COVID-19 Vaccine, mRNA (Pfizer-BioNTech)

80:12 • Vaccines (AHFS primary)

Special Alerts:

Emergency Use Authorization (EUA) Changes for COVID-19 Vaccine (Pfizer-BioNTech): On October 20, 2021, November 19, 2021, December 9, 2021, and January 3, 2022, FDA reissued the EUA for COVID-19 vaccine (Pfizer-BioNTech) to authorize use as an additional (third) primary series dose in certain immunocompromised individuals ≥5 years of age, use as a single homologous booster dose in individuals ≥12 years of age who have completed primary vaccination series, and use as a single heterologous booster dose in individuals ≥18 years of age who have completed primary vaccination with another authorized or approved COVID-19 vaccine. Additionally, on October 29, 2021, the FDA EUA for the Pfizer-BioNTech COVID-19 vaccine was reissued to permit use of the vaccine for primary vaccination in children 5–11 years of age and to also authorize a manufacturing change to include an additional formulation of the Pfizer-BioNTech COVID-19 vaccine that uses tromethamine (Tris) buffer instead of the phosphate buffered saline (PBS) used in the originally authorized vaccine. The EUA for the COVID-19 vaccine (Pfizer-BioNTech) now permits use of the vaccine to provide:

- A 2-dose primary vaccination series in individuals ≥5 years of age.
- An additional (third) primary series dose administered at least 28 days following the second dose of the COVID-19 vaccine (Pfizer-BioNTech) in certain immunocompromised individuals ≥5 years of age (i.e., those who are solid organ transplant recipients or diagnosed with conditions considered to have an equivalent level of immunocompromise).
- A single homologous booster dose in individuals ≥12 years of age, administered at least 5 months after completion of the primary series of the COVID-19 vaccine (Pfizer-BioNTech).
- A single heterologous booster dose in individuals ≥18 years of age after completion of a primary vaccination series with another authorized or approved COVID-19 vaccine. When a heterologous vaccine product is used for the booster dose, the dosing interval is the same as that authorized for a booster dose of the vaccine used for primary vaccination.

The Pfizer-BioNTech COVID-19 vaccine is supplied in various formulations and vial presentations. There are important differences between these formulations such as method of preparation, requirement for dilution or no dilution, dose volume, and storage requirements; consult the manufacturer’s labeling (for the Comirnaty® product) or the FDA EUA Fact Sheets for the Pfizer-BioNTech COVID-19 vaccine authorized for use under an EUA for specific instructions on each formulation. The various formulations and vial presentations are distinguished by different color vial caps and labels. The Pfizer-BioNTech COVID-19 vaccine supplied in a multiple dose vial (10 mcg/0.2 mL) with an orange cap and a label with an orange border is authorized for use in children 5–11 years of age; this formulation should not be used in individuals ≥12 years of age. There are 2 formulations of the Pfizer-BioNTech COVID-19 vaccine authorized for use in individuals ≥12 years of age; both formulations contain 30 mcg in each 0.3 mL dose. One formulation is supplied in a multiple dose vial with a purple cap; this formulation must be diluted prior to use. The other formulation does not require dilution and is supplied in a multiple dose vial with a gray cap. The Comirnaty® Pfizer-BioNTech COVID-19 vaccine and the 2 EUA authorized formulations (purple cap and gray cap) of the Pfizer-BioNTech COVID-19 vaccine for individuals ≥12 years of age can be used interchangeably when prepared according to their respective instructions for use. The formulations authorized for use in individuals ≥12 years of age should not be used in individuals 5–11 years of age because of the potential for vaccine administration errors, including dosing errors.

For additional information, consult the EUA at https://www.fda.gov/media/144636/download and the fact sheet for healthcare providers at https://www.fda.gov/media/144637/download

National Alert Network (NAN) Alert Regarding Age-Related COVID-19 Vaccine Mix-ups: On December 6, 2021, the National Alert Network (NAN) issued an alert to make vaccine providers aware of reports of accidental mix-ups between the pediatric formulation of the Pfizer BioNTech COVID-19 vaccine intended for children 5–11 years of age (10 mcg/0.2 mL with an orange cap) and the adult formulation of the Pfizer BioNTech COVID-19 vaccine intended for individuals ≥12 years of age (30 mcg/0.3 mL with a purple cap). Multiple cases of such errors have been reported to the ISMP National Vaccine Errors Reporting Program (ISMP VERS). In some cases, children ≥12 years of age received the formulation intended for children 5–11 years of age, resulting in undoses; in other cases, children 5–11 years of age received the formulation intended for individuals ≥12 years of age, resulting in overdoses. Possible causes include vial and syringe mix-ups and incorrect assumption that the formulations are interchangeable. The pediatric vaccine is specifically formulated to be less concentrated to ensure accurate dose measurement; use of the adult formulation to prepare doses for children 5–11 years of age is likely to result in delivery of an inaccurate volume of vaccine to the patient. The NAN alert provides recommendations for preventing such vaccine mix-ups, which include segregate storage, proper labeling of syringes, and

COVID-19 vaccine (Pfizer-BioNTech) is a nucleoside-modified mRNA (modRNA) vaccine used to stimulate active immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Uses

Prevention of Coronavirus Disease 2019 (COVID-19)

COVID-19 vaccine (Pfizer-BioNTech) is used for active immunization to prevent coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in individuals 16 years of age or older as a 2-dose primary vaccination series.

Although efficacy and safety have not been established, COVID-19 vaccine (Pfizer-BioNTech) is available under an FDA emergency use authorization (EUA) to prevent COVID-19 when used as a 2-dose primary vaccination series in adolescents 12 through 15 years of age, a 3-dose series in the primary vaccination series in certain immunocompromised individuals ≥12 years of age or older, and a single booster dose after completion of a primary series in adults 65 years of age or older, adults 18 through 64 years of age at high risk of severe COVID-19, and adults 18 through 64 years of age whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk for serious complications of COVID-19, including severe COVID-19.

The US Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for use of the Pfizer-BioNTech COVID-19 vaccine as a 2-dose primary series for prevention of COVID-19 in individuals 16 years of age or older. ACIP also issued interim recommendations for use of the vaccine as a 2-dose primary series in adolescents 12 through 15 years of age, use as a third (additional) primary dose in certain immunocompromised individuals, and use as a single booster dose in certain adults after completion of a primary series of the vaccine.

There currently are 3 different COVID-19 vaccines available for use in the US, including 2 mRNA vaccines (Pfizer-BioNTech COVID-19 vaccine and Moderna COVID-19 vaccine) and a viral-vector vaccine (Janssen COVID-19 vaccine). ACIP does not state a preference for any specific COVID-19 vaccine approved or authorized by FDA when the vaccines are used within the scope of their respective biologic license application (BLA) or EUA and states that individuals should be encouraged to receive the earliest vaccine available to them. However, the Pfizer-
BioNTech COVID-19 vaccine (distributed either as Comirnaty® or without a trade name) is not interchangeable with other COVID-19 vaccines, including the Moderna COVID-19 vaccine and the Janssen COVID-19 vaccine. (See Dosage under Dosage and Administration.)

Emergency Use Authorization

FDA issued the initial EUA for COVID-19 vaccine (Pfizer-BioNTech) on December 11, 2020 that permitted use of a 2-dose series of the vaccine to prevent COVID-19 in individuals 16 years of age or older; the EUA was then reissued on May 10, 2021 to permit use of a 2-dose vaccination series in individuals 12 years of age or older. On August 12, 2021, FDA reissued the EUA to authorize administration of a third dose of the Pfizer-BioNTech COVID-19 vaccine in individuals 12 years of age or older who are solid organ transplant recipients or diagnosed with conditions considered to have an equivalent level of immunocompromise. After the Pfizer-BioNTech COVID-19 vaccine received full FDA approval on August 23, 2021 for use as a 2-dose primary series in individuals 16 years of age or older, the EUA was reissued to allow continued authorization of the vaccine for use as a 2-dose primary series in adolescents 12 through 15 years of age (i.e., an age group not currently included in the BLA approval) and use as a third (additional) primary series dose at least 28 days after the second dose in certain immunocompromised individuals 12 years of age or older. On September 22, 2021, FDA again reissued the EUA for the Pfizer-BioNTech COVID-19 vaccine to also permit use as a single booster dose in certain adults at least 6 months after completion of a primary series of the vaccine.

The EUA for the Pfizer-BioNTech vaccine requires that the vaccine be administered by vaccination providers as described in the EUA (see Dosage and Administration) and that vaccination providers participate and comply with terms and training required by CDC's COVID-19 vaccination program, including monitoring and complying with CDC and/or emergency response stakeholder vaccine management requirements (e.g., requirements concerning obtaining, tracking, and handling vaccine) and requirements concerning reporting of vaccine administration data to CDC and state/local jurisdiction's Immunization Information System (IIS) or other designated systems.

FDA issued the EUA for the Pfizer-BioNTech COVID-19 vaccine after concluding that emergency use of the vaccine for the prevention of COVID-19 met the criteria for issuance of an EUA for the following reasons: SARS-CoV-2 can cause a serious or life-threatening disease or condition, including severe respiratory illness; based on the totality of scientific evidence available to FDA, it is reasonable to believe that the Pfizer-BioNTech COVID-19 vaccine may be effective in preventing COVID-19; and, when used under the conditions described in the authorization, the known and potential benefits of the vaccine outweigh the known and potential risks.

Clinical Experience

The EUA for the BioNTech COVID-19 vaccine in individuals as young as 12 years of age was based on a review of safety and efficacy data for approximately 46,000 individuals in the ongoing phase 1, 2, 3 clinical trial, including 22,600 adolescents 12 through 15 years of age. FDA authorization of a third dose of the vaccine in individuals 12 years of age or older who are solid organ transplant recipients or diagnosed with conditions considered to have an equivalent level of immunocompromise was based on a review of safety and efficacy data from a single-arm study that included 99 solid organ transplant recipients who received a third dose of the vaccine approximately 2 months after the second vaccine dose and safety and efficacy data from a double-blind, randomized, placebo-controlled study that included 60 solid organ transplant recipients who received a 3-dose regimen of a different mRNA COVID-19 vaccine (COVID-19 vaccine [Moderna]). FDA authorization of a single booster dose of the Pfizer-BioNTech COVID-19 vaccine in certain adults who completed a primary series of the vaccine was based on a review of safety, effectiveness, and immunologic data from the ongoing phase 1, 2, 3 clinical trial in which 329 individuals 18 through 75 years of age received a booster dose of the vaccine approximately 6 months (range: 4.8–8.8 months) after completion of the primary series. (See Clinical Experience under Uses.)

The EUA for the Pfizer-BioNTech COVID-19 vaccine authorizes that distribution of the vaccine will be controlled by the US government for use consistent with the terms and conditions of the EUA. (See Restricted Distribution under Preparations.) To mitigate the risks of the vaccine, the EUA requires that vaccination providers administering the Pfizer-BioNTech COVID-19 vaccine comply with certain mandatory requirements. These requirements include providing the recipient or caregiver with information consistent with the vaccine information fact sheet for recipients and caregivers and ensuring that all vaccination administration errors and all serious adverse events potentially attributable to the vaccine are reported as specified in the EUA fact sheet for healthcare providers. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

For additional information, the Pfizer-BioNTech COVID-19 vaccine EUA letter of authorization (https://www.fda.gov/media/144412/download) and EUA fact sheet for healthcare providers (https://www.fda.gov/media/144413/download), and vaccine information fact sheet for recipients and caregivers (https://www.fda.gov/media/144414/download) should be consulted.

Efficacy and safety of COVID-19 vaccine (Pfizer-BioNTech) for the prevention of COVID-19 are being evaluated in an ongoing multinational, randomized, double-blind, placebo-controlled, phase 1, 2, 3, 3 trial (NCT04368782; C45910001; study 2) in individuals 12 years of age or older. Based on results of the dose-escalation phase 1 portion of the trial that evaluated 3 different doses of the Pfizer-BioNTech COVID-19 vaccine in healthy adults 18 years of age or older, a 2-dose regimen consisting of 30-mcg doses of the vaccine was selected for the phase 2/3 portion of the trial. In phase 2/3, enrollees were randomized 1:1 to receive 2 IM doses given 21 days apart of the Pfizer-BioNTech COVID-19 vaccine (30 mcg for each dose) and saline placebo, and randomization was stratified to 3 age groups (12–15, 16–55, or 56 years of age and older) with a minimum of 40% of enrollees in the 56 years of age and older group. Healthy individuals and those with stable chronic disease (i.e., disease not requiring significant change in therapy or hospitalization for worsening disease during the 6 weeks before enrollment), including but not limited to human immunodeficiency virus (HIV), hepatitis C virus (HCV), or hepatitis B virus (HBV) infection, were eligible for enrollment; individuals who had immunocompromising conditions were receiving immunosuppressive therapy and those with a previous confirmed clinical or microbiologic diagnosis of COVID-19 were excluded. The first primary efficacy end point is efficacy of the vaccine against confirmed COVID-19 with onset at least 7 days after the second dose of the 2-dose vaccination series in participants who had no serologic or virologic evidence of SARS-CoV-2 infection prior to 7 days after the second dose; the second primary end point is efficacy in participants with or without evidence of SARS-CoV-2 infection prior to 7 days after the second dose. A secondary end point is the incidence of severe COVID-19 with onset at least 7 days after the second dose in participants with or without evidence of SARS-CoV-2 infection prior to 7 days after the second dose.

Adults and Adolescents 16 Years of Age and Older

Safety and efficacy of the Pfizer-BioNTech COVID-19 vaccine for prevention of COVID-19 in individuals 16 years of age or older as a 2-dose vaccination series was established based on review of efficacy and safety data accrued through March 13, 2021 from the ongoing phase 1, 2, 3 clinical trial (NCT04368782; C45910001; study 2).

The population for analysis of the protocol pre-specified primary efficacy end point included 36,621 participants 12 years of age or older (18,242 in the vaccine group and 18,379 in the placebo group) who had no evidence of prior infection with SARS-CoV-2 through 7 days after the second dose. This included all participants 12 years of age or older who had been enrolled from July 27, 2020 and followed for the development of COVID-19 from November 14, 2020 (enrollment for those 18 through 55 years of age and 56 years of age or older began July 27, 2020, enrollment for those 16 through 17 years of age began September 16, 2020, and enrollment for those 12 through 15 years of age began October 15, 2020). For participants without evidence of SARS-CoV-2 infection prior to 7 days after dose 2, vaccine efficacy against confirmed COVID-19 occurring at least 7 days after dose 2 was 95%, which met the pre-specified success criterion. There were 8 cases of COVID-19 in the vaccine group compared with 162 cases in the placebo group.

The population for the updated vaccine efficacy analysis performed for the BLA approval included participants 16 years of age and older who had been enrolled from July 27, 2020 and followed for the development of COVID-19 during blinded, placebo-controlled follow-up through March 13, 2021, representing up to 6 months of follow-up after dose 2. A total of 12,796 participants in the vaccine group and 12,449 in the placebo group were followed for at least 4 months after dose 2 in the blinded, placebo-controlled follow-up period. Vaccine efficacy against first COVID-19 occurrence from day 7 after dose 2 in participants 16 years of age or older without evidence of infection prior to 7 days after dose 2 was 91.1% (90.5% in those 16 through 64 years of age and 94.5% in those 65 years of age or older).

Efficacy and a series of secondary efficacy end points supported benefit of the Pfizer-BioNTech COVID-19 vaccine in preventing severe COVID-19. Vaccine efficacy against first severe COVID-19 occurrence from day 7 after dose 2 in participants 16 years of age or older with or without evidence of prior infection with SARS-CoV-2 who were at risk for severe COVID-19 was 95.3% (severe SARS-CoV-2 infection was confirmed in 1 of 20,540 individuals in the vaccine group and 21 of 20,629 individuals in the placebo group). Vaccine efficacy against first severe COVID-19 occurrence (based on CDC definition of severe COVID-19) in this age group from day 7 after dose 2 was 100% (no cases of severe SARS-CoV-2 infection were reported in the 20,513 individuals in the vaccine group and 31 cases were reported in the 20,593 individuals in the placebo group).

SARS-CoV-2 variants of concern identified from COVID-19 cases in this study included B.1.1.7 (Alpha; first detected in the UK) and B.1.351 (Beta; first detected in South Africa), and representation of identified variants among cases of infection in vaccine recipients compared with placebo recipients did not suggest decreased vaccine effectiveness against these variants.

Additional primary efficacy analyses among subgroups defined by sex, race, ethnicity, geography, and presence of medical conditions associated with increased risk for severe COVID-19 (e.g., obesity, chronic lung disease, significant cardiac disease, diabetes mellitus, hypertension, liver disease) indicated that vaccine efficacy in these subgroups generally was consistent with that observed in the overall population.
Adolescents 12 through 15 Years of Age.

At the time of FDA's efficacy review of data from the phase 2/3 portion of study 2 that permitted use of the Pfizer-BioNTech COVID-19 vaccine as a 2-dose primary vaccination series in adolescents 12 through 15 years of age, under the EUA, a descriptive efficacy analysis that included approximately 2200 adolescents 12 through 15 years of age had been performed and provided data for confirmed COVID-19 cases that accrued during blinded, placebo-controlled follow-up in these adolescents through March 13, 2021. Among the 1983 participants 12 through 15 years of age in the trial who had no evidence of existing or prior SARS-CoV-2 infection (1005 in the vaccine group and 978 in the placebo group), there were no cases of COVID-19 with onset at least 7 days after the second dose among vaccine recipients and 16 cases among placebo recipients; this corresponds to 100% vaccine efficacy. Among the 2229 participants 12 through 15 years of age with or without evidence of SARS-CoV-2 infection prior to 7 days after the second dose (1119 in the vaccine group and 1110 in the placebo group), there were no cases of COVID-19 with onset at least 7 days after the second dose among vaccine recipients and 18 cases among placebo recipients; this corresponding to 100% vaccine efficacy.

Immunocompromised Individuals 12 Years of Age or Older.

Efficacy and safety of administration of a third (additional) dose of the Pfizer-BioNTech COVID-19 vaccine were evaluated in a single-arm study that included a group of 99 solid organ transplants transplant recipients. Individuals included in the study had previously received various solid organ transplants (heart, kidney, liver, lung, pancreas) and were receiving immunosuppressive therapy, including glucocorticoids (87%), calcineurin inhibitors (79%), mycophenolic acid (63%), A mammalian target of rapamycin (mTOR) inhibitors (30%), and beclometasone (12%). The transplant recipients received 2 doses of Pfizer-BioNTech COVID-19 vaccine given 1 month apart, followed by a third dose of the vaccine administered approximately 2 months after the second dose. The time between transplantation and initiation of the vaccination series against COVID-19 ranged from 89–105 months. Among those who had been seronegative for anti-SARS-CoV-2 spike protein antibodies prior to the third vaccine dose, 44% were seropositive for antibodies at 4 weeks after the third dose. All 40 patients who were seropositive before the third vaccine dose were still seropositive 4 weeks after the dose (antibody titers were 36 prior to the third dose and 2676 at 1 month after the third dose). Overall, anti-SARS-CoV-2 antibodies were detected in 68% of study participants when tested at 4 weeks after the third vaccine dose.

Patients who did not have an antibody response were older, had a higher degree of immunosuppression, and had a lower estimated glomerular filtration rate than patients who had an antibody response. Daily Doses in Adults.

FDA authorization of a single booster dose of the Pfizer-BioNTech COVID-19 vaccine in adults 18 years of age or older administered at least 6 weeks after completion of a 2-dose primary series of the vaccine was based on a review of data for 329 adults 18 through 75 years of age in the ongoing phase 1, 2, 3 clinical trial who had no serologic or virologic evidence of prior SARS-CoV-2 infection and received a booster dose of the vaccine approximately 6 months (range: 4.8–8.8 months) after completion of a 2-dose primary series. Effectiveness of the booster dose was based on immunobridging analyses that compared geometric mean titers (GMTs) of neutralizing antibody against the reference strain of SARS-CoV-2 (USA/WA/1/2020) at 1 month after the booster dose and 1 month after completion of the 2-dose primary series and compared seroresponse rates at these time points. A comparison of neutralizing antibody titers (based on 50% neutralizing titer [NT50]) against the reference strain at 1 month after the booster dose versus titers at 1 month after completion of the 2-dose primary series in 212 trial participants 18 through 55 years of age indicated that GMTs after the booster dose were approximately threefold higher than those observed after the 2-dose primary series (GMTs of 750.6 after the 2-dose primary series and 2466 after the booster dose) and met the immunobridging success criteria. The seroresponse rate (defined as achieving at least a fourfold increase in NT50 from baseline [before the primary series]) in 200 trial participants was 98% at 1 month after completion of the 2-dose primary series and 99.5% at 1 month after the booster dose and met the immunobridging success criteria. These results demonstrated that immunogenicity of the booster dose was noninferior to immunogenicity of the 2-dose primary series of the vaccine.

Dosage and Administration

■ General

Appropriate medications and supplies to assess and manage immediate allergic reactions must be immediately available in the event that an acute anaphylactic reaction occurs following administration of a COVID-19 vaccine, including COVID-19 vaccine (Pfizer-BioNTech). Healthcare personnel who are trained and qualified to recognize signs and symptoms of anaphylaxis and administer IM epinephrine should be available at vaccination sites at all times. Vaccination locations that anticipate vaccinating large numbers of people (e.g., mass vaccination clinics) should plan adequate staffing and supplies (including epinephrine) for assessment and management of anaphylaxis. (See Hypersensitivity Reactions under Cautions.)

Prior to administration of each dose of the Pfizer-BioNTech COVID-19 vaccine, all individuals should be screened for contraindications and precautions to vaccination. Those with a contraindication should not receive the Pfizer-BioNTech COVID-19 vaccine. (See Contraindications and see Warnings/Precautions under Cautions.)

All individuals who receive a COVID-19 vaccine should be monitored for immediate adverse reactions according to CDC (ACIP) guidelines. When individuals with known contraindications to vaccination with the Pfizer-BioNTech COVID-19 vaccine receive the vaccine, ACIP states that those with a history of an immediate allergic reaction of any severity to any other vaccine or injectable therapy and those with a history of anaphylaxis due to any cause not considered a contraindication should be observed for 30 minutes after receiving the vaccine, and that all other individuals should be observed for 15 minutes. A longer period of observation may be indicated for some individuals based on clinical concern (e.g., vaccinee develops pruritus and swelling confined to the injection site during their observation period). Vaccine recipients should be instructed to seek immediate medical care if they develop signs or symptoms of an allergic reaction after their observation period ends and they have left the vaccination site. (See Hypersensitivity Reactions under Cautions.)

Syncope (vasovagal or vasodepressor reaction; fainting) may occur following administration of parenteral vaccines, including the Pfizer-BioNTech COVID-19 vaccine; such reactions usually occur within 15 minutes following vaccine administration and are reported most frequently in adolescents and young adults. Appropriate measures should be taken to decrease the risk of injury if a patient becomes weak or dizzy or loses consciousness (e.g., vaccinees should sit or lie down during and for 15 minutes after vaccination). If syncope occurs, the patient should be observed until symptoms resolve.

COVID-19 vaccine (Pfizer-BioNTech) is administered in a series of 2 doses given 3 weeks apart. (See Dosage under Dosage and Administration.) At the time that the first dose of the Pfizer-BioNTech COVID-19 vaccine is administered, vaccine recipients or their caregivers should be given a vaccination record card that provides the date when the recipient needs to return for additional vaccine dose(s) and counseled on the importance of completing the 2-dose primary vaccination series to optimize protection against COVID-19.

Vaccine recipients or their caregivers should be provided with information on, and encouraged to participate in, CDC's v-safe program, a voluntary smartphone-based tool that uses text messaging and web surveys to monitor for adverse effects in individuals who have received a COVID-19 vaccine. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

Prior to vaccination, vaccine recipients or their caregivers should be counseled about local and systemic adverse effects that may occur following vaccination. (See Cautions and see Advice to Patients.) Unless an individual has a contraindication to vaccination with an mRNA COVID-19 vaccine (see Contraindications under Cautions), ACIP recommends that vaccinees be encouraged to complete the 2-dose vaccination series of the Pfizer-BioNTech COVID-19 vaccine even if they experience local or systemic adverse effects following the first dose since this optimizes protection.

Antihypertetics or angiotensics (e.g., angiotensin-converting enzyme, nonsteroidal anti-inflammatory agents) may be taken for the treatment of postvaccination local or systemic symptoms, if medically appropriate. However, routine premedication for the purpose of preventing postvaccination symptoms in individuals receiving a COVID-19 vaccine is not currently recommended because information regarding possible impact on antibody response to the vaccine is not available at this time. Premedication with antihistamines prior to vaccination to prevent allergic reactions is not recommended; antihistamines do not prevent anaphylaxis and may mask cutaneous symptoms, which could lead to a delay in the diagnosis and management of anaphylaxis. (See Hypersensitivity Reactions under Cautions.)

Individuals who receive COVID-19 vaccine (Pfizer-BioNTech) and are considered partially or fully vaccinated against COVID-19 (see Dosage under Dosage and Administration) and those who have received a third primary dose or a booster dose of the vaccine should follow current CDC guidance to protect themselves and others. For fully vaccinated individuals, this may include wearing a mask in certain settings with substantial or high levels of viral transmission following applicable federal, state, local, tribal, or territorial laws, rules, and regulations; and following CDC travel guidance and any applicable local business or workplace guidance. (See Limitations of Vaccine Effectiveness under Cautions.)

■ Administration

COVID-19 vaccine (Pfizer-BioNTech) labeled as Comirnaty® or provided without a trade name is administered only by IM injection into the deltoid.

Although data are not available regarding safety and immunogenicity of concomitant administration of the Pfizer-BioNTech COVID-19 vaccine with other vaccines, ACIP states that COVID-19 vaccines may be administered without regard to timing of other vaccines. (See Vaccines under Drug Interactions.)
COVID-19 vaccine (Pfizer-BioNTech) is supplied as a frozen suspension concentrate in multiple-dose vials.

The frozen Pfizer-BioNTech COVID-19 vaccine suspension concentrate is shipped in thermal containers with dry ice at ultra-low temperatures and must be stored frozen at specific temperatures. (See Stability.)

Prior to use, the frozen Pfizer-BioNTech COVID-19 vaccine suspension concentrate must be thawed and then diluted with 0.9% sodium chloride injection only. Single-use vials of 0.9% sodium chloride injection are provided with Pfizer-BioNTech COVID-19 vaccine labeled as Comirnaty®6, but are shipped separately. Vials of 0.9% sodium chloride injection are not provided with Pfizer-BioNTech COVID-19 vaccine that is not labeled with a trade name, and must be sourced separately for dilution of the vaccine.

To administer a dose of the thawed and diluted Pfizer-BioNTech COVID-19 vaccine, 0.3 mL of the vaccine should be withdrawn from the vial using aseptic technique and an appropriate syringe and needle and administered immediately. A low-dead-volume syringe and needle is preferred for administration of the vaccine; a standard 1-mL syringe can be used if a low-dead-volume syringe is not available.

Each multiple-dose vial of thawed and diluted Pfizer-BioNTech COVID-19 vaccine provides six 0.3-mL doses when low dead-volume syringes and needles are used to extract doses from the vial. If standard syringes and needles are used, the volume of remaining vaccine may be insufficient to extract a sixth dose from the vial. Irrespective of the type of syringe and needle used, each dose must contain 0.3 mL of vaccine.

Any vaccine remaining in the vial that does not constitute a full 0.3-mL dose should be discarded and should not be pooled with vaccine from other vials to create a dose.

Thawing.

Frozen COVID-19 vaccine (Pfizer-BioNTech) suspension concentrate may be thawed either in a refrigerator (2–8°C) or at room temperature (up to 25°C). Thawing in a refrigerator (2–8°C): A full carton or tray containing 25 or 95 vials of frozen suspension concentrate may take up to 2 or 3 hours, respectively, to thaw; less time is required to thaw fewer vials. The vials of thawed vaccine may be stored in the refrigerator (2–8°C) for up to 1 month before dilution.

Thawing at room temperature (up to 25°C): Vial(s) should be allowed to sit at room temperature for 30 minutes to thaw and may be kept at room temperature for up to a total of 2 hours. After 2 hours at room temperature, the thawed vaccine should be diluted or placed in a refrigerator (2–8°C).

Thawed COVID-19 vaccine (Pfizer-BioNTech) suspension concentrate should appear as a white to off-white suspension and may contain white to off-white opaque amorphous particles. The thawed vaccine should not be used if it is discolored or contains other particles.

Vaccine that has been thawed must not be refrozen.

Dilution.

Thawed COVID-19 vaccine (Pfizer-BioNTech) suspension concentrate must equilibrate to room temperature prior to dilution and must be diluted within 2 hours after reaching room temperature.

Prior to dilution, vial(s) containing the thawed vaccine suspension concentrate should be gently inverted 10 times and should not be shaken.

Using aseptic technique, 1.8 mL of 0.9% sodium chloride injection should be withdrawn into a 3- or 5-mL transfer syringe (21-gauge needle or narrower) and injected into the vial of thawed Pfizer-BioNTech COVID-19 vaccine suspension concentrate; no more than 1.8 mL of diluent should be added to the vial. To equalize vial pressure, 1.8 mL of air should be withdrawn into the empty diluent syringe before removing the needle from the vial. Other diluents (e.g., bacteriostatic 0.9% sodium chloride injection) should not be used.

After the 0.9% sodium chloride diluent has been added, the vial should be gently inverted 10 times to mix and should not be shaken.

Following dilution, COVID-19 vaccine (Pfizer-BioNTech) should appear as an off-white suspension and should not be used if it is discolored or contains particulates.

The date and time of dilution must be recorded on the vaccine vial.

Vials containing diluted COVID-19 vaccine (Pfizer-BioNTech) may be stored between 2–25°C, but must be used within 6 hours after dilution (regardless of storage temperature). Unused diluted vaccine remaining in vials should be discarded if not used within 6 hours after dilution.

Dosage

COVID-19 vaccine (Pfizer-BioNTech) is administered in a primary vaccination series of two 0.3-mL doses given 3 weeks apart in individuals 16 years of age or older and in adolescents 12 through 15 years of age. Immunocompromised individuals (i.e., solid organ transplant recipients or those diagnosed with conditions considered to have an equivalent level of immunocompromise) may receive a third 0.3-mL primary dose of the Pfizer-BioNTech COVID-19 vaccine administered at least 28 days after the second dose. Certain adults can receive a single 0.3-mL booster dose6 of the Pfizer-BioNTech COVID-19 vaccine administered at least 6 months after completion of the primary series of the vaccine.

Each 0.3-mL dose of the Pfizer-BioNTech COVID-19 vaccine contains 30 mcg of mRNA (see Description).

A 2-dose regimen of Pfizer-BioNTech COVID-19 vaccine is considered a complete primary vaccination series. Individuals should not receive more than one complete vaccination series for active immunization against COVID-19 (i.e., a 2-dose regimen of an mRNA vaccine [Pfizer-BioNTech COVID-19 vaccine or Moderna COVID-19 vaccine] or a single dose of Janssen COVID-19 vaccine).

Individuals are considered fully vaccinated against COVID-19 at least 2 weeks after receiving the second dose of a 2-dose vaccination series of an mRNA vaccine (Pfizer-BioNTech COVID-19 vaccine or Moderna COVID-19 vaccine) or at least 2 weeks after receiving a single dose of the Janssen COVID-19 vaccine. For public health purposes, ACIP states that administration of a third (additional) primary dose of an mRNA COVID-19 vaccine in individuals with moderate to severe immunocompromise or administration of a booster dose after the primary vaccination series is not required to be considered fully vaccinated. Those who have a contraindication to vaccination or who otherwise cannot complete a vaccination series are not considered fully vaccinated.

Clinicians should ensure that individuals who receive the first dose of the Pfizer-BioNTech COVID-19 vaccine receive a second dose of the same vaccine at the recommended interval to complete the primary vaccination series.

FDA specifies an interval of 3 weeks between the first and second doses of the Pfizer-BioNTech COVID-19 vaccine. ACIP states that individuals should be scheduled to receive the second dose of the vaccine as close to the recommended day as possible, but not earlier than 3 weeks after the first dose; however, individuals who receive a second dose administered up to 4 days before or at any time after the recommended date can be considered fully vaccinated.

Pfizer-BioNTech COVID-19 vaccine (Comirnaty®6) and Pfizer-BioNTech COVID-19 vaccine provided without a trade name have the same formulation. Pfizer-BioNTech COVID-19 vaccine distributed either as Comirnaty® or without a trade name can be used interchangeably to provide the vaccination series without any safety or efficacy concerns.

COVID-19 vaccine (Pfizer-BioNTech) is not interchangeable with COVID-19 vaccine (Moderna) or any other COVID-19 vaccine.

Safety and efficacy of a mixed vaccination series of mRNA COVID-19 vaccines have not been evaluated, and individuals who receive a dose of the Pfizer-BioNTech COVID-19 vaccine should complete the series using the same vaccine. Every effort should be made to determine which mRNA COVID-19 vaccine was used for the first dose to ensure completion of the vaccination series using the same vaccine. ACIP states that in exceptional situations when the mRNA COVID-19 vaccine used for the first dose cannot be determined or is no longer available, any available mRNA COVID-19 vaccine approved or authorized by FDA may be administered using a minimum interval of 28 days between doses to complete the mRNA COVID-19 vaccination series. In situations where the same mRNA vaccine is temporarily unavailable, ACIP states that it is preferable to delay the second dose to allow completion of the vaccination series using the same mRNA COVID-19 vaccine rather than administering a mixed vaccination series composed of 2 different mRNA COVID-19 vaccines. If 2 doses of different mRNA COVID-19 vaccines are administered in such situations (or inadvertently), ACIP states that such individuals are considered fully vaccinated against COVID-19 at least 2 weeks after receipt of the second dose of mRNA vaccine.

Safety and efficacy regarding use of the viral vectored vaccine (Janssen COVID-19 vaccine) after a dose of an mRNA COVID-19 vaccine have not been established. However, ACIP states that, in limited, exceptional situations when an individual received the first dose of an mRNA COVID-19 vaccine but is unable to complete the vaccination series with either the same or different mRNA COVID-19 vaccine (e.g., due to a contraindication), a single dose of the Janssen COVID-19 vaccine administered at least 28 days after the first dose of mRNA COVID-19 vaccine may be considered. (See Hypersensitivity Reactions under Cautions.) An individual who receives a dose of an mRNA COVID-19 vaccine followed by a single dose of the Janssen COVID-19 vaccine under such exceptional circumstances should be considered to have received complete single-dose vaccination with Janssen COVID-19 vaccine (not a mixed vaccination series) and is considered fully vaccinated against COVID-19 if at least 2 weeks have elapsed since the single dose of Janssen COVID-19 vaccine.

All vaccine administration errors and deviations from the currently recommended dosage and vaccination schedule should be reported to the vaccinee and must be reported to the Vaccine Adverse Event Reporting System (VAERS). (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.) Information on how to prevent and report COVID-19 vaccine administration errors and recommendations for specific actions to take if an administration error or deviation from the recommended vaccination schedule occurs are available at the CDC website at https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html.

Adult Dosage

Primary Vaccination Series.

Adults should receive two 0.3-mL doses of COVID-19 vaccine (Pfizer-BioNTech) administered 3 weeks apart.
Cautions

- Contraindications
 - Known history of severe allergic reaction (e.g., anaphylaxis) to any component of the vaccine. (See Description.)

- Warnings/Precautions
 - Sensitivity Reactions

 Hypersensitivity Reactions. Although immediate allergic reactions have not been reported to date in clinical trials evaluating COVID-19 vaccine (Pfizer-BioNTech), severe allergic reactions, including anaphylaxis, have been reported rarely following administration of mRNA COVID-19 vaccines outside of clinical trials.

 Following issuance of the FDA EUA for the Pfizer-BioNTech COVID-19 vaccine, safety monitoring data identified 21 cases of anaphylaxis occurring between December 14–23, 2020 among 1,893,360 individuals in the US who received the first dose of the vaccine (1.11 cases per million vaccine doses administered); this included 17 cases in individuals with a documented history of allergies or allergic reactions to drugs or medical products, foods, or insect stings (7 with a history of anaphylaxis, including one after receipt of a dose of rabies vaccine and another after receipt of influenza vaccine). The median interval from receipt of the vaccine dose to onset of anaphylaxis symptoms was 13 minutes (range: 2–150 minutes); 15 of the 21 individuals with anaphylaxis (71%) had onset of symptoms within 15 minutes after receiving the dose and 19 (90%) were treated with epinephrine. No fatalities from anaphylaxis were reported; 17 individuals were treated in an emergency department and the other 4 were hospitalized (including 3 in an intensive care unit).

 Following issuance of the FDA EUA for the Moderna COVID-19 vaccine, safety monitoring data identified 10 cases of anaphylaxis among 4,041,396 individuals in the US who received the first dose of the vaccine (2.5 cases per million vaccine doses administered); this included 9 cases in individuals with a documented history of allergies or allergic reactions to drugs, contrast media, or food (5 with a history of anaphylaxis). The median interval from receipt of the vaccine dose to onset of symptoms was 7.5 minutes (range: 1–45 minutes); 9 of the 10 individuals had onset within 15 minutes and one had onset after 30 minutes. All 10 individuals were treated with epinephrine. No fatalities from anaphylaxis were reported; 4 individuals were treated in an emergency department and the other 6 were hospitalized (including 5 in an intensive care unit).

 Between December 14–23, 2020, VAERS identified 83 cases of nonanaphylactic allergic reactions after administration of the first dose of the Pfizer-BioNTech COVID-19 vaccine; 72 of these cases (87%) were classified as nonserious and 56 of the cases (67%) included a documented history of allergies or allergic reactions. The median interval from receipt of the vaccine dose to onset of such symptoms was 12 minutes (range: less than 1 minute to 20 hours); in 61 cases (85%), onset of symptoms occurred within 30 minutes. Hypersensitivity reactions reported with the vaccine have included rash, pruritus, urticaria, itching/scratching sensations in the throat, angioedema, and mild respiratory symptoms.

 Individuals with a history of significant allergic reaction to any vaccine or to any component of the Pfizer-BioNTech COVID-19 vaccine were excluded from participating in clinical trials; however, those with a history of other significant allergic reactions were not excluded. FDA independently conducted a standard MedDRA queries (SMQs) review of data from the safety population of the ongoing randomized, placebo-controlled, phase 2/3 trial evaluating the Pfizer-BioNTech vaccine to evaluate for constellations of unsolicited adverse events using preferred terms that could represent various diseases and conditions including, but are not limited to, allergic, neurologic, inflammatory, and autoimmune conditions. The SMQs revealed a slight numerical imbalance of adverse events potentially representing allergic reactions, with more hypersensitivity-related adverse events reported in the vaccine group than the placebo group (0.63% and 0.51%, respectively).

 Delayed-onset local reactions (e.g., erythema, induration, pruritus, tenderness) around the injection site area have been reported in some vaccine recipients, including some clinical trial participants, after the first dose of an mRNA COVID-19 vaccine. These local reactions may begin from a few days through the second week after the first dose and may be quite large. In some reported cases, such delayed-onset local reactions after the first vaccine dose resolved in a median of 6 days (range: 2–11 days), and some individuals had similar (but less severe) local reactions after the second dose of the vaccine. ACIP states that a delayed-onset local reaction after the first dose of an mRNA COVID-19 vaccine is not a contraindication or precaution for administration of the second dose. Therefore, individuals with such injection site reactions after the first dose of an mRNA COVID-19 vaccine should receive the second dose of the same vaccine at the recommended interval, preferably in the opposite arm.

 If a hypersensitivity reaction, including anaphylaxis, occurs following COVID-19 vaccination, the case should be reported to VAERS. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

 Because anaphylactic reactions have been reported rarely following administration of COVID-19 vaccines, ACIP has issued interim guidance with contraindications and precautions for use of COVID-19 vaccines pending further investigation. For the purposes of this interim guidance, ACIP states that an immediate allergic reaction to a vaccine or medication is defined as any hypersensitivity-related signs or symptoms such as urticaria, angioedema, respiratory distress (e.g., wheezing, stridor), or anaphylaxis occurring within 4 hours following administration. Vaccination providers should attempt to determine whether reactions reported following vaccination with an mRNA COVID-19 vaccine are consistent with allergic reactions that would contraindicate additional doses of the mRNA COVID-19 vaccine (see Hypersensitivity Reactions under Cautions) or are reactions commonly observed following vaccination, such as vasovagal reactions or postvaccination adverse effects, that are not considered contraindications to receiving the second dose of the 2-dose vaccination series.

 History of severe allergic reaction (e.g., anaphylaxis) after a previous dose of an mRNA COVID-19 vaccine or any of its components (e.g., PEG): ACIP considers this a contraindication to vaccination with both the Pfizer-BioNTech COVID-19 vaccine and the Moderna COVID-19 vaccine. ACIP states that consideration can be given to using an alternative COVID-19 vaccine (Janssen COVID-19 vaccine) in such individuals. However, because of potential cross-reactive hypersensitivity between ingredients in mRNA COVID-19 vaccines and the Janssen COVID-19 vaccine (including PEG and polysorbate 80, respectively), consultation with an allergist-immunologist should be considered to help determine if the individual can safely receive the Janssen COVID-19 vaccine. US healthcare providers and health departments can also request a clinical consultation from the Clinical Immunization Safety Assessment COVIDVax project (https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/cisa/index.html) when making such decisions. Although safety and efficacy of administering the Janssen COVID-19 vaccine after an mRNA COVID-19 vaccine have not been established, ACIP states that, in those exceptional situations when an individual received the first dose of an mRNA COVID-19 vaccine but is unable to complete the series with either the same or different mRNA COVID-19 vaccine (e.g., due to a contraindication), a single dose of the Janssen COVID-19 vaccine may be considered at a minimum interval of 28 days after the dose of mRNA COVID-19 vaccine. (See Dosage under Dosage and Administration.)

 History of immediate allergic reaction of any severity to a previous dose of an mRNA COVID-19 vaccine or known (diagnosed) allergy to a component of the vaccine (e.g., PEG): ACIP considers this a contraindication to vaccination with both the Pfizer-BioNTech COVID-19 vaccine and the Moderna COVID-19 vaccine. ACIP states that consideration can be given to using an alternative COVID-19 vaccine (Janssen COVID-19 vaccine) in such individuals. However, because of potential cross-reactive hypersensitivity between ingredients in mRNA COVID-19 vaccines and the Janssen COVID-19 vaccine (including PEG and polysorbate 80, respectively), consultation with an allergist-immunologist should be considered to
help determine if the individual can safely receive the Janssen COVID-19 vaccine. US healthcare providers and health departments can also request a clinical consultation from the Clinical Immunization Safety Assessment COVIDvax project (https://www.cdc.gov/vaccinesafety/ensuring-safety/monitoring/cisa/index.html) when making such decisions. Although safety and efficacy of administering the Janssen COVID-19 vaccine after an mRNA COVID-19 vaccine have not been established, ACIP states that it is not a contraindication to administer a subsequent dose of an mRNA COVID-19 vaccine if the individual is able to continue to be vaccinated. However, ACIP states that these local reactions are not due to COVID-19 vaccination. ACIP states that these local reactions are not due to COVID-19 vaccination.

History of immediate allergic reaction to any other vaccine or injectable therapy (i.e., IM, IV, or subcutaneous vaccines or therapies): ACIP considers this a precaution, but not a contraindication, to COVID-19 vaccination. ACIP states that a history of immediate allergic reaction to subcutaneous immunotherapy for allergies (i.e., allergy shots) is not considered a contraindication or precaution to COVID-19 vaccination.

History of immediate allergic reaction to a vaccine or injectable therapy that contains multiple components (one or more of which is a component of a COVID-19 vaccine), but it is not known which component elicited the reaction: ACIP considers this a precaution, but not a contraindication, to the COVID-19 vaccine.

History of allergic reactions (including severe allergic reactions) not related to COVID-19 vaccines, other vaccines, or injectable therapies: ACIP states that allergic reactions related to food, pets, insects, venom, or environmental allergies and allergic reactions to oral medications (including the oral equivalents of injectable medications) are not a contraindication or precaution to COVID-19 vaccination. Late allergy is not a contraindication or precaution since vial stoppers of COVID-19 vaccines are not made with natural rubber latex. Allergies to eggs or gelatin are not a contraindication or precaution since COVID-19 vaccines do not contain eggs or gelatin. In addition, a family history of allergies is not a contraindication or precaution to COVID-19 vaccination.

History of delayed-onset local reactions (e.g., erythema, induration, pruritus) around the injection site area after the first dose of an mRNA COVID-19 vaccine: ACIP states that these local reactions are not a contraindication or precaution for administration of the second dose of the mRNA COVID-19 vaccine. However, if these local reactions are unresponsive to conservative treatment, ACIP recommends that the vaccine be administered in an appropriate setting under the supervision of a healthcare provider experienced in the management of severe allergic reactions.

Data to date indicate that myocarditis and pericarditis following vaccination with an mRNA COVID-19 vaccine have predominantly occurred in male adolescents and young adults (range: 12–29 years of age). The observed risk of myocarditis and pericarditis is higher among males younger than 40 years of age than among females and older males and is highest in males 12 through 17 years of age. Although most patients were hospitalized for short periods and some reported mild or no symptoms, available data from short-term follow-up suggest that the majority of these individuals responded to conservative treatment involving medications and rest with rapid improvement or resolution of symptoms. Additional data are needed regarding the potential for long-term sequelae.

The possibility of myocarditis and pericarditis should be considered in the differential diagnosis for adolescents or young adults with acute chest pain, shortness of breath, or palpitations. During initial evaluation of suspected cases, the patient should be queried about prior COVID-19 vaccination and pertinent medical, travel, and social history; in addition, assessment of ECG, troponin levels, and inflammatory markers such as C-reactive protein and erythrocyte sedimentation rate should be considered. For suspected cases, expert consultation should be considered regarding diagnosis, management, and follow-up.

Individuals who developed myocarditis or pericarditis after a dose of an mRNA COVID-19 vaccine: Because it is unclear whether such individuals are at increased risk of further adverse cardiac effects following a subsequent dose of the vaccine, experts recommend that subsequent vaccine doses be deferred until additional safety data are available. ACIP states that there may be certain circumstances when administration of a subsequent dose can be considered, taking

AHFS Drug Information® 2021 • Page 6 of 13
into account the individual's personal risk of severe COVID-19 (e.g., age, underlying conditions), level of COVID-19 in the community and personal risk of infection, availability of additional data on the risk of myocarditis or pericarditis in such situations, and availability of additional data on the long-term outcomes of myocarditis and pericarditis in individuals who have received an mRNA COVID-19 vaccine. Individuals with a history of myocarditis or pericarditis after a dose of an mRNA COVID-19 vaccine who choose to receive a subsequent dose should wait until the episode of myocarditis or pericarditis has completely resolved, including resolution of symptoms attributed to myocarditis or pericarditis with no evidence of ongoing heart inflammation or sequelae as determined by the individual’s clinical team, which may include a cardiologist, and special testing to assess cardiac recovery.

Individuals with a history of myocarditis or pericarditis unrelated to mRNA COVID-19 vaccination (e.g., prior to COVID-19 vaccination): Data are limited regarding the safety and efficacy of COVID-19 vaccines in such individuals. ACIP states that such individuals may receive any FDA-approved or FDA-authorized COVID-19 vaccine after the episode of myocarditis or pericarditis unless shed to COVID-19 vaccination has completely resolved, including resolution of symptoms attributed to myocarditis or pericarditis with no evidence of ongoing heart inflammation or sequelae as determined by the individual’s clinical team, which may include a cardiologist, and special testing to assess cardiac recovery. Individuals receiving an mRNA COVID-19 vaccine, especially males 12–29 years of age, should be informed about the possibility of myocarditis or pericarditis after receiving the vaccine and the possibility of myocarditis or pericarditis occurring following SARS-CoV-2 infection and advised to seek medical care if symptoms of myocarditis or pericarditis occur after vaccination.

If myocarditis or pericarditis occurs following receipt of a COVID-19 vaccine, the case should be reported to VAERS. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

Thrombocytopenia

During post-authorization surveillance, there have been very rare reports of thrombocytopenia, including immune thrombocytopenia (ITP), in recipients of mRNA COVID-19 vaccines (Pfizer-BioNTech COVID-19 vaccine or Moderna COVID-19 vaccine). As of February 4, 2021, more than 18 million doses of the Pfizer-BioNTech COVID-19 vaccine and more than 16 million doses of the Moderna COVID-19 vaccine had been administered in the US, and FDA had identified 15 cases of thrombocytopenia in recipients of the Pfizer-BioNTech COVID-19 vaccine and 13 cases in recipients of the Moderna COVID-19 vaccine (reporting rates of 0.8 per million doses for both mRNA vaccines). FDA stated that this number of post-vaccination cases of thrombocytopenia does not suggest a safety concern attributable to mRNA COVID-19 vaccines. As of April 24, 2021, data from the Vaccine Safety Datalink (VSD) regarding reports of cerebral venous sinus thrombosis (CVST) in recipients of mRNA COVID-19 vaccines identified a total of 11 CVST cases (3 in recipients of the Pfizer-BioNTech vaccine and 8 in recipients of the Moderna vaccine). However, only 6 were considered to be potential incident cases of CVST since 5 of the cases were ruled out based on patient history (e.g., history of head injury, history of cavernous sinus syndrome); thrombocytopenia was not reported in any of these patients. At the time of this analysis, 6.3 million doses of mRNA COVID-19 vaccines had been administered at the healthcare organizations included in the VSD network, and there were no confirmed cases of CVST with thrombocytopenia in recipients of the Pfizer-BioNTech COVID-19 vaccine or Moderna COVID-19 vaccine.

Concomitant Illness

A decision to administer or delay vaccination in an individual with a current or recent febrile illness depends on the severity of symptoms and etiology of the illness. ACIP states that a moderate or severe acute illness is a precaution for administration of vaccines and states that a risk assessment should be performed with potential deferral of vaccination. Deferring vaccination until an individual has recovered avoids superimposing adverse effects of the vaccine on the underlying illness or mistakenly concluding that a manifestation of the underlying illness resulted from vaccination.

Individuals with Current SARS-CoV-2 Infection

ACIP recommends that COVID-19 vaccination be deferred in individuals with known current SARS-CoV-2 infection until they have recovered from the acute illness (if symptomatic) and until criteria for discontinuance of isolation have been met. This recommendation applies to individuals who experience SARS-CoV-2 infection before receiving any doses of COVID-19 vaccine and those who experience SARS-CoV-2 infection after receiving the first dose of an mRNA COVID-19 vaccine but before receiving the second dose of the vaccine. While there is no recommended minimum interval between SARS-CoV-2 infection and COVID-19 vaccination, evidence to date suggests that the risk of reinfection is low in the period after initial infection, but may increase with time due to waning immunity.

ACIP states that viral testing to assess for acute SARS-CoV-2 infection or serologic testing to assess for prior infection solely for the purpose of COVID-19 vaccination decision-making is not recommended. (See Interpretation of SARS-CoV-2 Testing in Vaccinated Individuals under Cautions.)

Individuals with Recent Exposure to SARS-CoV-2 Infection

ACIP states that COVID-19 vaccines are not currently recommended for outbreak management or for postexposure prophylaxis in individuals with a specific known exposure to SARS-CoV-2; postexposure vaccination is unlikely to be effective in preventing disease following such exposures. (See Limitations of Vaccine Effectiveness under Cautions.)

Individuals in the community or outpatient setting with a known COVID-19 exposure: ACIP states that such individuals should not seek COVID-19 vaccination until their quarantine period has ended since this avoids potentially exposing healthcare personnel and other individuals to SARS-CoV-2 during the vaccination visit and avoids diagnostic confusion between possible adverse effects of the vaccine and symptoms of COVID-19. This recommendation includes individuals with a known COVID-19 exposure after receiving the first dose of an mRNA COVID-19 vaccine but before receiving the second dose of the vaccine.

Individuals residing in congregate healthcare settings (e.g., long-term care facilities) or congregate non-healthcare settings (e.g., correctional and detention facilities) who have had a known COVID-19 exposure or are undergoing screening: ACIP states that such individuals may receive COVID-19 vaccination since exposure and transmission of SARS-CoV-2 can occur repeatedly for long periods of time in these settings and healthcare personnel and other staff are already in close contact with residents in these settings. Those waiting for results of SARS-CoV-2 testing may receive COVID-19 vaccination if they do not have symptoms consistent with COVID-19. Individuals providing vaccination services should employ appropriate infection prevention and control procedures. Viral testing to assess for acute SARS-CoV-2 infection solely for the purpose of COVID-19 vaccination decision-making is not recommended.

Individuals with Prior SARS-CoV-2 Infection

Available data suggest that COVID-19 vaccines can be given safely to individuals with evidence of prior SARS-CoV-2 infection. ACIP states that COVID-19 vaccination should be offered to individuals regardless of history of prior symptomatic or asymptomatic SARS-CoV-2 infection, including those with prolonged post-COVID-19 symptoms. Completion of a COVID-19 primary vaccination series in previously infected individuals decreases the risk of future SARS-CoV-2 infection.

Data are not available to date regarding the safety and efficacy of administering COVID-19 vaccines to individuals who have received passive antibody therapy, with investigational SARS-CoV-2-specific monoclonal antibodies or investigational COVID-19 convalescent plasma as part of treatment of COVID-19. (See SARS-CoV-2 Antibody Therapies under Drug Interactions.)

Individuals with a history of myocarditis or pericarditis after a dose of an mRNA COVID-19 vaccine who choose to receive a subsequent dose should wait until the episode of myocarditis or pericarditis has completely resolved, including resolution of symptoms attributed to myocarditis or pericarditis with no evidence of ongoing heart inflammation or sequelae as determined by the individual’s clinical team, which may include a cardiologist, and special testing to assess cardiac recovery.

Individuals with a history of myocarditis or pericarditis after a dose of an mRNA COVID-19 vaccine who choose to receive a subsequent dose should wait until the episode of myocarditis or pericarditis has completely resolved, including resolution of symptoms attributed to myocarditis or pericarditis with no evidence of ongoing heart inflammation or sequelae as determined by the individual’s clinical team, which may include a cardiologist, and special testing to assess cardiac recovery.

Concomitant Illness

A decision to administer or delay vaccination in an individual with a current or recent febrile illness depends on the severity of symptoms and etiology of the illness. ACIP states that a moderate or severe acute illness is a precaution for administration of vaccines and states that a risk assessment should be performed with potential deferral of vaccination. Deferring vaccination until an individual has recovered avoids superimposing adverse effects of the vaccine on the underlying illness or mistakenly concluding that a manifestation of the underlying illness resulted from vaccination.

Individuals with Current SARS-CoV-2 Infection

ACIP recommends that COVID-19 vaccination be deferred in individuals with known current SARS-CoV-2 infection until they have recovered from the acute illness (if symptomatic) and until criteria for discontinuance of isolation have been met. This recommendation applies to individuals who experience SARS-CoV-2 infection before receiving any doses of COVID-19 vaccine and those who experience SARS-CoV-2 infection after receiving the first dose of an mRNA COVID-19 vaccine but before receiving the second dose of the vaccine. While there is no recommended minimum interval between SARS-CoV-2 infection and COVID-19 vaccination, evidence to date suggests that the risk of reinfection is low in the period after initial infection, but may increase with time due to waning immunity.

ACIP states that viral testing to assess for acute SARS-CoV-2 infection or serologic testing to assess for prior infection solely for the purpose of COVID-19 vaccination decision-making is not recommended. (See Interpretation of SARS-CoV-2 Testing in Vaccinated Individuals under Cautions.)
If MIS-A or MIS-C occurs following COVID-19 vaccination, the case should be reported to VAERS. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

Individuals with Underlying Medical Conditions

ACIP states that individuals with altered immunocompetence or certain underlying medical conditions may receive any COVID-19 vaccine approved or authorized by FDA, unless they have a contraindication to the vaccine. ACIP does not state a preference for any specific COVID-19 vaccine in such individuals. Clinical trials of COVID-19 vaccines have demonstrated that safety and efficacy profiles in individuals with some underlying medical conditions, including those that place them at increased risk for severe COVID-19, are similar to safety and efficacy profiles in those without comorbidities.

US healthcare personnel and health departments can request a clinical consultation from the Clinical Immunization Safety Assessment COVIDvax project (https://www.cdc.gov/vaccinesafety/ensuring-safety/monitoring/cissa/index.html) if they have concerns about vaccinating individuals with certain underlying medical conditions.

Individuals with Altered Immunoioncompetence.

FDA-approved or FDA-authorized mRNA COVID-19 vaccines (Pfizer-BioNTech COVID-19 vaccine and Moderna COVID-19 vaccine) are not live virus vaccines and, therefore, can safely be administered to immunocompromised individuals. Individuals with altered immunoioncompetence, including those receiving immunosuppressive therapy (see Immunosuppressive Agents under Drug Interactions), may have diminished immune responses to vaccines, including the Pfizer-BioNTech COVID-19 vaccine. Clinical trial data indicate that immunocompromised individuals (e.g., solid organ transplant recipients, those with lymphoid malignancies) may have reduced immune responses following a 2-dose vaccination series of an mRNA COVID-19 vaccine compared with those who are not immunocompromised. There also is evidence that immunocompromised individuals who have been vaccinated against COVID-19 may have a higher rate of breakthrough SARS-CoV-2 infections than vaccinated individuals in the general population.

Data from small studies have demonstrated that administration of an additional dose of mRNA COVID-19 vaccine after the initial 2-dose vaccination series may enhance immune responses to the vaccine in some immunocompromised individuals. Results of a study evaluating the safety and effectiveness of a third dose of the Pfizer-BioNTech COVID-19 vaccine in solid organ transplant recipients indicate that the third dose is only moderately effective in increasing potentially protective antibody titers in such patients.

Data indicate that the frequencies of solicited local and systemic adverse effects following administration of the Pfizer-BioNTech COVID-19 vaccine in individuals with chronic, stable HIV infection (defined as viral load less than 50 copies/mL and CD4 T-cell counts exceeding 200 cells/mm³ within 6 months before enrollment and on stable antiretroviral therapy for at least 6 months) are similar to or lower than those observed overall in individuals 16 years of age or older who received the vaccine in clinical trials.

The FDA EUA for the Pfizer-BioNTech COVID-19 vaccine permits administration of a third dose of the vaccine administered at least 28 days after completion of the initial 2-dose vaccination series in individuals 12 years of age or older who are solid organ transplant recipients or diagnosed with conditions considered to have an equivalent level of immunocompromised. ACIP states that, although the clinical benefit of a third (additional) dose of an mRNA COVID-19 vaccine after an initial 2-dose vaccination series in immunocompromised individuals is still under investigation, the potential for an increased immune response and the acceptable safety profile of mRNA COVID-19 vaccines support the recommendation for a third dose in individuals with moderate to severe immunocompromise resulting from a medical condition or receipt of immunosuppressive medications or treatments. For public health purposes, ACIP states that immunocompromised individuals are considered fully vaccinated at least 2 weeks after the second dose of the 2-dose primary vaccination series of an mRNA COVID-19 vaccine.

ACIP recommends that a third dose of the Pfizer-BioNTech COVID-19 vaccine be considered after the initial 2-dose primary vaccination series for individuals with moderate to severe immunocompromise including, but not limited to, the following:

- Active treatment for solid tumor and hematologic malignancies
- Receipt of solid organ transplant and taking immunosuppressive therapy
- Receipt of chimeric antigen receptor (CAR) T-cell therapy or hematopoietic stem cell transplant (within 2 years of transplantation or taking immunosuppression therapy)
- Moderate or severe primary immunodeficiency (e.g., DiGeorge syndrome, Wiskott-Aldrich syndrome)
- Advanced or untreated HIV infection (CD4 T-cell counts less than 200 cells/mm³, history of an AIDS-defining illness without immune reconstitution, or clinical manifestations of symptomatic HIV)
- Active treatment with high-dose corticosteroids (i.e., prednisone dosage at least 20 mg daily or equivalent given for 2 weeks or longer), alkylating agents, antimetabolites, transplant-related immunosuppressive drugs, cancer chemotherapeutic agents classified as severely immunosuppressive, tumor necrosis factor (TNF) blocking agents, and other biologic agents that are immunosuppressive or immunomodulatory

ACIP states that factors to consider when assessing the general level of immune competence include disease severity, duration, clinical stability, complications, comorbidities, and any potentially immunosuppressive treatment. Age or place of residence alone (e.g., residence in a long-term care facility), independent of a patient’s medical condition, should not be used to determine the level of immune competence because the balance of benefits and risks of a third primary dose for individuals who are not moderately to severely immunocompromised is currently unknown.

Individuals with altered immunocompetence, including those who receive a third dose of the Pfizer-BioNTech COVID-19 vaccine, should be counselled about the unknown safety profile and effectiveness of COVID-19 vaccines in immunocompromised populations and the potential for reduced immune responses and the need to continue following all current CDC guidelines for fully vaccinated individuals (e.g., wearing a mask in certain settings with substantial or high levels of viral transmission) to protect themselves from COVID-19. In addition, close contacts of immunocompromised individuals should be encouraged to be vaccinated against COVID-19.

Antibody testing to assess for immunity to COVID-19 following COVID-19 vaccination in individuals with altered immunocompetence is not recommended. (See Interpretation of SARS-CoV-2 Testing in Vaccinated Individuals under Cautions.)

Individuals with Autoimmune Conditions.

ACIP states that individuals with autoimmune conditions may receive any COVID-19 vaccine approved or authorized by FDA, unless they have a contraindication to the vaccine. Individuals with autoimmune conditions were included in clinical trials evaluating mRNA COVID-19 vaccines and safety and efficacy of the vaccines in this population were similar to that in the general population.

Recommendations for individuals with altered immunocompetence apply to individuals with autoimmune conditions who are immunocompromised because of drug therapy (e.g., high-dose corticosteroids, biologic agents). (See Individuals with Altered Immunocompetence under Cautions.)

Individuals with Liver Disease.

The American Association for the Study of Liver Diseases (AASLD) has released a consensus statement regarding use of COVID-19 vaccines in individuals who have chronic liver disease or are liver transplant recipients. These experts state that vaccination against COVID-19 is strongly recommended because of the increased risk of morbidity and mortality in adults with chronic liver disease, especially those with cirrhosis. AASLD also recommends that those with chronic liver disease receiving treatment with prednisone, antimetabolites, or biologic therapies and those with hepatocellular carcinoma who receive an mRNA COVID-19 vaccine should receive a third (additional) dose of the vaccine administered at least 28 days after the 2-dose primary series.

AASLD states that individuals with chronic liver disease who are receiving antiviral treatment for hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and those receiving medical therapy for primary biliary cholangitis or autoimmune hepatitis should not discontinue such therapy when receiving COVID-19 vaccination. In addition, patients with hepatocellular carcinoma undergoing locoregional or systemic therapy should be considered for COVID-19 vaccination without interruption of treatment; however, those with recent infections or fever should not receive the vaccine until they are medically stable.

AASLD states that liver transplant candidates should receive COVID-19 vaccination prior to transplantation, whenever possible, to help ensure an adequate immune response. The optimal time for COVID-19 vaccination in previously unvaccinated liver transplant recipients is likely to be at least 3 months after transplant; however, vaccination may be given as early as 4 weeks after transplant if indicated based on ongoing community spread of SARS-CoV-2, especially in those at highest risk with other comorbid factors associated with severe COVID-19.

Reducing immunosuppressive therapy in liver transplant recipients solely as an effort to elicit an immune response to COVID-19 vaccination is not recommended because there is a risk of acute cellular rejection (ACR) with lower immunosuppression. AASLD recommends that COVID-19 vaccination be avoided in liver transplant recipients with active ACR, those being treated for ACR, and those receiving high daily doses of corticosteroids until the episode has resolved and the patient’s baseline immunosuppression is reestablished.

The AASLD consensus statement also recommends for additional guidance on use of COVID-19 vaccines in individuals with chronic liver disease.

Individuals with a History of Guillain-Barré Syndrome (GBS).

To date, GBS has not been reported in clinical trials evaluating mRNA COVID-19 vaccines. ACIP states that individuals with a history of GBS may receive any COVID-19 vaccine approved or authorized by FDA, unless they have a contraindication to the vaccine. A history of GBS is not usually considered a contraindication or precaution to vaccination with any vaccine.
Individuals with a History of Bell's Palsy.

Although a causal relationship has not been established, several cases of Bell's palsy have been reported in clinical trials in individuals who received the Pfizer-BioNTech COVID-19 vaccine or the Moderna COVID-19 vaccine.

Data from the ongoing randomized, double-blind, placebo-controlled, phase 2/3 trial evaluating the Pfizer-BioNTech COVID-19 vaccine identified 4 cases of Bell's palsy (facial paralysis) in participants who received the vaccine and 2 cases in participants who received placebo. Onset of facial paralysis in one individual occurred on day 37 after the first vaccine dose (participant did not receive the second dose), and onset occurred on days 3, 9, or 48 after the second vaccine dose in the other individuals. FDA stated that these 4 cases in the vaccine group do not represent a frequency greater than that expected in the general population, and currently available information is insufficient to determine a causal relationship to the vaccine.

ACIP states that, in the absence of a causal relationship between COVID-19 vaccines and Bell's palsy, individuals with a history of Bell's palsy may receive COVID-19 vaccination, unless they have a contraindication to the vaccine.

If Bell's palsy occurs following COVID-19 vaccination, the case should be reported to VAERS. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

Individuals with Increased Bleeding Risk.

Individuals who have bleeding disorders or are receiving anticoagulant therapy and/or their caregiver should be advised about the risk of hematoma from IM injections.

ACIP states that IM vaccines may be given to individuals who have bleeding disorders if a clinician familiar with the patient's bleeding risk determines that the preparation can be administered IM with reasonable safety. In these cases, a fine needle (23 gauge or smaller) should be used to administer the vaccine and firm pressure applied to the injection site (without rubbing) for at least 2 minutes. In individuals receiving therapy for hemophilia, IM vaccines can be scheduled for administration shortly after a dose of such therapy.

Individuals receiving anticoagulation therapy presumably have the same bleeding risk as patients with clotting factor disorders and should follow the same guidelines for IM administration. If possible, IM vaccines could be scheduled prior to use of an anticoagulant so that the patient's risk of bleeding is not increased by the drug's therapeutic action.

History of Dermal Filler Use

Administration of an mRNA COVID-19 vaccine to individuals who have received injectable dermal fillers (e.g., hyaluronic acid dermal fillers) has infrequently resulted in swelling at or near the site of dermal filler injection (usuall face or lips) starting within 1–2 days after vaccination. Although the mechanism of these reactions is not known, it has been suggested that localized swelling at the site of dermal filler injection may be due to an inflammatory reaction resulting from an interaction between the immune response after vaccination and the dermal filler.

ACIP states that individuals who have received injectable dermal fillers may receive COVID-19 vaccination, unless they have a contraindication to the vaccine. However, such individuals should be advised to contact their healthcare provider for evaluation if they develop swelling at or near the site of dermal filler injection following vaccination.

Individuals Vaccinated Outside the US

Some individuals in the US may have previously received vaccination against COVID-19 in another country using a vaccine that is not approved or authorized by FDA and/or is not listed for emergency use by the World Health Organization (WHO). ACIP provides guidance for COVID-19 vaccination in such individuals.

Limitations of Vaccine Effectiveness

COVID-19 vaccine (Pfizer-BioNTech) may not protect all vaccine recipients against COVID-19.

The Pfizer-BioNTech COVID-19 vaccine is administered in a primary vaccination series of 2 doses given 3 weeks apart (see Dosage under Dosage and Administration). Data from the ongoing randomized, placebo-controlled, phase 2/3 trial evaluating COVID-19 vaccine (Pfizer-BioNTech) indicate that estimated vaccine efficacy is 95% following the first dose compared with 90% following the second dose. Vaccine recipients should be counseled on the importance of completing the 2-dose vaccination series to optimize protection against COVID-19.

Use of COVID-19 vaccines for outbreak management or for postexposure prophylaxis to prevent SARS-CoV-2 infection in individuals with a specific known exposure to the virus is unlikely to be effective and is not currently recommended. ACIP states that, because the median incubation period of SARS-CoV-2 infection is 4–5 days, it is unlikely that a dose of COVID-19 vaccine would provide an adequate immune response within the incubation period for effective postexposure prophylaxis.

FDA states that data are too limited to date to assess the effect of Pfizer-BioNTech COVID-19 vaccine against transmission of SARS-CoV-2 from individuals who become infected despite vaccination. Demonstrated high efficacy against symptomatic COVID-19 may translate to overall prevention of transmission in populations with high enough vaccine uptake; however, it is possible that if efficacy against asymptomatic infection were lower than efficacy against symptomatic infection, asymptomatic cases in combination with reduced mask-wearing and social distancing could result in significant continued transmission of the virus. Additional evaluations are needed, including data from clinical trials and from use of the vaccine after issuance of the EUA, to assess the effect of the vaccine in preventing virus shedding and transmission, particularly in individuals with asymptomatic infection.

Based on the unknown duration of vaccine-induced protection and the unknown extent of protection against emerging SARS-CoV-2 variants, individuals who receive COVID-19 vaccination and are considered fully vaccinated (see Dosage under Dosage and Administration) and those who have received a third primary dose or a booster dose of the vaccine should be counseled to continue to follow current CDC interim guidance for fully vaccinated individuals to protect themselves and others.

Vaccination and vaccination of close contacts can be considered in combination with reduced mask-wearing and social distancing measures, and guidance from the manufacturer and CDC. (See Stability.)

Duration of Immunity

The duration of protection against SARS-CoV-2 infection following completion of the 2-dose vaccination series of COVID-19 vaccine (Pfizer-BioNTech) has not been fully evaluated.

Improper Storage and Handling

Improper storage or handling of vaccines may reduce or destroy vaccine potency resulting in inadequate or no immune response in vaccinees. All vaccines should be inspected on delivery and monitored during storage to ensure that the recommended storage temperatures are maintained.

COVID-19 vaccine (Pfizer-BioNTech) must be shipped, stored, and handled under specific conditions at all times, including maintaining cold chain conditions and chain of custody, according to specifications in the EUA fact sheet for healthcare providers and guidance from the manufacturer and CDC. (See Stability.)

If there are concerns about mishandling, including inadvertent temporary temperature excursions, the manufacturer should be contacted at 800-666-7248 or 877-829-2619 for guidance.

EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting

Safety and efficacy of COVID-19 vaccine (Pfizer-BioNTech) have not been established for uses authorized under the FDA EUA. The FDA EUA permits use of the vaccine for prevention of COVID-19 when used as a 2-dose primary vaccination series in adolescents 12 through 15 years of age, a third dose in the primary vaccination series in certain immunocompromised individuals 12 years of age or older, and a single booster dose after completion of the primary series in adults 65 years of age or older, adults 18 through 64 years of age at high risk of severe COVID-19, and adults 18 through 64 years of age whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk for serious complications of COVID-19 (including severe COVID-19). (See Emergency Use Authorization under Uses.)

Some data are available regarding adverse effects associated with use of the Pfizer-BioNTech COVID-19 vaccine. (See Common Adverse Effects under Cautions.)
Additional adverse effects, some of which may be serious, may become apparent with more widespread use of the vaccine.

All vaccine recipients should be monitored for immediate adverse reactions according to CDC (ACIP) guidelines. (See General under Dosage and Administration.) Vaccine recipients or their caregivers should be provided with information on, and encouraged to participate in, CDC’s voluntary smartphone-based tool (v-safe) that uses text messaging and web surveys to check in with individuals who have received a COVID-19 vaccine to identify potential adverse effects. Reports to v-safe that indicate a medically important health impact are followed up by the CDC v-safe call center to collect additional information to complete a VAERS report. Information on v-safe is available at https://www.cdc.gov/vsafe.

It is mandatory that vaccination providers administering COVID-19 vaccine (Pfizer-BioNTech) report all vaccine administration errors (even if not associated with an adverse event) and all serious adverse events (irrespective of attribution to vaccination) that occur following vaccination and also report all cases of multisystem inflammatory syndrome (MIS) and MIS-C (COVID-19). No vaccine-related adverse effects on female fertility, fetal outcomes in women who are currently trying to get pregnant and those who might become pregnant in the future.

V AERS report can be obtained by calling 800-822-7967 or emailing info@vaers.org. To the extent feasible, a copy of the VAERS form should also be provided to the manufacturer (Pfizer) at https://www.pfizerafetyreporting.com, 866-635-8337 (fax), or 800-438-1985 (phone).

The FDA fact sheet for healthcare providers administering the Pfizer-BioNTech COVID-19 vaccine under the EUA is available at the FDA website (https://www.fda.gov/media/144413/download) and the manufacturer’s website (https://www.cvdvaccine.com) should be consulted for requirements and instructions regarding reporting of adverse reactions and vaccination errors.

Interpretation of SARS-CoV-2 Testing in Vaccinated Individuals

ACIP states that results of SARS-CoV-2 viral tests (nucleic acid amplification or antigen tests) are not affected by prior COVID-19 vaccination. To evaluate for evidence of prior infection in an individual with a history of COVID-19 vaccination (e.g., for public health surveillance or diagnosis of MIS-C or MIS-A), a test that specifically evaluates IgM/IgG to the nucleocapsid protein should be used. Antibody testing is not currently recommended to assess the need for COVID-19 vaccination in unvaccinated individuals or to assess for immunity to COVID-19 following COVID-19 vaccination. Antibody tests currently authorized for use under EUAs have variable sensitivity and specificity, as well as positive and negative predictive values, and are not authorized for assessment of immune response in individuals who have received COVID-19 vaccination. In addition, the serologic correlates of protection against SARS-CoV-2 have not been established, and antibody testing does not evaluate the cellular immune response, which may also play a role in vaccine-mediated protection. If antibody testing is performed following COVID-19 vaccination, additional doses of the same or different COVID-19 vaccine beyond the recommended vaccination series should not be administered based on results of antibody testing. If antibody testing was done after the first dose of an mRNA COVID-19 vaccine, the vaccination series should be completed and submitted online at https://vaers.hhs.gov/reportevent.html or faxed to 877-721-0366; the words “Pfizer-BioNTech COVID-19 Vaccine EUA” should be included in the description section of the report. Information on submitting a VAERS report can be obtained by calling 800-822-7967 or emailing info@vaers.org.

Interpretation of Tuberculosis Tests in Vaccinated Individuals

ACIP states that COVID-19 vaccination should not be delayed in situations when an immune-based method of tuberculosis testing (i.e., intradermal tuberculin skin test [TST] or serum interferon gamma release assay [IGRA]) is required or indicated. If TST or IGRA is required, such testing can be performed before, after, or during the same visit when a COVID-19 vaccine is administered. Although ACIP previously recommended that TST or IGRA testing be delayed until at least 4 weeks after completion of COVID-19 vaccination out of an abundance of caution to minimize potential theoretical interference between vaccination and TB testing, ACIP now states that such testing can be administered without regard to timing of COVID-19 vaccination.

Specific Populations

Pregnancy

Data are insufficient to date regarding use of COVID-19 vaccine (Pfizer-BioNTech) in pregnant women to inform vaccine-associated risks during pregnancy. In a reproductively and developmental toxicity study, 0.06 mL of a vaccine formulation containing the same quantity of mRNA (30 mcg) and other ingredients included in a single human dose of the Pfizer-BioNTech COVID-19 vaccine was administered IM to female rats on 4 occasions (21 and 14 days prior to mating and on gestation days 9 and 20). No vaccine-related adverse effects on female fertility, fetal development, or postnatal development were reported in the study. Available data suggest that, while the absolute risk is low, pregnant and recently pregnant women with COVID-19 are at increased risk of severe illness, including illness resulting in hospitalization, admission to an intensive care unit (ICU), mechanical ventilation, extracorporeal membrane oxygenation (ECMO), or death, compared with women who are not pregnant. Pregnant and recently pregnant women with comorbidities such as obesity and diabetes mellitus may be at even higher risk of severe COVID-19. Additionally, pregnant women with COVID-19 are at increased risk of preterm birth and may be at an increased risk of adverse pregnancy complications and outcomes, such as preeclampsia, coagulopathy, and stillbirth.

Post-authorization surveillance safety data are accumulating regarding COVID-19 vaccination during pregnancy and clinical trials evaluating the safety and efficacy of COVID-19 vaccines in pregnant women are underway or planned. There is some evidence that pregnant women who receive an mRNA vaccine (Pfizer-BioNTech COVID-19 vaccine or Moderna COVID-19 vaccine) during pregnancy have immune responses comparable to those observed in individuals who are not pregnant and may develop anti-SARS-CoV-2 antibody titers greater than those observed in women diagnosed with SARS-CoV-2 infection during pregnancy. The Pfizer-BioNTech COVID-19 vaccine cannot cause SARS-CoV-2 infection in the pregnant woman or her fetus.

Far states that pregnancy is not a contraindication to use of the Pfizer-BioNTech COVID-19 vaccine, and pregnant women should discuss potential benefits and risks of vaccination with their healthcare providers.

ACIP states that vaccination against COVID-19 is recommended for pregnant women. These experts state that evidence regarding the safety and efficacy of COVID-19 vaccines available from both animal and human studies indicates that the benefits of vaccination against COVID-19 during pregnancy outweigh any known or potential risks. ACIP does not state a preference for any specific FDA-approved or FDA-authorized COVID-19 vaccine in pregnant women. For purposes of decisions regarding administration of both the primary vaccination series and a booster dose, ACIP recommends that pregnant and recently pregnant women (up until at least 42 days following the end of pregnancy) should be considered in the same group as individuals with underlying medical conditions.

The American College of Obstetricians and Gynecologists (ACOG) recommends that pregnant women be vaccinated against COVID-19. When recommending the COVID-19 vaccination to pregnant women, ACOG suggests that clinicians review the available data on risks and benefits of vaccination, including the risks of not getting vaccinated, in the context of the individual patient’s current health status and risk of exposure (e.g., possibility for exposure at work or home) and the possibility for exposing high-risk household members. In addition, the individual patient’s values and perceived risk of various outcomes should be taken into account and autonomous decision-making should be respected and supported.

ACIP and ACOG state that a conversation between the pregnant woman and her clinical team may assist with decisions regarding use of COVID-19 vaccines; however, such a conversation is not required and written permission is not needed prior to vaccination.

ACIP and ACOG recommend that women who become pregnant after receiving the first dose of an mRNA COVID-19 vaccination series should receive the second dose according to the usual schedule, unless contraindicated. ACOG states that Rh(D) immune globulin should not be withheld when indicated in an individual who is planning to receive or recently received a COVID-19 vaccine. (See Immune Globulins and Antibody Therapies under Drug Interactions.)

Adverse effects similar to those reported in non-pregnant individuals can occur following COVID-19 vaccination in pregnant women. Pregnant women who experience fever following COVID-19 vaccination should be counseled to take acetaminophen; acetaminophen also may be offered as an option for pregnant women experiencing other postvaccination symptoms.

A pregnancy exposure registry has been established to monitor pregnancy outcomes in women who receive COVID-19 vaccines during pregnancy, and such women are encouraged to enroll in the registry at https://mothertobaby.org/ongoing-study/covid19-vaccines/. Individuals who receive a COVID-19 vaccine during pregnancy can be enrolled if the pregnant woman is exposed after receiving a COVID-19 vaccine also should be encouraged to participate in CDC’s v-safe program. (See EUA Requirements for Postvaccination Monitoring and Mandatory Vaccine Adverse Event Reporting under Cautions.)

Females and Males of Reproductive Capacity.

Routine pregnancy testing is not recommended before receiving a COVID-19 vaccine.

ACIP states that vaccination against COVID-19 is recommended for women currently trying to get pregnant and those who might become pregnant in the future. Women trying to become pregnant do not need to avoid pregnancy after COVID-19 vaccination.

ACOG recommends vaccination for all eligible individuals, including those who may consider future pregnancy.

There is no evidence that any COVID-19 vaccines approved or authorized by FDA affect current or future fertility. FDA states that there is no scientific evidence to suggest that Pfizer-BioNTech COVID-19 vaccine could cause infertility in women. In addition, infertility is not known to occur as a result of natural COVID-19 disease, further demonstrating that immune responses to the virus, whether induced by infection or a vaccine, are not a cause of infertility.
within 7 days after receiving the first or second vaccine dose was reported in 27.8% of vaccine recipients. However, in those 56 years of age or older, serious adverse events were reported in 0.8% of vaccine recipients and 0.9% of placebo recipients; in those 56 years of age or older, serious adverse events were reported in 1.8% of vaccine or placebo recipients, respectively.

Adolescents 12 through 15 years of age† who received a 2-dose primary series: Local adverse effects reported in a clinical trial were injection site pain (90.5%), swelling (9.2%), and erythema (8.6%); mean duration of pain at the injection site in these adolescents was 2.4 days (range: 1–10 days) after the first dose. Systemic adverse effects were fatigue (77.5%), headache (75.5%), chills (49.2%), muscle pain (42.2%), fever (24.3%), joint pain (20.2%), lymphadenopathy (0.8%), and nausea (0.4%). Use of antipyretic or pain medication within 7 days after receiving the first or second vaccine dose was reported in 36.6% or 50.8%, respectively, of these adolescents. Serious adverse events were reported in 0.4% of vaccine recipients and 0.1% of placebo recipients.

Third dose in solid organ transplant recipients: Adverse event profile following a third dose in transplant (heart, kidney, liver, lung, pancreas) recipients was similar to that following the second dose; no grade 3 or 4 adverse events were reported during 1 month of follow-up after the third dose.

Single booster dose† administered approximately 6 months after 2-dose primary series in adults 18 through 55 years of age: Local adverse effects were pain (83%), erythema (5.9%), and swelling (9%); mean duration was 2.6 days (range: 1–8 days) for pain at the injection site, 2.2 days (range: 1–15 days) for erythema, and 2.2 days (range: 1–8 days) for swelling. Systemic adverse effects were fatigue (63.7%), headache (48.4%), muscle pain (39.1%), chills (29.1%), joint pain (25.3%), fever (8.7%), diarrhea (8.7%), and vomiting (7.7%). Use of antipyretic or pain medication within 7 days after receiving the booster dose was reported in 46.7% of these adults. No serious adverse events were reported through 30 days after the booster dose.

Other adverse effects reported during post-authorization and post-marketing surveillance include cardiac effects (myocarditis, pericarditis), GI effects (diarrhea, vomiting), hypersensitivity reactions (anaphylaxis, rash, pruritus, urticaria, angioedema), extremity pain (arm), and syncope.

Drug Interactions

Antiviral Agents

Use of antiviral agents at any interval before or after COVID-19 vaccination is unlikely to impair development of vaccine-induced protective antibody responses.

Immune Globulins and Antibody Therapies

Individuals receiving immune globulin (e.g., immune globulin IV [IGIV], Rh(D) immune globulin) and antibody therapies not specific for SARS-CoV-2 may receive COVID-19 vaccination either concurrently with or at any interval before or after the immune globulin or antibody therapy since such products are unlikely to substantially impair immune responses to the COVID-19 vaccine. ACIP states that there is no recommended minimum interval between receipt of antibody therapies not specific for SARS-CoV-2 and COVID-19 vaccination.

SARS-CoV-2 Antibody Therapies

Data are not available regarding the safety and efficacy of administering COVID-19 vaccines to individuals who have received passive antibody therapy with investigational SARS-CoV-2-specific monoclonal antibodies (e.g., bamlanivimab and etesevimab, casirivimab and imdevimab, sotrovimab) or investigational COVID-19 convalescent plasma as part of COVID-19 treatment. Based on the estimated half-life of SARS-CoV-2 antibody therapies as well as evidence suggesting that reinfection is uncommon in the 90 days after initial infection, ACIP recommends that COVID-19 vaccination should be deferred for at least 90 days after such therapies as a precautionary measure until additional information becomes available since this avoids potential interference of the antibody therapy with immune responses to the COVID-19 vaccine. This recommendation applies to individuals who received such antibody therapy before receiving any vaccine doses and those who received such antibody therapy after the first dose of an mRNA COVID-19 vaccine but before the second dose of the vaccine, in which case the second vaccine dose should be deferred for at least 90 days following receipt of the antibody therapy. However, COVID-19 vaccination is not contraindicated in individuals who have received passive antibody therapy within the past 90 days, and COVID-19 vaccine doses received within 90 days after receipt of passive antibody therapy do not need to be repeated.

If an individual who received COVID-19 vaccination subsequently develops COVID-19, ACIP states that prior receipt of COVID-19 vaccine should not affect treatment decisions, including the use of SARS-CoV-2-specific monoclonal antibodies or COVID-19 convalescent plasma, or the timing of such treatment.

Immunosuppressive Agents

Individuals receiving immunosuppressive therapy (e.g., cancer chemotherapy, corticosteroids, radiation) may have diminished or suboptimal antibody responses to vaccines, including the Pfizer BioNTech COVID-19 vaccine.

Although data are not currently available to establish safety and efficacy in individuals receiving immunosuppressive therapy, ACIP states that such individuals...
may receive COVID-19 vaccination if they have no contraindications to the vaccine. (See Individuals with Altered Immunocompetence under Cautions.)

Data are insufficient to inform optimal timing of COVID-19 vaccination for individuals planning to receive immunosuppressive therapies. However, based on general best practices for vaccination of immunocompromised individuals, ACIP states that COVID-19 vaccination should ideally be completed at least 2 weeks before initiation or resumption of immunosuppressive therapies whenever possible. When it is not possible to administer a complete COVID-19 vaccination series (i.e., a 2-dose regimen of the Pfizer-BioNTech COVID-19 vaccine or the Moderna COVID-19 vaccine or a single dose of the Janssen COVID-19 vaccine) in advance, individuals receiving immunosuppressive therapy can still receive COVID-19 vaccination. Decisions to delay immunosuppressive therapy to complete COVID-19 vaccination should consider the individual’s risks related to their underlying condition and response to the vaccine.

Based on currently available information, ACIP states that revaccination after immune competence is regained is not recommended in individuals who received a COVID-19 vaccine during chemotherapy or treatment with other immunosuppressive drugs. Based on general best practices for vaccination, ACIP states that COVID-19 vaccines may be administered to individuals receiving corticosteroids given topically or by local injection (e.g., intra-articular, intrabursal, or tendon injections) without regard to the timing of corticosteroid administration.

If an individual who received COVID-19 vaccination subsequently develops COVID-19, ACIP states that prior receipt of a COVID-19 vaccine should not affect treatment decisions, including the use of corticosteroids, or the timing of such treatment.

Vaccines

Data are not available to date to assess the safety and immunogenicity of concomitant administration of the Pfizer-BioNTech COVID-19 vaccine with other vaccines.

Extensive experience with non-COVID-19 vaccines has demonstrated that immunogenicity and adverse event profiles are generally similar whether vaccines are administered concomitantly or alone. However, it is not known whether reactogenicity of COVID-19 vaccines is increased when administered concomitantly with other vaccines, including those known to be more reactogenic (e.g., adjuvanted vaccines). Decisions to administer a COVID-19 vaccine concomitantly with other vaccine(s) should be based on whether routine immunizations with the other vaccines have been delayed or missed, the individual's risk of vaccine-preventable disease (e.g., during an outbreak or occupational exposures), and the reactogenicity profiles of the vaccines.

ACIP states that COVID-19 vaccines may be administered without regard to timing of other vaccines, including simultaneous administration on the same day. If a COVID-19 vaccine is administered concomitantly with other vaccines, each parental vaccine should be given at a different injection site and, if possible, the injection sites should be separated by at least 1 inch. ACIP states that, although the deltoid muscle can be used for more than one IM injection in adolescents and adults, COVID-19 vaccines and vaccines that are likely to cause a local reaction should be administered in different limbs, if possible.

Description

COVID-19 vaccine (Pfizer-BioNTech) is a nucleoside-modified mRNA (modRNA) vaccine formulated in lipid nanoparticles (LNPs).

The modRNA contained in the Pfizer-BioNTech COVID-19 vaccine encodes a membrane-anchored, full-length spike (S) glycoprotein receptor-binding domain (RBD) antigen of SARS-CoV-2 with 2 proline modifications within the central helix domain that lock the S protein in an antigenically preferred prefusion conformation. Following IM injection, the LNPs in the vaccine enable delivery of the modRNA into host cells where it is released and translated to the encoded S antigen of SARS-CoV-2. The S antigen is then incorporated into cellular membranes and elicits an immune response to provide protection against SARS-CoV-2.

Data from clinical trials in adults indicate that a 2-dose vaccination series of COVID-19 vaccine (Pfizer-BioNTech) induces SARS-CoV-2 neutralizing titers and S1-binding IgG levels. Antibody responses are evident after the first vaccine dose and substantially boosted after the second vaccine dose, supporting the need for a 2-dose vaccination series. Follow-up data reported in vaccine recipients approximately 1 month following the second vaccine dose indicate that SARS-CoV-2 geometric mean titers (GMTs) in vaccinees are comparable to or higher than GMTs reported in convalescent serum obtained from individuals who have recovered from COVID-19. There also is some evidence from animal studies that the Pfizer-BioNTech COVID-19 vaccine can elicit strong CD4+ and CD8+ T-cell responses.

Immunogenicity of the Pfizer-BioNTech COVID-19 vaccine in adolescents 12 through 15 years of age was evaluated based on data from a randomly selected subset (immunogenicity subset) of participants enrolled in an ongoing clinical trial of the vaccine (NCT04368728; C45910001; study 2) who had no serologic or virologic evidence of past SARS-CoV-2 infection up to 1 month after the second dose of the vaccine. Analysis of SARS-CoV-2 GMT for 50% neutralizing titer 1 month after the second dose demonstrated that immune responses in adolescents 12 through 15 years of age were noninferior (within 1.5-fold) compared with immune responses in those 16 through 25 years of age. SARS-CoV-2 GMT was 1239.5 in those 12 through 15 years of age compared with 705.1 in those 16 through 25 years of age.

COVID-19 vaccine (Pfizer-BioNTech) labeled as Comirnaty® or available without a trade name is provided as a frozen suspension concentrate in multiple-dose vials. Following thawing and dilution with 0.9% sodium chloride as directed by the manufacturer, each 0.3-mL dose of COVID-19 vaccine (Pfizer-BioNTech) contains 30 mcg of mRNA encoding the S glycoprotein of SARS-CoV-2. Each dose of the vaccine also contains LNP composed of 4 different lipids in a defined ratio (4-hydroxybutylazanediyl)bis(hexane-6,1-diylibis(2-hexyldecanoate), [2(polyethylene glycol)-2000]-N,N-ditetradecylacetamide, 1,2-distearoyl-sn-glycero-3-phosphocholine, and cholesterol) and potassium chloride, monobasic potassium phosphate, sodium chloride, dibasic sodium phosphate dihydrate, and sucrose.

The Pfizer-BioNTech COVID-19 vaccine does not contain preservatives; vial stoppers are not made with natural rubber latex.
occur within a few minutes to 1 hour after receiving a dose of the vaccine and may include difficulty breathing, swelling of the face and throat, fast heartbeat, bad rash all over the body, and dizziness and weakness.

Importance of vaccine recipient informing the vaccination provider if they have had a severe allergic reaction to any ingredient in the vaccine (e.g., polyethylene glycol) or if they had a severe allergic reaction after receiving the first dose of the 2-dose vaccination series; importance of such individuals not receiving the vaccine. (See Contraindications under Cautions.)

Inform vaccine recipients or their caregivers that myocarditis (inflammation of the heart muscle) and pericarditis (inflammation of the lining outside the heart) have been reported rarely in some recipients of the Pfizer-BioNTech COVID-19 vaccine with symptom onset usually within a few days after the second vaccine dose. Importance of immediately seeking medical attention if chest pain, shortness of breath, or fast-beating, fluttering, or pounding heart occurs.

Importance of vaccine recipient informing the vaccination provider if they have previously received any other COVID-19 vaccine, have ever fainted in association with an injection, have any medical conditions (e.g., bleeding disorders, myocarditis or pericarditis, immunocompromising diseases), or are receiving anticoagulants or immunosuppressive therapy.

Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed. Encourage women who receive a COVID-19 vaccine around the time of conception or during pregnancy to enroll in the pregnancy registry at https://mothertobaby.org/ongoing-study/covid19-vaccines/. Also encourage those who receive a COVID-19 vaccine during pregnancy or become pregnant within 30 days after receiving a COVID-19 vaccine to participate in CDC's v-safe program.

Overview. It is essential that manufacturer’s labeling and the Emergency Use Authorization (EUA) prescribing information contained in the EUA Fact Sheet for Health Care Providers (https://www.fda.gov/media/144413/download) be consulted for more detailed information on dosage and administration, cautions, precautions, and contraindications for COVID-19 vaccine (Pfizer-BioNTech). The EUA Fact Sheet for Health Care Providers also should be consulted for complete information on the conditions for use of the drug for the prevention of coronavirus disease 2019 (COVID-19) under the EUA, including mandated record keeping and reporting requirements.

Preparations

Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.

COVID-19 vaccine (Pfizer-BioNTech) received FDA approval under a biologics license application (BLA) for use as a 2-dose primary vaccination series for prevention of COVID-19 in individuals 16 years of age or older. COVID-19 vaccine (Pfizer-BioNTech) also is available under an FDA emergency use authorization (EUA) that permits use of the vaccine as a 2-dose primary vaccination series in adolescents 12 through 15 years of age†, a third dose† in the primary series in certain immunocompromised individuals 12 years of age or older, and a single booster dose† after completion of the primary vaccination series in certain adults. The FDA-approved Pfizer-BioNTech COVID-19 vaccine (Comirnaty®) and the FDA-authorized Pfizer-BioNTech COVID-19 vaccine without a tradename have the same formulation; vaccine labeled as Comirnaty® and Pfizer-BioNTech COVID-19 vaccine distributed under the EUA can be used interchangeably to provide the vaccination series without any safety or efficacy concerns. Allocation of Pfizer-BioNTech COVID-19 vaccine (with and without a trade name) is being directed by the US government. The vaccine will be supplied either directly from the manufacturer or through authorized US distributor(s) to emergency response stakeholders as directed by the US government, including the CDC and/or designee.

COVID-19 Vaccine, mRNA (Pfizer-BioNTech)

Parenteral Suspension concentrate, for IM use

30 mcg (of modRNA) per 0.3-mL dose

Comirnaty®, Pfizer
Pfizer-BioNTech COVID-19 Vaccine, Pfizer

† Use is not currently included in the labeling approved by the US Food and Drug Administration.

Selected Revisions January 5, 2022, © Copyright, January 18, 2021, American Society of Health-System Pharmacists, Inc.