during the course of the disease to receive such therapy, and appropriate dosage (e.g., volume, number of doses) not determined. ^{1-5, 9} Theoretically, convalescent plasma should be more effective in patients who received antiviral treatment with standard care, and more effective in patients with severe COVID-19 (e.g., respiratory failure requiring mechanical ventilation). Convalescent plasma should be given with standard care and not as a substitute. Plasma obtained from patients who have recovered from COVID-19 (i.e., COVID-19 convalescent plasma) that contains antibodies against SARS-CoV-2 may provide short-term passive immunity to the virus; theoretically, such immunity may prevent or contribute to recovery from the infection, possibly as the result of viral neutralization and/or other mechanisms. ^{1-5, 24, 25} Convalescent plasma therapy has been used in the treatment of other viral infections such as SARS, MERS, and influenza. In the case of SARS-CoV-2 and COVID-19, convalescent plasma therapy has been proposed as a potential treatment option to address the ongoing pandemic. However, its efficacy and safety need to be further studied in controlled clinical trials. |
drug(s)	AHFS Class	Rationale	Trials or Clinical Experience	Dosage	Comments
treatment of other viral diseases with various degrees of success. 16, 20, 22, 24, 25

In patients with SARS-CoV-1 infection, use of convalescent plasma was reported to shorten the duration of hospitalization and decrease mortality. 6, 8, 14 SARS patients who received convalescent plasma less than 14 days after onset of symptoms had better outcomes than those who received such plasma later in the course of the disease. 1, 2, 6-8

transfusion, but remained the same in 4 patients. Prior to the transfusion, RT-PCR tests for SARS-CoV-2 RNA were positive in 7 patients and negative in 3 patients; after transfusion, SARS-CoV-2 RNA was undetectable in 3 patients on day 2, 3 patients on day 3, and 1 patient on day 6. 9

Uncontrolled case series in China (Shen et al): 5 critically ill adults with rapidly progressing severe COVID-19 and acute respiratory distress syndrome (ARDS) requiring mechanical ventilation who had high viral loads despite antiviral treatment received 2 transfusions of COVID-19 convalescent plasma (containing SARS-CoV-2 neutralizing antibody end point dilution titers of 80-480 depending on the donor); patients continued to receive antiviral treatments (e.g., LPV/RTV, favipiravir, umifenovir [Arbidol®], darunavir, interferon α-1b) and methylprednisolone. Patients received the convalescent plasma transfusions 10-22 days after hospital admission. Following the transfusions, body temperature normalized within 3 days in 4/5 patients, sequential organ failure assessment (SOFA) scores improved in all patients (decreased from initial scores of 2-10 to 1-4 on day 12), titers of SARS-CoV-2 IgG, IgM, and neutralizing antibody increased in all patients, and viral loads decreased and became negative within 12 days. 10

Retrospective observational study in China (Zeng et al): 6 critically ill adults with COVID-19 were treated with convalescent plasma at a median of 21.5 days after first detection of viral shedding. Although viral clearance was observed in all patients following transfusion, death occurred in 5 of 6 patients. 11

Uncontrolled descriptive study in China (Ye et al): 6 adults with COVID-19 received convalescent plasma at a relatively late stage of the disease (most patients received 2 or 3 plasma transfusions); various laboratory, radiologic, and clinical improvements were reported. 12

effective if given during the early course of the disease. 1, 2, 16, 17, 20, 24

Optimal timing of donor plasma collection in relation to recovery from COVID-19, most appropriate methods of antibody testing, and minimum titers of SARS-CoV-2 antibody in convalescent plasma that may be associated with clinical benefits in pts with COVID-19 not determined. 13

Logistics of obtaining, processing, storing, and distributing COVID-19 convalescent plasma evolving. 1, 5, 11, 14, 15 FDA does not collect COVID-19 convalescent plasma and does not provide such plasma; healthcare providers and acute care facilities obtain COVID-19 convalescent plasma from FDA-registered establishments. 11

Potential risks associated with COVID-19 convalescent plasma therapy (e.g., inadvertent transmission of other infectious agents, allergic reactions, thrombotic complications, transfusion-associated circulatory overload, transfusion-related acute lung injury [TRALI], antibody-dependent enhancement of infection) and steps to mitigate such risks not fully determined and require further evaluation. 1, 5, 9, 23, 24, 25

FDA issued a guidance for industry to provide recommendations to healthcare providers and investigators regarding administration and study of investigational COVID-19 convalescent plasma. This guidance document includes recommendations regarding pathways for access to COVID-19 convalescent plasma, patient eligibility to receive such plasma, collection of such plasma (including donor eligibility and qualifications), product labeling, and recordkeeping. 11

There are no convalescent blood products currently licensed by the FDA. 25 COVID-19 convalescent plasma is regulated as an investigational product.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uncontrolled case series in US (Salazar et al): 25 adults with severe and/or life-threatening COVID-19 disease received convalescent plasma in addition to multiple other treatments (e.g., antivirals, anti-inflammatory agents). The median time from symptom onset to plasma transfusion was 10 days and 24/25 patients received a single transfusion. Convalescent plasma was well tolerated and no transfusion-related adverse events were reported. At day 7 post-transfusion, 9 patients (36%) had clinical improvement (defined as at least a 1-point improvement based on a 6-point ordinal scale); by day 14 post-transfusion, 19 patients (76%) had clinical improvement or were discharged. The contribution of convalescent plasma to clinical improvement in these patients is unclear since there was no control group and patients also received other treatments.</td>
<td>FDA states that there are 3 available pathways for administering or studying the use of such plasma:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cochrane review: A systematic review of 8 published studies evaluating convalescent plasma in adults with COVID-19 (total of 32 study participants) found very low confidence in the efficacy and safety of this treatment approach based on the current evidence. There was a high risk of bias within and across the studies (all were uncontrolled, nonrandomized, and included a small number of participants) and great variability in terms of dose and timing of convalescent plasma administration, donor and recipient characteristics, and outcomes evaluated.</td>
<td>1). Clinical Trials: Requests to study use of COVID-19 convalescent plasma should be submitted to FDA under the traditional investigational new drug (IND) regulatory pathway. 2). Expanded Access IND: For patients with serious or immediately life-threatening COVID-19 who are not eligible or are unable to participate in randomized clinical trials, an expanded access IND can be used. A National Expanded Access Treatment Protocol has been established to facilitate access through participation of acute care facilities under an IND that is already in place. Information on a protocol that is currently in place is available at https://www.uscovidplasma.org. 3). Single Patient Emergency IND (eIND): Licensed physicians seeking to administer COVID-19 convalescent plasma to individual patients with serious or life-threatening disease may request an eIND from the FDA. Consult the FDA guidance document for specific information on applying for an eIND.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open-label, randomized, controlled study in China (Li et al): Results of this study in 103 adults with severe or life-threatening COVID-19 found no significant difference in time to clinical improvement within 28 days, mortality, or time to hospital discharge in patients treated with convalescent plasma (containing a high titer of antibody to SARS-CoV-2) plus standard of care compared with standard of care alone. Convalescent plasma therapy was well tolerated by the majority of patients; 2 cases of transfusion-associated adverse events were reported. There was a signal of possible benefit in the subgroup of patients who received the convalescent plasma.</td>
<td>Donor eligibility: FDA guidance suggests that COVID-19 convalescent plasma be collected from individuals with laboratory-confirmed evidence of COVID-19 infection and complete resolution of symptoms for at least 14 days before donation (a negative result for COVID-19 by a diagnostic test is not necessary to qualify the donor).</td>
<td></td>
</tr>
</tbody>
</table>

^a FDA guidelines recommend standard of care, which may include antivirals, anti-inflammatory agents, and other supportive measures. The timing of convalescent plasma transfusion may vary depending on the patient's clinical status and other interventions. Additional dosing may be considered based on disease progression and clinical response.
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
</table>
| | | | patients with severe COVID-19 disease. 28, 29 However, the study had several limitations that preclude any definite conclusions, including the possibility of being under-powered as the result of early termination because of the lack of available patients. 28, 29 In addition, most patients received convalescent plasma treatment at least 14 days after symptom onset and it is unclear whether earlier treatment would have resulted in greater benefit. 28, 29

Although there is some evidence suggesting possible benefits of convalescent plasma in patients with COVID-19, available data to date are largely from case reports or series; confirmation from additional randomized controlled studies is required. 1, 20-23, 27-29

Multiple clinical trials have been initiated globally to evaluate use of COVID-19 convalescent plasma in various settings (e.g., postexposure prophylaxis, treatment of different stages of the disease). 19, 22 Some trials are listed below. For additional trials, see clinicaltrials.gov:

NCT04374370 (Expanded Access)
NCT04358211 (Expanded Access)
NCT04338360 (Expanded Access)
NCT04363034 (Expanded Access)
NCT04343261 (US)
NCT04372368 (US)
NCT04343755 (US)
NCT04344535 (US)
NCT04364737 (US)
NCT04340050 (US)
NCT04344015 (US)
NCT04376034 (US)
NCT04359810 (US)
NCT04362176 (US)
NCT04360486 (US ARMY)
NCT04347681
NCT04346446
NCT04345523
NCT04342182
NCT04352751
NCT04375098
NCT04357106
NCT04327349
NCT04292340

life-threatening disease, consideration should be given to following the patient eligibility criteria used in the National Expanded Access Treatment Protocol https://www.uscovidplasma.org. 11 According to the protocol, severe disease is defined as one or more of the following: shortness of breath, respiratory frequency 30/minute or greater, blood oxygen saturation 93% or lower, PaO₂/FiO₂ ratio less than 300, lung infiltrates greater than 50% within 24-48 hours, and life-threatening disease is defined as one or more of the following: respiratory failure, septic shock, multiple organ dysfunction or failure. 11 |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage(^a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famotidine</td>
<td>56:28.12</td>
<td>Histamine H(_2) Antagonists</td>
<td>Computer-aided, structure-based, virtual screening of libraries of compounds against SARS-CoV-2 proteins suggested potential for famotidine to interact with viral proteases involved in coronavirus replication (^1)(^-)(^4)</td>
<td>Currently no known published prospective clinical trial evidence supporting efficacy or safety for treatment of COVID-19</td>
<td>Safety and efficacy for treatment of COVID-19 not established</td>
</tr>
<tr>
<td>Updated 6/3/20</td>
<td></td>
<td></td>
<td>Anecdotal observations: Observations based on retrospective medical record review indicated that many Chinese COVID-19 survivors had received famotidine for chronic heartburn; mortality rate appeared to be lower in hospitalized COVID-19 patients receiving famotidine than in patients not receiving the drug (14 vs 27%); observations did not control for possible confounding (e.g., socioeconomic) factors (^3)</td>
<td>Dosage in NCT04370262: Famotidine is being given IV in 120-mg doses (proposed total daily dosage of 360 mg) for maximum of 14 days or until hospital discharge, whichever comes first (^5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retrospective matched cohort study of COVID-19 patients hospitalized, but not requiring intubation within the first 48 hrs, at a single New York medical center indicated that the risk for the composite outcome of death or intubation was reduced (mainly due to difference in mortality) in patients who received famotidine within 24 hours of hospital admission (n = 84) vs those who did not receive the drug (n = 1536); overall, 21% of patients met the composite outcome (8.8% were intubated and 15% died); the finding appeared to be specific to the H(_2) antagonist and to COVID-19, as the investigators reported</td>
<td>Proposed daily dosage in NCT04370262 is 9 times the usual manufacturer-recommended IV adult dosage; (^7) the study excludes patients with creatinine clearance (Cl({cr})) (\leq 50) mL/minute, including dialysis patients; (^5) renally impaired patients may be at increased risk of adverse CNS effects since drug half-life is closely related to Cl({cr}) (^6)</td>
<td></td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>HMG-CoA Reductase Inhibitors (statins)</td>
<td>24:06 Antilipemic Agents</td>
<td>Added 4/29/20</td>
<td>Observing no protective effect with proton-pump inhibitors or in non-COVID-19 patients. Home use of famotidine was documented on admission in 15% of patients who received the drug in hospital vs 1% of those who did not; 28% of all famotidine doses were IV; 47% of doses were 20 mg, 35% were 40 mg, and 17% were 10 mg; the median duration of use was 5.8 days, and the total median dose was 136 mg (63-233 mg)</td>
<td></td>
<td>NIH COVID-19 Treatment Guidelines Panel states patients who are receiving a statin for the treatment or prevention of cardiovascular disease should continue statin therapy; 2 recommends against use of statins for the treatment of COVID-19 except in the context of a clinical trial. 2 Patients with cardiovascular disease are at an increased risk of serious COVID-19 infections. 3 In patients with active COVID-19 who may develop severe rhabdomyolysis, it may be advisable to withhold statin therapy for a short period of time. 3 Most statins are substrates for the CYP450 system; potential for drug interactions. 7 Clinicians should ensure that their high-risk primary prevention (for ASCVD) patients are on guideline-directed statin therapy. 3</td>
</tr>
<tr>
<td>Immune Globulin</td>
<td>80:04 Immune Globulin</td>
<td>Updated 6/11/20</td>
<td>Data are lacking on the use of statins in patients with COVID-19. Preliminary findings have shown mixed results with other respiratory illnesses; some observational studies suggest statin therapy is associated with a reduction in various cardiovascular outcomes and possibly mortality in patients hospitalized with influenza and/or pneumonia. 3 6 Clinical trials are evaluating the effectiveness of statins (with and without other potential treatment agents) for the treatment of COVID-19. 9, 10 (NCT04348695, NCT04333407)</td>
<td></td>
<td>The Surviving Sepsis Campaign COVID-19 subcommittee suggests that IGIV not be used routinely in critically ill adults</td>
</tr>
<tr>
<td>Drug(s)</td>
<td>AHFS Class</td>
<td>Rationale</td>
<td>Trials or Clinical Experience</td>
<td>Dosage</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>humoral immunodeficiency who are unable to produce sufficient IgG antibodies and also used to provide passive immunity to certain viral infections in other individuals. 1</td>
<td>COVID-19 case reports in China (Cao et al): Treatment with IGIV at the early stage of clinical deterioration was reported to provide some clinical benefit in 3 adults with severe COVID-19; 2 patients also received antivirals and 1 patient also received short-term steroid treatment. Patients were afebrile within 1-2 days and breathing difficulties gradually improved within 3-5 days of IGIV administration. 8</td>
<td></td>
<td></td>
<td>with COVID-19 because efficacy data not available, currently available IGIV preparations may not contain antibodies against SARS-CoV-2, and IGIV can be associated with increased risk of severe adverse effects (e.g., anaphylaxis, aseptic meningitis, renal failure, thromboembolism, hemolytic reactions, transfusion-related lung injury). 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COVID-19 clinical experience in China: IGIV has been used as an adjunct in the treatment of COVID-19 and has been mentioned in Chinese guidelines as a possible treatment option for severe and critically ill children with COVID-19. 3-11, 14</td>
<td></td>
<td></td>
<td>The NIH COVID-19 Treatment Guidelines Panel recommends against the use of commercially available IGIV (i.e., non-SARS-CoV-2-specific IGIV) for the treatment of COVID-19 except in the context of a clinical trial and states that current IGIV preparations are not likely to contain SARS-CoV-2 antibodies. 15 This does not preclude the use of IGIV when it is otherwise indicated for the treatment of complications arising during the course of COVID-19 disease. 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multicenter retrospective study in China: Among a cohort of 325 patients with severe or critical COVID-19 disease, no difference in 28-day or 60-day mortality was observed between patients who were treated with IGIV and those who were not treated with IGIV. However, patients who received IGIV were older and more likely to have coronary heart disease and critical status at study entry; patients also received numerous other treatments which limit interpretation of these findings. 16, 19</td>
<td></td>
<td></td>
<td>NIH states that there are insufficient data to recommend for or against the use of investigational SARS-CoV-2 immune globulin for the treatment of COVID-19. 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retrospective study in China: 58 cases of severe or critical COVID-19 illness in ICU patients were reviewed. 17 Patients received IGIV in addition to other treatments (e.g., antiviral and anti-inflammatory agents). A statistically significant difference in 28-day mortality was observed between patients who received IGIV within 48 hours of admission compared with those who received IGIV after 48 hours (23 vs 57%). Treatment with IGIV within 48 hours also was associated with reduced duration of hospitalization and reduced ICU length of stay and need for mechanical ventilation. 17</td>
<td></td>
<td></td>
<td>Efficacy data not available from controlled clinical studies to date. Several clinical studies have been initiated to evaluate efficacy and safety of IGIV or</td>
<td></td>
</tr>
</tbody>
</table>

1. Investigational SARS-CoV-2 immune globulin is a concentrated immune globulin preparation containing specific antibody derived from the plasma of individuals who have recovered from COVID-19. 16

2. Immune globulin preparations containing antibodies specific to SARS-CoV-2 may theoretically help suppress the virus and modulate the immune response to COVID-19 infection. 2, 16

3. Commercially available preparations of immune globulin (IGIV, IVIG, γ-globulin) may contain antibodies against some previously circulating coronaviruses. 2, 3, 13, 18 Antibodies that cross-react with SARS-CoV-1, MERS-CoV, and SARS-CoV-2 antigens have been detected in some currently available IGIV products; 18 however, further evaluation is necessary to assess potential in vivo activity of such anti-SARS-CoV-2 antibodies using functional tests such as neutralization assays. 1
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin</td>
<td>8:08 Anthelmintic</td>
<td>In vitro activity against some human and animal viruses 1-6</td>
<td>Currently no known published data regarding efficacy or safety in the treatment of COVID-19</td>
<td></td>
<td>No data to date to support use in the treatment of COVID-19</td>
</tr>
<tr>
<td>Nebulized drugs</td>
<td>Added 3/27/20</td>
<td>Potential harm: Concern that use of nebulized drugs (e.g., albuterol) for the management of respiratory conditions in patients with COVID-19 infection may distribute the virus into the air and expose close contacts. 1, 2</td>
<td>Nebulizer treatment used in clinical practice to treat influenza and other respiratory infections is thought to generate droplets or aerosols. In one study, nebulized saline delivered droplets in the small- and medium-size aerosol/droplet range. These results may have infection control implications for airborne infections, including severe acute respiratory syndrome and pandemic influenza infection. 3</td>
<td></td>
<td>American College of Allergy, Asthma & Immunology (ACAAI) recommends that nebulized albuterol should be administered in a location that minimizes exposure to close contacts who do not have COVID-19 infection. In the home, choose a location where air is not recirculated (e.g., porch, patio, or garage) or areas where surfaces can be cleaned easily or may not need cleaning. 1</td>
</tr>
</tbody>
</table>

Updated 5/15/20

SARS-CoV-2 immune globulin in patients with COVID-19, including the following trials: 12
NCT04264858
NCT04350580
NCT04381858
NCT04261426

FDA issued a warning concerning possible inappropriate use of ivermectin products intended for animals as an attempt to self-medicate for the treatment of COVID-19 8

In hospitals, clinicians typically use nebulizers to deliver medications such as albuterol, but are being encouraged to switch to use of metered-dose inhalers because of the risk of the virus becoming airborne when treating patients infected with COVID-19. 2
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitazoxanide</td>
<td>8:30.92 Antiprotozoal</td>
<td>Broad antiviral activity</td>
<td>Currently no known published clinical trial data regarding efficacy or safety in the treatment of COVID-19</td>
<td>Protocol in one ongoing trial (NCT04372082) for treatment of COVID-19 specifies a nitazoxanide dosage of 2 g on day 1, then 500 mg twice daily for 10 days</td>
<td>Not commercially available in the US No data to date support use in treatment of COVID-19</td>
</tr>
<tr>
<td>Niclosamide</td>
<td>8:08 Anthelmintic</td>
<td>In vitro evidence of activity against SARS-CoV and MERS-CoV<sup>1,2</sup></td>
<td>Currently no known published clinical trial data regarding efficacy or safety in the treatment of COVID-19</td>
<td>Protocol in one ongoing trial (NCT04399356) for treatment of mild to moderate COVID-19 specifies a dosage of 2 g once daily for 7 days<sup>3</sup></td>
<td>No data to date support use in treatment of COVID-19</td>
</tr>
</tbody>
</table>

Updated 5/28/20

Nitazoxanide

Updated 5/28/20

- **In vitro activity against various viruses, including coronaviruses**^{4,5}
- Structurally similar to niclosamide^{1,5}
- In vitro evidence of activity against SARS-CoV-2²
- In vitro activity against MERS-CoV⁴
- Suppresses production of proinflammatory cytokines in peripheral blood mononuclear cells; suppresses IL-6 in mice⁴

Experience in treating influenza: In a randomized, placebo-controlled study in 624 otherwise healthy adult and adolescent patients with acute uncomplicated influenza, treatment with nitazoxanide reduced duration of symptoms by approximately 1 day.⁶

Experience in treating influenza-like illness: In two studies for the treatment of influenza-like illness symptoms associated with viral respiratory infection in 186 adults and pediatric pts, treatment with nitazoxanide reduced duration of symptoms (4 days versus ≥7 days with placebo). In another study in 260 adults and pediatric pts hospitalized with influenza-like illness (≥50% with pneumonia at presentation), treatment with nitazoxanide did not reduce the duration of hospital stay (primary end point) or duration of symptoms.⁷

COVID-19: Randomized, double-blind, placebo-controlled proof-of-concept trial (NCT04348409) initiated to evaluate nitazoxanide for treatment of moderate COVID-19⁸

Dosages investigated for treatment of influenza and influenza-like illness or being investigated for other viral infections: Adults and adolescents (≥12 years of age): 500 mg orally twice daily for 5 days.^{5,6,7}

- Protocol in one ongoing trial (NCT04343248, NCT04359680) for treatment of moderate COVID-19 specifies a nitazoxanide dosage of 600 mg orally twice daily for 7 days.⁸
- Protocol in two ongoing trials (NCT04343248, NCT04359680) evaluating pre- and/or post-exposure prophylaxis of COVID-19 and other viral respiratory illnesses specifies a nitazoxanide dosage of 600 mg orally twice daily for 6 weeks.⁸

Results of a physiologically based pharmacokinetic model predict that nitazoxanide exposures exceeding the EC₉₀ for SARS-CoV-2⁹

1. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Updated 6-16-20. The current version of this document can be found on the [ASHP COVID-19 Resource Center](https://www.ashp.org/Care-Practices/COVID-19).
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage*</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Two randomized, double-blind, placebo-controlled clinical trials have been initiated by the manufacturer (Romark) to evaluate efficacy and safety for pre- or post-exposure prophylaxis of COVID-19 and other viral respiratory illnesses in healthcare workers (NCT04359680) and post-exposure prophylaxis of COVID-19 and other viral respiratory illnesses in elderly residents of long-term care facilities (NCT04343248)³.
Multiple other clinical trials planned or initiated to evaluate nitazoxanide in combination with other drugs (chloroquine, hydroxychloroquine, or ivermectin) or alone for treatment of COVID-19 ³. |

Nonsteroidal Anti-inflammatory Agents (NSAIAs)
Updated 5/21/20

| Ibuprofen: Speculative link between ibuprofen and increased ACE2 expression leading to worse outcomes in COVID-19 patients, and should NOT be used in patients with COVID-19 ¹.
Indomethacin: In vitro antiviral activity in SARS-CoV-2 pseudovirus-infected Vero E6 cells; ⁷ also has in vitro activity against other coronaviruses: SARS-CoV-1 (in Vero E6 and human pulmonary epithelial [A549] cells) and canine coronavirus; also has in vivo activity against canine coronavirus in dogs ⁶, ⁷ (interferes with viral RNA synthesis) ⁶, ⁸ |
| None; anecdotal ².
Indomethacin: In vitro studies and animal models only; ⁶, ⁷ currently no published studies evaluating use specifically in COVID-19 patients |
| Ibuprofen: A letter published in The Lancet Respir Med stated that increased expression of ACE2 could facilitate infection with COVID-19. The letter states that thiazolidinediones and ibuprofen can increase ACE2; however, this appears to be based on animal studies. ¹, ⁴
A statement attributed to WHO spokesperson Christian Lindmeier recommending paracetamol and avoiding ibuprofen as a self-medication was widely circulated in the media; however, such a position could not be found on the WHO website or other official sources. WHO has stated “after a rapid review of the literature, is not aware of published clinical or population-based data on this topic.” As of 3/18/20 (via Twitter) “WHO does not recommend against the use of ibuprofen.”
https://twitter.com/WHO/status/1240409217997189128
In addition, there have been unsubstantiated reports of younger, healthy patients who took ibuprofen and suffered severe outcomes with COVID-19. Official case reports are lacking.
On 3/19/20, FDA issued a statement that it is not aware of scientific evidence connecting the use of NSAIAs, such as ibuprofen, with worsening COVID-19 symptoms. FDA stated that it is investigating this issue further and will communicate |
<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosagea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue Plasminogen Activator (t-PA; alteplase)</td>
<td>20:12.20 Thrombolytic agents</td>
<td>A consistent finding in patients with severe COVID-19 is a hypercoagulable state, which has been shown to contribute to poor outcomes (e.g., progressive respiratory failure, acute respiratory distress syndrome [ARDS], death).</td>
<td>Results of a small phase 1 study suggested possible benefit of plasminogen activators in the treatment of ARDS. In this study, 20 patients with ARDS secondary to trauma and/or sepsis who failed to respond to standard ventilator therapy and were not expected to survive were treated with urokinase or streptokinase; such therapy improved PaO₂ and also appeared to improve survival. In a case series of 5 COVID-19 patients who had severe hypoxemia, declining</td>
<td>Two dosage regimens of t-PA (alteplase) are being evaluated in the open-label systemic fibrinolytic therapy trial (NCT04357730): 50 mg (administered as a 10-mg IV bolus followed by IV infusion of the remaining 40 mg over a total time of 2 hours) and 100 mg (administered as a 10-mg IV bolus dose followed by IV administration of the remaining 90 mg over a total time of 2 hours); a heparin infusion will be initiated</td>
<td>t-PA has been proposed as a salvage treatment for COVID-19 patients (e.g., those with decompensating respiratory function who do not have access to mechanical ventilation or extracorporeal membrane oxygenation [ECMO]). Several institutions (Beth Israel Deaconess, University of Colorado Anschultz Medical Campus, Denver Health) are currently testing this approach under</td>
</tr>
</tbody>
</table>

Updated 6/3/20

Publicly when more information is available. FDA also noted that all prescription NSAIA labels warn that by reducing inflammation, and possibly fever, these drugs may diminish the utility of diagnostic signs in detecting infections. https://www.fda.gov/drugs/drug-safety-and-availability/fda-advises-patients-use-non-steroidal-anti-inflammatory-drugs-nsaids-covid-19

Therefore, currently no compelling evidence to support an association between ibuprofen and negative outcomes in patients with COVID-19. However, some experts have recommended preferentially using acetaminophen for treatment of fever.

NIH COVID-19 Treatment Guidelines Panel states that patients who are receiving NSAIAs for other conditions should continue receiving the drugs; states antipyretic strategy (e.g., use of acetaminophen or NSAIAs) should be no different between patients with or without COVID-19.

The Surviving Sepsis Campaign COVID-19 guidelines state that until more evidence is available, use of acetaminophen over no treatment for fever control is suggested (weak recommendation).

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>AHFS Class</th>
<th>Rationale</th>
<th>Trials or Clinical Experience</th>
<th>Dosage<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>prothrombotic disseminated intravascular coagulation (DIC), venous thromboembolism, elevated D-dimer levels, high fibrinogen levels, and microvascular and macrovascular thrombosis. 1, 2, 5-10, 13, 14, 16</td>
<td></td>
<td>respiratory status, and increasing oxygen requirements, administration of t-PA (alteplase) at an initial IV bolus dose of 25 mg over 2 hours followed by a continuous IV infusion of 25 mg over the next 22 hours appeared to improve oxygen requirements in all patients and prevent progression to mechanical ventilation in 3 of the patients; however, multiple confounding factors limit interpretation of these findings. 12</td>
<td>immediately following completion of the alteplase infusion 12</td>
<td>the FDA compassionate use program. 2, 4 Preliminary findings from the first few cases reported an initial, but transient improvement in PaO<sub>2</sub>/FiO<sub>2</sub> (P/F) ratio. 9 The NIH COVID-19 Treatment Guidelines Panel states that current data are insufficient to recommend for or against the use of thrombolytic agents in hospitalized COVID-19 patients outside the setting of a clinical trial; patients who develop catheter thrombosis or other indications for thrombolytic therapy should be treated according to the usual standard of care in patients without COVID-19. 17 The American Society of Hematology states that treatment of the underlying pathology is paramount in COVID-19 patients with coagulopathies; supportive care should be individualized and standard risk factors for bleeding should be considered. 8</td>
<td></td>
</tr>
</tbody>
</table>

^a See US prescribing information for additional information on dosage and administration of drugs commercially available in the US for other labeled indications.
Anticoagulants

Anakinra:

Anticoagulants

disease-2019-

Ascorbic acid:

Azithromycin:

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Baloxavir:

Baloxavir:

Baricitinib:

Baricitinib:

Chloroquine and Hydroxychloroquine:

Chloroquine and Hydroxychloroquine:

Colchicine:

Corticosteroids, including methylprednisolone:

COVID-19 Convalescent Plasma:

Epoprostenol:

Famotidine:

HIV Protease Inhibitors:

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Interferons:

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Ivermectin:

Nebulized drugs:

Neuraminidase Inhibitors (e.g., oseltamivir):

Niclosamide:

Nitazoxanide:

Nitric Oxide (inhaled):

NSAIDs, including ibuprofen:

Remdesivir:

Ruxolitinib

Updated 6-16-20. The current version of this document can be found on the ASHP COVID-19 Resource Center. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Sarilumab:

Siltuximab:

Sirolimus:
Tissue Plasminogen Activator (t-PA; alteplase):

Tocilizumab:

Umifenovir: