CDC Priorities to Detect, Prevent and Respond to Influenza

Dan Jernigan, MD MPH
October 7, 2020
DJernigan@cdc.gov
Influenza Division Strategic Priorities

- Improve influenza detection and control
- Improve epidemic and pandemic risk assessment and readiness
- Improve vaccine impact
National Influenza Vaccine Modernization Strategy

• **Objective 1:** Strengthen and Diversify Influenza Vaccine Development, Manufacturing, and Supply Chain

• **Objective 2:** Promote Innovative Approaches and Use of New Technologies to Detect, Prevent, and Respond to Influenza

• **Objective 3:** Increase Influenza Vaccine Access and Coverage Across All Populations
From Infection to Protection: CDC Activities Across the Influenza Spectrum

DETECT
- Global and Domestic Surveillance and Epidemiology
- Virus Characterization
- Risk Assessment
- Diagnostic Guidance
- Testing Capabilities
- Forecasting and Predictive Analytics

CONTROL
- Antiviral Supply Monitoring
- Resistance Monitoring
- Clinical Management and Antiviral Guidance
- Infection Control Guidance
- Outbreak Intervention
- Community Mitigation
- Travel and Border Intervention

PREVENT
- Vaccine Virus Development and Selection
- Vaccine Guidance
- Vaccine Supply
- Vaccine Campaign
- Vaccine Distribution
- Vaccine Effectiveness
- Vaccine Safety
From Infection to Protection: CDC Activities Across the Influenza Spectrum

DETECT
- Global and Domestic Surveillance and Epidemiology
- Virus Characterization
- Risk Assessment
- Diagnostic Guidance
- Testing Capabilities
- Forecasting and Predictive Analytics

CONTROL
- Antiviral Supply Monitoring
- Resistance Monitoring
- Clinical Management and Antiviral Guidance
- Infection Control Guidance
- Outbreak Intervention
- Community Mitigation
- Travel and Border Intervention

PREVENT
- Vaccine Virus Development and Selection
- Vaccine Guidance
- Vaccine Supply
- Vaccine Campaign
- Vaccine Distribution
- Vaccine Effectiveness
- Vaccine Safety
DETECT: Innovation in Flu Surveillance

- Comprehensive, layered surveillance that captures viral surveillance, ambulatory care, hospitalization, and mortality data
 - Same systems are being used for COVID-19
 - Surveillance in all U.S. States and through 143 laboratories globally

- Expansion for the 2020-2021 season
 - Adding 471 emergency departments to outpatient syndromic surveillance system ILINet
 - Expanding hospitalization surveillance with new mandated flu reporting from ALL hospitals daily
 - Increased Flu Surveillance at LTCFs – Testing COVID-19 specimens collected at LTCFs for flu
 - Adding Commercial Lab Flu Reports for County-level views
 - Adding Real-Time Flu Diagnosis Codes from >4700 EDs for facility-level views
DETECT: Innovation in Flu Diagnostics

PRIORITY: Expand global and domestic capacity for whole genome characterization of influenza viruses

PRIORITY: Improve CDC’s influenza virus characterization and surveillance monitoring systems to inform influenza vaccine composition

- Expanding global and domestic **next-generation sequencing**
 - Implemented cloud-based computing, storage and analysis
 - Piloting enhanced surveillance in key strategic locations globally
- Real-time sequencing and analysis in the field
 - **Developed a portable flu laboratory “Mia” (Mobile Influenza Analysis)**
 - Sequences the influenza genome and analyze influenza A viruses in real-time in the field during an outbreak
- Use of **new multiplex CDC test** at PHLs will add flu detection to specimens tested for SARS-CoV-2
 - Additional monitoring from direct diagnostic reporting
- Providing **testing guidance** for use of diagnostics for flu and SARS-CoV-2
DETECT: Innovation in Influenza Forecasting and Modeling

• ILI forecasting to support flu control has been in place for several years.

• This fall, CDC will be forecasting influenza hospitalizations for the public and for healthcare providers for planning.

• This forecast will be publicly available on the CDC website when flu has begun circulating.

• CDC maintains several influenza economic and transmission models to help inform prevention and control efforts.

https://www.cdc.gov/flu/weekly/flusight/index.html
DETECT: Influenza Risk Assessment for Emerging Novel Influenza Viruses

- Ten risk elements evaluated to develop a risk score:
 - properties of the virus
 - population immunity
 - animal and human ecology

- Scores determined for
 - Risk to emerge to cause human pandemic
 - Risk to cause significant human illness impact if emerges
From Infection to Protection: CDC Activities Across the Influenza Spectrum

<table>
<thead>
<tr>
<th>DETECT</th>
<th>CONTROL</th>
<th>PREVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Global and Domestic Surveillance and Epidemiology</td>
<td>• Antiviral Supply Monitoring</td>
<td>• Vaccine Virus Development and Selection</td>
</tr>
<tr>
<td>• Virus Characterization</td>
<td>• Resistance Monitoring</td>
<td>• Vaccine Guidance</td>
</tr>
<tr>
<td>• Risk Assessment</td>
<td>• Clinical Management and Antiviral Guidance</td>
<td>• Vaccine Supply</td>
</tr>
<tr>
<td>• Diagnostic Guidance</td>
<td>• Infection Control Guidance</td>
<td>• Vaccine Campaign</td>
</tr>
<tr>
<td>• Testing Capabilities</td>
<td>• Outbreak Intervention</td>
<td>• Vaccine Distribution</td>
</tr>
<tr>
<td>• Forecasting and Predictive Analytics</td>
<td>• Community Mitigation</td>
<td>• Vaccine Effectiveness</td>
</tr>
</tbody>
</table>

Influenza
CONTROL: Antiviral Treatment and Monitoring

• **Treatment and Management Guidance:**
 - Updated recommendations for clinicians for treating influenza during SARS-CoV-2 co-circulation
 - Outbreak management guidance on CDC website for state/local health department response
 - Cohorting and infection control
 - Antiviral prophylaxis
 - Vaccination as appropriate

• **Antiviral Medicine Tool:** MedFinder is a free, online service for consumers to search for pharmacy locations that offer anti-influenza drugs

• **Antiviral Monitoring:** Using manufacturer and pharmacy supply and dispensing data, trends in drug availability and use are monitored.
 - Expected 10 M doses available by season start
 - Looking to expand antiviral stocks in LTCFs
CONTROL: An advanced test to find virus drift and drug resistance

High-content Imaging Neutralization Test utilizes automatic digital microscopy

Improvements over traditional microneutralization:

- High-content imaging for accurate counting of virus-infected cells
- Can directly test clinical specimens for antigenic drift and drug susceptibility
- Simplified protocol (a single cycle infection eliminates the need for cell overlay)
- Expedites antigenic analysis by up to 10 days
- Improves sensitivity of antigenic analysis
- High throughput, automated format
CONTROL: Impact of Mitigations in Southern Hemisphere

- Experience from Australia, South Africa, Chile, and other countries in the Southern Hemisphere are seeing very little flu

- Declines attributed to:
 - Changes in the data, as fewer people left their homes to seek medical care for respiratory symptoms
 - Implementation of practices for preventing the spread of SARS-CoV-2, such as school closures, mask wearing, and social distancing

- In the US, there was a 61% decline in the number of respiratory specimens tested for flu, but a 98% decrease in the number testing positive for flu from late February to March

- Given these trends, CDC researchers believe that if there is continued widespread use of COVID-19 prevention strategies, along with seasonal flu vaccination, the impact of flu in the Northern Hemisphere during the upcoming flu season may be reduced

- It is not possible to predict exactly what will happen this fall and winter in the Northern Hemisphere, making it imperative to prepare for circulation of both flu and SARS-CoV-2 viruses

https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6937a6-H.pdf
From Infection to Protection: CDC Activities Across the Influenza Spectrum

PREVENT
- Vaccine Virus Development and Selection
- Vaccine Guidance
- Vaccine Supply
- Vaccine Campaign
- Vaccine Distribution
- Vaccine Effectiveness
- Vaccine Safety

CONTROL
- Antiviral Supply Monitoring
- Resistance Monitoring
- Clinical Management and Antiviral Guidance
- Infection Control Guidance
- Outbreak Intervention
- Community Mitigation
- Travel and Border Intervention

DETECT
- Global and Domestic Surveillance and Epidemiology
- Virus Characterization
- Risk Assessment
- Diagnostic Guidance
- Testing Capabilities
- Forecasting and Predictive Analytics
PREVENT: Improving Vaccine Impact

• **PRIORITY:** Expanding virus characterization and increasing capacity of CDC laboratories to support manufacturers of vaccine
 - Begun a genomic approach for the selection of ideal cell-based candidate influenza vaccine viruses (CVVs) for isolation, characterization and down selection
 - Use of reverse genetics for synthetic virology to develop CVVs

• **PRIORITY:** Enhance evaluation of vaccine effectiveness (VE)
 - Expanded enrollment in outpatient clinics in multiple states to enable the U.S. Flu Vaccine Effectiveness (VE) Network to assess the effectiveness of cell based, recombinant and adjuvanted vaccines

• **PRIORITY:** Enhancing communication to increase vaccination
 - 2020-2021 expanded campaign
 - Focus on reducing disparities in vaccination
 - Discussed on Day 3 of Listening Session
PREVENT: Synthetic Virology Used to Generate Vaccine Viruses at CDC

Emerging Virus Threat
- RNA segments sequenced
- RNA Sequence Data Shared Electronically
- DNA synthesis of HA and NA surface antigens
- Create specialized “Reverse Genetics” constructs

HA/NA
- Synthetic HA and NA surface antigens
- Transfection mammalian cells
- Amplification
 - Seed stock
 - EID₅₀
 - Sequencing

High growth virus
- HA Yield
 - Preparative scale
 - Gradient Purification
 - BCA
 - IDMS/SDS-PAGE

Reassortant CVV Master Stock
- HA Yield
- Preparative scale
 - Gradient Purification
 - BCA
 - IDMS/SDS-PAGE
PREVENT: Monitoring Vaccine Effectiveness

Challenges to Vaccine Effectiveness Monitoring

- Universal recommendation: all ages ≥6 months
- Annual vaccination
- 4 vaccine subtypes/lineages
- Frequent vaccine strain updates
- Many vaccine formulations
PREVENT: Annual Estimates of Seasonal Influenza Vaccine Effectiveness, 2008-20

SEASONAL FLU VACCINE EFFECTIVENESS

<table>
<thead>
<tr>
<th>FLU SEASON</th>
<th>PERCENT EFFECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-09</td>
<td>41</td>
</tr>
<tr>
<td>2009-10</td>
<td>36</td>
</tr>
<tr>
<td>2010-11</td>
<td>60</td>
</tr>
<tr>
<td>2011-12</td>
<td>47</td>
</tr>
<tr>
<td>2012-13</td>
<td>49</td>
</tr>
<tr>
<td>2013-14</td>
<td>51</td>
</tr>
<tr>
<td>2014-15</td>
<td>48</td>
</tr>
<tr>
<td>2015-16</td>
<td>40</td>
</tr>
<tr>
<td>2016-17</td>
<td>36</td>
</tr>
<tr>
<td>2017-18</td>
<td>22</td>
</tr>
<tr>
<td>2018-19</td>
<td>31</td>
</tr>
<tr>
<td>2019-20</td>
<td>39</td>
</tr>
</tbody>
</table>

https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm
PREVENT: Monitoring Vaccine Effectiveness

• All CDC affiliated networks are currently enrolling and collecting data on COVID-19 cases

• Outpatient Network – US Flu VE Network
 • 55 ambulatory care clinics, ages >6 months
 • Combined with genomic sequence data for clade-specific VE
 • Allows annual determination of influenza illness averted

• Hospital Networks
 • Hospitalized Adults Influenza VE Network (HAIVEN)
 • New Vaccine Surveillance Network (NVSN)

• ICU Networks of Adult and Pediatric Patients
 • Evaluates VE for severe ICU related outcomes
 • Also used to characterize multi-system inflammatory syndrome (MIS-C)

• Electronic Medical Record (EMR) platforms
 • VISION – Virtual network for VE
 • PREVENT – Pregnancy Influenza Vaccine Effectiveness Network
From Infection to Protection: CDC Activities Across the Influenza Spectrum

DETECT
- Global and Domestic Surveillance and Epidemiology
- Virus Characterization
- Risk Assessment
- Diagnostic Guidance
- Testing Capabilities
- Forecasting and Predictive Analytics

CONTROL
- Antiviral Supply Monitoring
- Resistance Monitoring
- Clinical Management and Antiviral Guidance
- Infection Control Guidance
- Outbreak Intervention
- Community Mitigation
- Travel and Border Intervention

PREVENT
- Vaccine Virus Development and Selection
- Vaccine Guidance
- Vaccine Supply
- Vaccine Campaign
- Vaccine Distribution
- Vaccine Effectiveness
- Vaccine Safety
CDC Priorities to Detect, Prevent and Respond to Influenza

Dan Jernigan, MD MPH
October 7, 2020
DJernigan@cdc.gov
Implementing the NIAID Strategic Plan for a Universal Influenza Vaccine

Alan Embry, PhD
Chief, Respiratory Diseases Branch
Division of Microbiology & Infectious Diseases
NIAID, NIH, DHHS
Adjusted Influenza Vaccine Effectiveness Estimates in the U.S.

<table>
<thead>
<tr>
<th>Year</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-05</td>
<td>10%</td>
</tr>
<tr>
<td>2005-06</td>
<td>21%</td>
</tr>
<tr>
<td>2006-07</td>
<td>52%</td>
</tr>
<tr>
<td>2007-08</td>
<td>37%</td>
</tr>
<tr>
<td>2008-09</td>
<td>41%</td>
</tr>
<tr>
<td>2009-10</td>
<td>56%</td>
</tr>
<tr>
<td>2010-11</td>
<td>60%</td>
</tr>
<tr>
<td>2011-12</td>
<td>47%</td>
</tr>
<tr>
<td>2012-13</td>
<td>49%</td>
</tr>
<tr>
<td>2013-14</td>
<td>52%</td>
</tr>
<tr>
<td>2014-15</td>
<td>19%</td>
</tr>
<tr>
<td>2015-16</td>
<td>48%</td>
</tr>
<tr>
<td>2016-17</td>
<td>40%</td>
</tr>
<tr>
<td>2017-18</td>
<td>40%</td>
</tr>
<tr>
<td>2018-19</td>
<td>29%</td>
</tr>
<tr>
<td>2019-20</td>
<td>39%</td>
</tr>
</tbody>
</table>

Source: CDC
Influenza Pandemics Occur

<table>
<thead>
<tr>
<th>Year</th>
<th>Subtype</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>H1N1</td>
<td>>50 million</td>
</tr>
<tr>
<td>1957</td>
<td>H2N2</td>
<td>>1 million</td>
</tr>
<tr>
<td>1968</td>
<td>H3N2</td>
<td>>1 million</td>
</tr>
<tr>
<td>2009</td>
<td>H1N1</td>
<td>~151K-575K</td>
</tr>
</tbody>
</table>

Source: CDC
Vaccine Lags Behind 2009 H1N1 Influenza Pandemic

Percent of ILI Visits Reported by Sentinel Providers, Weeks 30-50 2009

Children Return to School

6 months after virus isolation (April 2009), first vaccine doses become available

H1N1 Vaccine Doses Available

AS Fauci/NIAID
A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases

EJ Erbelding, D Post, E Stemmy, PC Roberts, A Deckhut Augustine, S Ferguson, CI Paules, BS Graham, AS Fauci
A universal flu vaccine should

- Be at least 75% effective
- Protect against group I and II influenza A viruses
- Have durable protection that lasts at least 1 year
- Be suitable for all age groups
NIAID Universal Influenza Vaccine Strategic Plan

Research Area 1
Improve Understanding of Transmission, Natural History & Pathogenesis

Research Area 2
Precisely Characterize Influenza Immunity & Correlates of Protection

Research Area 3
Support Rational Design of Universal Influenza Vaccines

- Develop and improve animal models & reagents
- Establish longitudinal cohorts
- Expand human challenge study capability and capacity
- Develop and apply systems biology approaches
CIVICs: A Comprehensive Program for Universal Influenza Vaccine Development

Vaccine Centers
- Iterative vaccine design, preclinical testing and in-depth immunologic analyses
- Assay & reagent development

External Advisory Board

Manufacturing & Toxicology Core

Clinical Cores

Statistical, Data Management & Coordination Center (SDMCC)
Multidisciplinary Network to Accelerate Development of Universal Influenza Vaccines
A Broad Spectrum of Approaches

- Recombinant protein
- LAIVs, VLPs
- Nanoparticle
- DNA, RNA
- Microneedle patch
Nanoparticle Platform for Universal Influenza Vaccines

Influenza Virus

Head region

Stem region

HA Stem

Nanoparticle Stem: Group 1 Influenza A

Nanoparticle Stem: Group 2 Influenza A

Nanoparticle HA: Mosaic for Groups 1 & 2

Courtesy of VRC

AS Fauci/NIAID
HA Stem Nanoparticle Phase 1 Underway (VRC 321)

- Phase 1 trial to evaluate dose, safety, tolerability and immunogenicity of influenza H1 stabilized stem ferritin vaccine in healthy adults

- Current status: 52/53 enrolled. Safe and well tolerated.

- Headless group 2 HA stem trimer on ferritin (VRC 323) starting fall 2020
A universal flu vaccine should

- Be at least 75% effective
- Protect against group I and II influenza A viruses
- Have durable protection that lasts at least 1 year
- Be suitable for all age groups

Vaccine
- Strain-specific
- Subtype-specific (e.g., H1)
- Multi-subtype (e.g., H1/H2/H5)
- Pan-group

Coverage
- Current circulating strains
- All strains within a single HA subtype
- Multiple HA subtypes within single group
- Covering all group 1 or 2
- All influenza A (+/- influenza B)

Courtesy Gary Nabel
NIAID-Supported Clinical Trials Informing Universal Vaccine Strategies

RedeeFlu (M2SR LAIV)
- Phase I H3N2 M2SR prime and IIV4 boost in subjects 9-17 years of age

M-001 Peptide Vaccine
- Phase II M-001 prime and IIV3/IIV4 boost in healthy adults

Adjuvanted Seasonal Vaccines
- Phase 1 study of Fluzone® or Flublok® with or without either AF03 or Advax-CpG55.2™ adjuvant in healthy subjects 18-49 years of age
Expanding Influenza Human Challenge Capacity

- Human challenge study successfully conducted at 4 NIAID VTEU sites
 - H1N1pdm09 strain (Dr. Matt Memoli, NIAID)

- GMP manufacture of 2 new influenza challenge strains
 - H3N2 (Clade 3C3a)
 - H1N1 (Clade 6B.1)

- Dose-finding human challenge study planned for 2021
Advances In COVID-19 Will Inform Influenza Strategies

- Together with USG partners, advancing novel vaccine platforms
- Innovations in diagnostic technologies
- Natural history studies to compare COVID-19 and influenza disease course and immunopathology
- Therapeutic strategies to treat severe disease

Siddiqi and Mehra, J Heart Lung Transplant. 2020 May; 39(5): 405-407
Thank you