

Influenza Vaccine Modernization

Ruben Donis, PhD Deputy Director, Division of Influenza and Emerging Infectious Diseases BARDA/ASPR/HHS

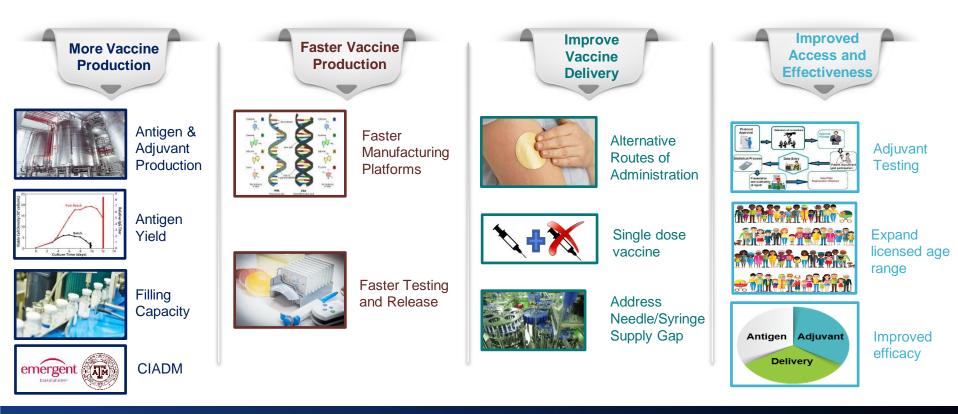
National Influenza Vaccine Modernization Strategy (NIVMS)-Listening Session

UNCLASSIFIED

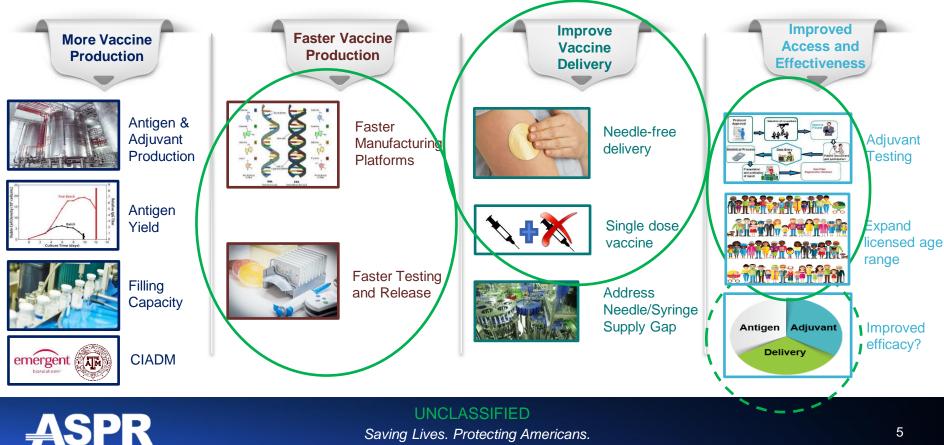
Influenza Vaccine Modernization

National Influenza Vaccine Modernization Strategy 2020-2030

- Strengthen and diversify influenza vaccine development, manufacturing, and supply chain;
- Promote innovative approaches and use of new technologies to detect, prevent, and respond to influenza; and
- 3. Increase influenza vaccine access and coverage across all populations.

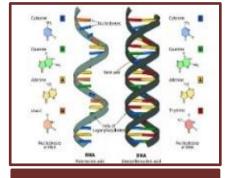


Seasonal Influenza



Improving Influenza Vaccine Preparedness/Response

Improving Influenza Vaccine Preparedness/Response



Saving Lives. Protecting Americans.

Innovative Approaches and New Technologies

Faster Vaccine Production

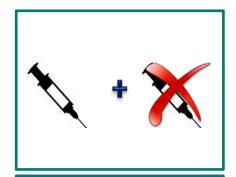
Faster Manufacturing Platforms

- Recombinant
 antigen
- 'Genetic' vaccines
 - Nucleic acid
 - Vectors

Faster Testing and Release Implementation

- Potency assay
- Sterility assay
- Adventitious agents

Innovative Approaches and New Technologies


Improved Access and Efficacy

Alternative Routes of Administration

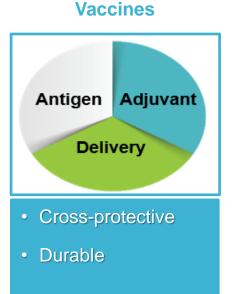
- Micro Array Patches
 - Coated
 - Dissolving
- Oral Vaccines
 - Delivery Vectors

Single Dose Vaccines

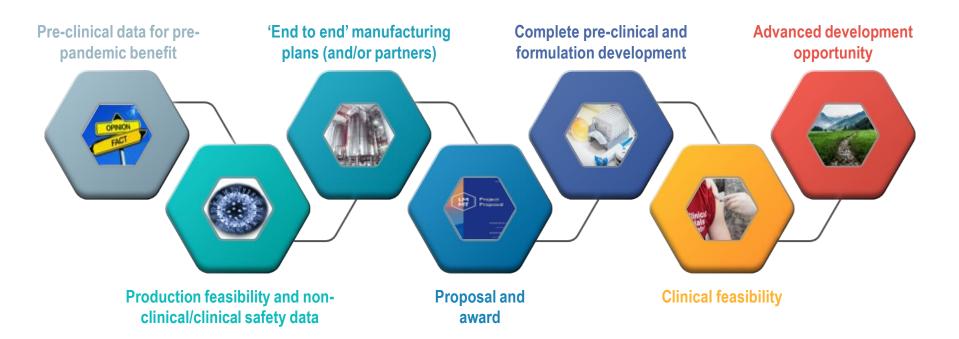
- Alternative Routes
- Vectors
- Adjuvants

Innovative Approaches and New Technologies

Improved Access and Efficacy


Adjuvant Development

- Novel properties
- Safety
- Cost
- Sustainability


- > 6 months
- High risk

Better

BARDA Partnership Pathway

Vaccine Collaborations/Partnerships

JPEO-CBRND

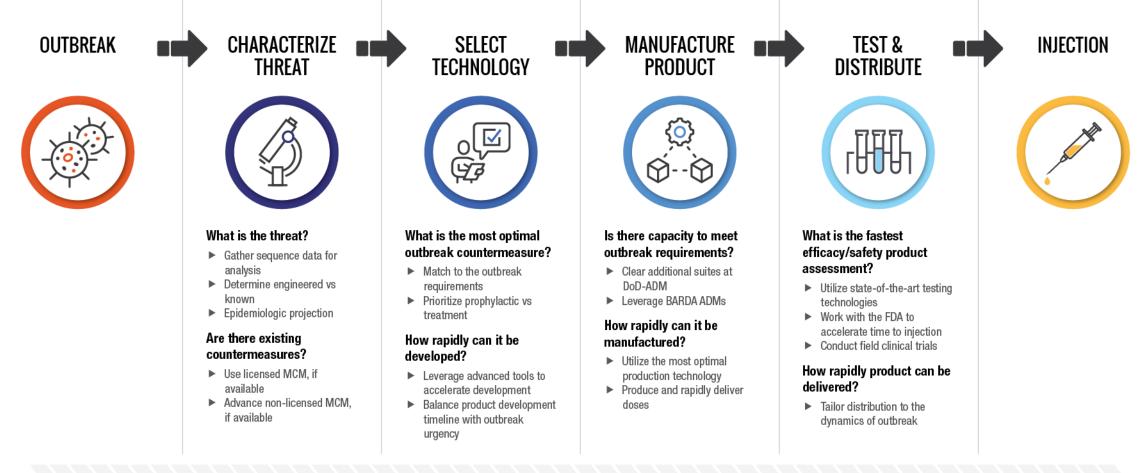
Preventing the Worst by Providing the Best

ENABLING BIOTECHNOLOGIES INFLUENZA RESPONSE

October 6, 2020

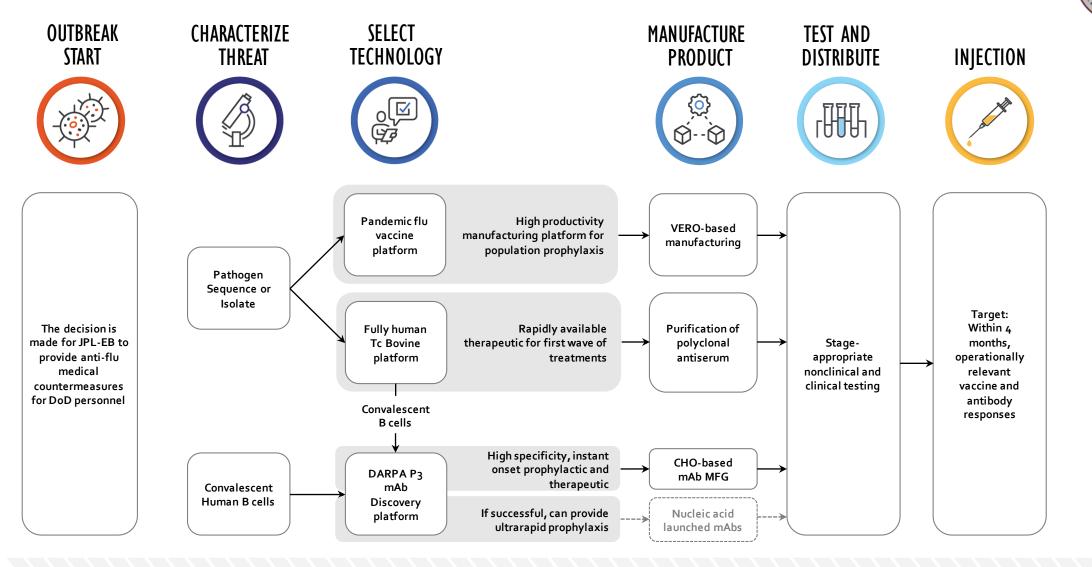
Bruce Goodwin

JPL CBRND Enabling Biotechnologies


Enabling Biotechnologies: From Information to Injection

Medical Solutions During a Crisis for Future Threats

ENABLING BIOTECHNOLOGIES MISSION SPACE


FROM INFORMATION TO INJECTION

ENABLING BIOTECHNOLOGIES INFLUENZA RESPONSE STRATEGY

- Provide a combination of prophylactic and therapeutic countermeasures for complete outbreak coverage for the Warfighter
 - Instant onset, short-term antibody therapeutics
 - Delayed onset, long-term pandemic strain vaccines
- Use priority access to the DoD-ADM for rapid outbreak response
- Leverage existing vaccine and monoclonal antibody production platforms at DoD-ADM
- Partner with DARPA to:
 - Leverage rapid Pandemic Preparedness Program (P3) antibody discovery methodology
 - Prepare for potential transition of P3 ultrarapid nucleic acid launched countermeasures
- Engage state-of-the-art testing methodologies to accelerate efficacy and safety assessment
- Ensure that response capabilities can be leveraged beyond influenza pathogens

ENABLING BIOTECHNOLOGIES INFLUENZA RESPONSE

E CBRN

INFLUENZA VACCINE – DOD-ADM

Executive Order Section 4(b)(vi) – direct the conduct of a study to assess the feasibility of using DOD's advanced manufacturing facility for manufacturing cell-based or recombinant influenza vaccines during a pandemic

- DoD-ADM (Ology Bioservices) holds a license to produce inactivated viral vaccines
 - $_{\circ}~$ Vero-cell based process originally developed by Baxter
 - Previously approved for use in several countries
- DoD-ADM facility can accommodate pandemic influenza vaccine manufacturing
 - ^o Scales consistent with DoD requirements (millions of doses) are feasible
 - Manufacturing process adaptation to high-yield technologies will be needed
- Full capability readiness will require pre-pandemic FDA licensure of an influenza vaccine
 - Ensures FDA familiarity with product, manufacturing process, release assays, etc.
 - Will require collaborative agreements between DoD medical development offices
- Appropriate funding sources will need to be identified for standup, maintenance, and response activities

INFLUENZA VACCINE – DOD-ADM

Clinical experience and vaccine approvals using Vero production technology

Summary of Clinical Experience using Vero technology for Viral Vaccines

Product	Development Phase	# Clinical Subjects	Dosage
Seasonal Influenza (Preflucel®)	US BLA filed Licensed EU	10,800	15 μg/strain (45 μg total)
Pandemic H1N1 (Celvapan®)	Licensed EU, Australia, Brazil, New Zealand	5,000	7.5 μg adults 3.75 μg pediatric
Pandemic H5N1 (Vepacel®)	Licensed EU, Australia, Switzerland, New Zealand	4310 Adult 300 Pediatric	7.5 μg adults 3.75 μg pediatric
Pandemic H9N2	Phase 2	275	3.75-45 µg adult
Ross River Virus (RRV)	Phase 3 Australia	2,400	2.5 µg adult (with adjuvant)
West Nile	Phase 1/2	320	5-10 µg adult (with adjuvant)

Vero cell technology-produced vaccine marketing approvals

Generic Name	Trade Names	Territory
Influenza vaccine – split virion inactivated	Preflucel	Austria
		Czech Republic
Pre-pandemic influenza vaccine	Vepacel	EU
H5N1 (strain A/VIETNAM/1203/2004)		New Zealand
		Hong Kong
Pandemic influenza vaccine H5N1	Pandemic Influenza	EU
	Vaccine H5N1 Baxter	Australia
		New Zealand
		Hong Kong
		Singapore

INFLUENZA ANTIBODIES

Section 4(b)(vii) – accelerate, in collaboration with HHS, research regarding rapidly scalable prophylactic influenza antibody approaches to complement a universal vaccine initiative and address gaps in current vaccine coverage.

- A collaborative approach will be needed to address rapidly scalable antibody approaches
 - JPL-Enabling Biotechnologies (JPL-EB) rapid response approach/technologies
 - ^o DARPA Biological Technologies office (DARPA-BTO) Pandemic Prevention Program (P-3)
 - ^o Interagency partners NIH animal models/screening technologies, JPM-Medial diagnostics, etc.
 - BioMap DoD/HHS interagency ADM working group
- Layered defense approach includes polyclonal and monoclonal antibodies
 - Fully human polyclonal antibody product provides rapid protection/treatment for pandemic influenza
 - ^o Discovery of targeted monoclonal antibodies using DARPA-BTO programs feed into
 - CHO cell-based antibody production (JPL-EB) industry standard approach
 - Highly innovative, ultra rapid nucleic acid-launched delivery technologies (DARPA-BTO).
- Appropriate funding sources will need to be identified for standup, maintenance, and response activities
 - $_{\circ}$ Some standup efforts currently funded by JPL-EB and DARPA-BTO

CHEMICAL AND BIOLOGICAL INCIDENT PREPAREDNESS AND RESPONSE FUNDING

- CBIPR 'passback' funds are being used to improve responsiveness of the DoD-ADM across product lines:
 - ^o Pre-defining levels of response urgency to ensure maximum efficiency during an event
 - Standardizing cGMP processes, batch records, documentation to the maximum extent
 - Tailoring quality systems to enable support of rapid response activities
 - Analyzing materials flows, including all supply chains (long lead items, foreign dependencies) to ensure availability and efficiency of material release for manufacturing
 - Building computational tools to increase product manufacturability, reduce the need for process development, and decrease the product attrition rate
 - Optimize production campaign yields, and decrease production times by using high-yield and/or continuous manufacturing processes
 - Minimizing drug product release times, including real-time release methods

CONTACT

Bruce Goodwin

Joint Product Lead (Acting), Enabling Biotechnologies Joint Program Executive Office, CBRN Defense

Bruce.g.goodwin4.civ@mail.mil www.jpeocbrnd.osd.mil

Public Affairs Office Phone: 410-436-9000 Contracting

Alan Burket | 443-655-8608 Jeff Megargel | 410-417-2323 **Online** jpeocbrnd.osd.mil

