Balancing Act: Managing Bleeding and Thrombosis with Direct Oral Anticoagulants
Disclosure

The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except:

- **Michael Gulseth** - BMS: Consultant, Speaker's Bureau; Boehringer Ingelheim: Consultant; Janssen: Speaker's Bureau; Pfizer: Speaker's Bureau
AJ is a 65 year old, 80kg male with a history of unprovoked DVT 1 year ago who was managed on warfarin for 3 months. 2 months ago, he was diagnosed with atrial fibrillation and requested to be on a different oral agent as warfarin was very hard to keep controlled with a lot of lab testing and dosing adjustments done. He takes the agent twice daily, but does not remember what the name is and is very confused. He is now being admitted with bright red blood in his stools that has been going on for several hours and very weak.

PHH: CAD (NSTEMI), GERD, DVT, HTN, AF and CKD IV

Labs: Scr 3.5, Hgb 5.2, INR 2.6
For AJ – what is your next management step

A. Thrombin Time

B. Anti-Xa activity

C. Bedside assessment of the current bleeding

D. All of the above
For AJ – what anticoagulation reversal approach would you initiate

A. rFVIIa

B. 4 factor PCC/aPCC – 50 units/kg

C. Idarucizumab or Andexanet

D. Low dose PCC/aPCC – 8-12 units/kg and watch
Exploring approaches to reversing the DOAC’s

William Dager, Pharm.D. BCPS (AQ Cardiology), MCCM FCSHP, FCCP, FASHP, FCCM
UC Davis Medical Center
Sacramento, CA
Assess the Situation

- **Bleeding?**
 - Scan patient
 - Site: risk of a complication
- **Assess Urgency of Situation**
 - Imminent life threatening vs some time
- **Level of anticoagulation**
 - Laboratory assay
 - Antiplatelet agents?
- **Keep in mind – need to restart anticoagulation**
Anticoagulant “Lowering Intensity or Reversal” Strategy

- Hold Anticoagulation
- Bleeding?
 - Site and severity – may influence outcomes
- Create a plan and request necessary follow up
 - Stop or slow it to locate and treat
- Mechanical Intervention (Surgery)
- Pharmacological intervention
 - Topical Agents
 - Neutralize the drug
 - Reverse the effects of the drug independently – Hemostatic agents
- Replace losses
- Optimize management of co-morbid situations
Assessing intensity of anticoagulation effects

<table>
<thead>
<tr>
<th>Drug Present</th>
<th>Dabigatran</th>
<th>Rivaroxaban/Apixaban/Edoxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin Time</td>
<td>? Chromogenic anti-Factor Xa</td>
<td>? Anti-factor Xa (calibrated to UFH or LMWH)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantitative Test</th>
<th>? Dilute thrombin time or Chromogenic ECT</th>
<th>Chromogenic anti-factor Xa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sensitivity: PT vs aPTT</th>
<th>aPTT > PT (Point-of-Care INR > Central Lab)</th>
<th>PT > aPTT. Anti-Xa calibrated to LMWH/UFH – not as predictable or accurate</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>No/Limited effect</th>
<th>ECT, TT</th>
</tr>
</thead>
</table>

Potential INR or aPTT response with higher DOAC serum concentrations
Dabigatran and Thrombin Time

Dabigatran Level

Thrombin Time

Dabigatran Level

Thrombin Time

0 40 60 80 110 150 175 250 300 350 400

0 50 100 150 200 250 300 350
Use of PCC or aPCC with DOACS: Bleeding

- In-Vitro and Ex Vivo data inconsistent
 - Dose used may not mimic clinical approach
- No randomized comparisons
- Doses variable (8 – 100 units/kg)
- Single doses and low doses in GI Bleeds have worked
 - Rare need to repeat doses; Onset seems to be rapid.
 - Some failures
- Any advantage: aPCC over PCC with Anti-Factor Xa agents unclear.
- Thrombosis has been reported
- Mortality Rates Vary
- **Neurocritical Care Society ICH Guidelines**: 50 units/kg PCC or aPCC
 - If no Idarucizumab given
 - Some success in case reports

Dager W et al Am J Health System Pharm 2016
Reversing Newer Oral Anticoagulants: Bleeding Patients

- Activated charcoal if recent ingestion
- Concentrated clotting factor may depend on what is available – Reassess 5-10 min post administration - If time available, start with lower doses and repeat if necessary

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran</th>
<th>Rivaroxaban/Apixaban/Edoxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>No rush, minor bleeding</td>
<td>• Monitor – re-check labs</td>
<td>• Monitor – re-check labs</td>
</tr>
</tbody>
</table>
| Expedited (1-24 hr), major bleeding | • Idarucizumab 5g
• Consider PCC4 (25 units/kg) or low dose factor VIII inhibitor bypassing activity (aPCC) | • Evaluate if PCC needed. Consider PCC4 or PCC3 if clinically necessary
• Option: low dose aPCC (8-12 units/kg) |
| Emergent (< 1 hr), major bleeding | • Idarucizumab 5gm
• Option - Add: aPCC 10-25 units/kg, have next dose ready (or PCC4 25-50 units/kg) or TXA (bolus + Infusion) | • aPCC 25 - 50 units/kg or
• PCC4 or PCC3 25-50 units/kg |

For the use of PCC’s to reverse DOACs, a single dose of 25 units/kg or higher should be used (True or False)

A TRUE
B FALSE
Case

XZ is on a DOAC for AF PTA
(Not currently on the Med profile - not ordered on admission)

- PMH: AF, HFrEF, CKD (Scr 2.0), CAD
- Meds: Amiodarone, ASA – 81mg
- He was admitted yesterday and no bleeding issues
- You find out XZ now in route to OR for a procedure with bleeding related risks
For XZ – what is your next management step

A. Since Anesthesia has already taken the patient to the OR – no action

B. Call Anesthesia - Check coags STAT – put temp hold for incision
DOAC – Agent Unclear

Bleeding or need for Urgent Reversal

Assessment
- Amount of Drug (↑ INR/PT etc)
 - Thrombin Time/Anti-Xa
 - Bleeding Risk
 - Charcoal if ingestion recent
 - Med Rec: Dosing QD/BID

Thrombin Time **High**
Anti-Xa **Low**
? ↑ aPTT > PT (assay dependent)

Dabigatran

Bleeding

Supportive Management
- Underlying Condition
- Transfuse
- Need for invasive procedure

Rivaroxaban
Apixaban
Edoxaban

Thrombin Time **Low**
Anti-Xa **High**
? ↑ PT > aPTT (assay dependent)

Urgent

Administer Antidote
Consider Adding Hemostatic Agent if urgent – life threatening bleed

Consider Antidote Hemostatic Agent if clinically necessary (low dose titrate to effect)

Semi Urgent

Watch

Non-Urgent

Supportive Management
- Underlying Condition
- Transfuse
- Need for invasive procedure
Low Dose Titration Strategy (non-ICH)

Dose

Time

Bleeding Severe

Order Next Dose

Drug to Patient

Assess Bleeding

Assess Bleeding

Bleeding Severe

Bleed Slowing or Stopped

Watch

Onset Rapid in Minutes
Follow S/S Bleeding
Hgb
Hemodynamics
Vital Signs

Dose

8-12 Units/kg

Dose

8-12 Units/kg

Order Next Dose

Drug to Patient

Assess Bleeding

Assess Bleeding

Bleeding Severe

Bleed Slowing or Stopped

Watch

Onset Rapid in Minutes
Follow S/S Bleeding
Hgb
Hemodynamics
Vital Signs

Dose

8-12 Units/kg

Dose

8-12 Units/kg
Idarucizumab – Dabigatran Reversal

Humanized Fab fragment specific to dabigatran
- Affinity: Dabigatran 350 times > Thrombin
- No evidence of prothrombotic effect
- Renal elimination
- Rapid onset and dose dependent effect
 - Sustained > 24 hours with dose > 2 g
- aPTT, TT and ECT normalized

Idarucizumab – Interim Phase III analysis

RE-VERSE AD Prospective – 5g dose

- Most had atrial fibrillation taking 110mg twice daily of dabigatran
- 15 to 16 hours post last dabigatran dose
- 2/3 had CrCl > 50ml/min
- 5 thrombotic events secondary to not restarting anticoagulation
- 18 Deaths (Index event or underlying clinical condition)

<table>
<thead>
<tr>
<th>A (n=51) Serious Bleeding</th>
<th>B (n=39) Urgent Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Dabigatran Cp = 132ng/ml</td>
<td>Mean Dabigatran Cp = 114ng/ml</td>
</tr>
<tr>
<td>Reversed (Cp < 20ng/ml) in minutes</td>
<td>Reversed (Cp < 20 ng/ml) in minutes</td>
</tr>
<tr>
<td>Hemostatic effect at 11.4 hr (median) [Dependent on time of assessment]</td>
<td>Acceptable procedure hemostasis</td>
</tr>
</tbody>
</table>

Most remained reversed at 24 hours

Andexanet

Factor Xa inhibitor Antidote PRT4445

<table>
<thead>
<tr>
<th>Phase III Trial</th>
<th>Agent</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNEXA-A</td>
<td>Apixaban 5mg</td>
<td>400mg IV x 1</td>
<td>400mg IV + 4mg/min for 2 hrs</td>
</tr>
<tr>
<td>ANNEXA-R</td>
<td>Rivaroxaban 20mg</td>
<td>800mg IV x 1</td>
<td>800mg IV + 8mg/min for 2 hrs</td>
</tr>
</tbody>
</table>

ANNEXA-4 (Open – single group)

- Safety = 67; Efficacy = 47

<table>
<thead>
<tr>
<th>Bolus Dose</th>
<th>2 hr Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apixaban, Rivaroxaban > 7 hr post dose</td>
<td>400mg (30mg/min)</td>
</tr>
<tr>
<td>Enoxaparin, Edoxaban or Rivaroxaban ≤ 7 hr post dose</td>
<td>800mg (30mg/min)</td>
</tr>
</tbody>
</table>

- ANNEXA 4: Substantial anti-Factor Xa activity reduction; 79% effective hemostasis
- Andexanet administered at 4.8 +/-1.8 hours
- Limited Data for Enoxaparin or Edoxaban
- Similar Curves as ANNEXA – A and ANNEXA - R

Andexanet: Reversing Oral Anti-Xa agents

Ciraparantag
“Universal” Factor Xa and IIa inhibitor Antidote: PER977

• Synthetic small molecule - directly binds and reverses heparins, direct factor Xa- and IIa-inhibitors. Does not bind to blood coagulation factors/other blood proteins.

• Reverses anticoagulant activity: ~10-30 minutes after IV dose.

• Dose Dependent - Effects last at least 24 hours in most cases
 • Complete reversal: Rivaroxaban/Apixaban anti-Xa activity ex vivo in human plasma. May reverse Enoxaparinux/Fondaparinux

• Phase I – 3 hr post Edoxaban 60mg

• No prothrombotic effects

• Phase III underway

Additional Considerations

- Rebound Activity when Object drug effects outlast Antibody
- Bleeding may persist despite antidote alone

- Antidote to Neutralize Anticoagulant for AF and now acute stroke
 - Can Check a Thrombin Time (Dabigatran and post Idarucizumab)

Getting Drug to the patient

- rFVIIa
- PCC 3or 4
- aPCC
Potential Challenges with DOAC Antidotes

- Tissue rebound of either the anticoagulant or antidote

- Need for emergent hemostasis – when is a hemostatic agent necessary, which agent and what dose – risk for thrombosis

- Need for subsequent device/procedure anticoagulation

- Will a PCC/aPCC be necessary if an antidote is given?
 - If so, can a lower dose be used initially?
DOAC - Overdose or very high concentrations

Overdose Assessment
- Amount of Drug
- Bleeding Risk
- Charcoal if ingestion recent

Super-High Levels

Not Bleeding
Watch
Consider Antidote if clinically necessary

Bleeding
Administer Antidote
Consider Adding Hemostatic Agent if urgent – life threatening bleed

Not Bleeding
Consider Antidote if clinically necessary

May require a higher antidote dose if very high and full DOAC neutralization desired – partial reversal with standard dose may meet goals if not bleeding
Antibody Maximal Effect

- Antibody > Target Agent
 - Drug Neutralized

- Target Agent > Antibody
 - Drug Effects Persist

Restarting Anticoagulation

Assessment of Thrombosis vs Bleeding

↑Thrombosis Risk: Surgery, PCC, Acutely Ill

Will there be a change in the anticoagulant?

- GIB and ICH: (Pts on warfarin)
 - Higher long term survival and lower incidence of thrombosis with minimal risk of recurrent bleeding events
 - Potential Exceptions (CNS bleeds):
 - Cerebral amyloid angiopathy (lobar)
 - Microvascular risk
 - Microbleeds on gradient-echo MRI
 - Indication: Primary prevention; Atrial fibrillation, low CHADS2 < 4 or CHA2DS2-VASc < 5; Anticipated difficulty managing anticoagulation

Gastrointestinal Tract Bleeding

Adjusted HR = 0.67, 95% CI 0.56-0.81

Warfarin Held

Restarted Warfarin (mean 16-21 days)

Restart ≤15 days

Restarted > 30 days

Follow Up Duration (Days)

Cumulative Survival

Qureshi W et al. Am J Cardiol. 2014; 113:662-
AF patients post ICH
Survival Rates with or without restarting Oral Anticoagulation

Survival (%)

Time since index ICH (weeks)

Restarting anticoagulation

Anticoagulation held/stopped

Restarting Oral Anticoagulation
- Recurrent ICH slightly higher (p = 0.48)
- Ischemic Events significantly lower (p < 0.001)

Management Considerations

- Establish a standard approach
 - Choose what agents and tests should be used
 - Adaptable to severity of situation
 - Re-assess and adjust therapy
 - Avoid Delays

- Urgency of situation
 - Is there time to use lower doses and titrate to effect?
 - Manage comorbid conditions

- Think of long term consequences
 - VTE risk and need for prophylaxis
 - Re-initiating anticoagulation therapy
Key Takeaways

- **Key Takeaway #1**
 - Antidotes have an important role in reversing DOAC’s.
 - The Pharmacist has a role in determining the necessary dose.
 - One size does not fit all situations.

- **Key Takeaway #2**
 - Management of Urgent – Life threatening Non-ICH bleeding remains unclear.
 - The ability of an antidote alone in this setting remains unestablished.
 - A low dose strategy and titration to effect may limit cost and risk for thrombotic complications.

- **Key Takeaway #3**
 - Keeping the patient on the Radar and re-initiating anticoagulation remains a key component impacting overall thrombosis and mortality.
The Balancing Act of Managing Bleeding and Thrombosis with Direct Oral Anticoagulants

John Fanikos, RPh, MBA
Brigham and Women’s Hospital
Boston, MA
Objectives

- Identify Pharmacist or Pharmacy Technician action steps needed to ensure access and availability of anticoagulant reversal agents
- Describe support systems that can be implemented for appropriate patient selection and agent administration
- Recognize cost associated with anticoagulant reversal agents and contribution to total costs of treatment
Outline

- Case presentation
- Pharmacy logistics
- Support systems
- Value and cost
Case Study: Presentation

- 83-y-old woman presents to the Emergency Department at 10 AM.
- Resident from assisted living facility.
- Tripped on curb, fell onto face, left elbow, and right knee.
- She denies LOC.
- Her daughter witnessed the fall and found her awake, alert, and oriented x3.
- Patient has not tried to ambulate since her fall.

LOC= loss of consciousness
Case Study: Patient History

Past Medical History
- Atrial fibrillation
- Arthritis
- Dyslipidemia
- Benign essential hypertension
- Diabetes
- Malignant neoplasm of colon
- CVA (cerebral infarction)

Past Surgical History
- 2008: patella fracture surgery
- 2006: sigmoid resection
- 2001: incisional hernia repair

Current Medications
- Amlodipine 10-mg tablet QD
- Atorvastatin 80-mg tablet QD
- Dabigatran etexilate 150 mg BID
 - Last dose 9 AM
- Metoprolol succinate 6.25 mg QD
- Quinapril 10 mg po QD

CVA, cerebrovascular accident
Case Study: Physical Exam

- **Head**: Normocephalic. Abrasions left temple. No hemotympanum.
- **Neurological**: Alert, oriented to person, place, and time.
- **Eyes**: EOMs normal. Pupils equal, round, reactive to light.
- **Neck**: Normal ROM. No cervical midline tenderness.
- **Abdominal**: Soft. Bowel sounds normal. No distension or tenderness.
- **Musculoskeletal**: Abrasion over left patella. Normal ROM. She exhibits tenderness. No edema. No warmth, erythema, or swelling. Tenderness over left olecranon (bony prominence of elbow). Decreased ROM to left elbow on extension and supination, and loss of light touch, sharp v dull sensation distal half of LUE. Good ROM RUE and both lower extremities.

EOM, extraocular movement; ROM, range of motion; LUE, left upper extremity; RUE, right upper extremity
Case Study: Test Results

<table>
<thead>
<tr>
<th>Laboratory Findings</th>
<th>Imaging Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal electrolytes</td>
<td>CT Head w/o Contrast</td>
</tr>
<tr>
<td>BUN 15</td>
<td>No evidence of ICH</td>
</tr>
<tr>
<td>Cr 1.1 mg/dL</td>
<td>X-ray of Elbow</td>
</tr>
<tr>
<td>GLU 131 mg/dL</td>
<td>Displaced fracture of olecranon, distraction ≈2.1 cm.</td>
</tr>
<tr>
<td>aPTT 66 sec</td>
<td>Moderate soft tissue hematoma posterior to distal humerus.</td>
</tr>
</tbody>
</table>

aPTT, activated partial thromboplastin time; BUN, blood urea nitrogen; Cr, creatinine; CT, computed tomography; GLU, blood glucose
Case Study: Action Plan

- “This fracture would benefit from operative fixation. OR is available. Surgical team is available.”
- Repeat head CT at 6-h interval
What agents are available?

A. Idarucizumab is on Formulary and available.
B. Idarucizumab is non-Formulary, but accessible if needed within a 1-2 hours.
C. Idarucizumab is not available, but 3 factor and 4 factor prothrombin complex concentrate (PCC) and activated prothrombin complex concentrate (aPCC) are.
D. Idarucizumab is available but you need to obtain a consult through hematology.
Who distributes blood factors?

A. Blood Bank distributes all blood factors.
B. The Hemophilia Treatment Center distributes all blood factors.
C. The Pharmacy distributes all blood factors.
D. A collaboration exists with Blood Bank, Pharmacy, and the Hemophilia Treatment Center having a role in both hospitalized and ambulatory patients.
Outline

- Case presentation
- Pharmacy logistics
- Support systems
- Value and cost
Supply Chain Logistics and Collaboration

- 20 hospitals with 20 mile radius
- Wholesale/drug distribution center vs Specialty Pharmacy
- Purchase or consignment or borrow
- Fridge availability, space
- Organizer, Point person
- Models
 - Chemotherapy antidotes, anti-venoms

Greater Boston Area Hospitals

Blood factors

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Brand Name</th>
<th>Source</th>
<th>Indications</th>
<th>Storage</th>
<th>Supply Unit</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antithrombin concentrate</td>
<td>Atryn®</td>
<td>Recombinant</td>
<td>Prevention of peri-operative and peri-partum thromboembolic events in patients with hereditary antithrombin deficient patients.</td>
<td>Refrigerate at 2-8°C (36-46°F)</td>
<td>1750 IU vial range*</td>
<td>IV: Administer a loading dose over 15 minutes followed by a continuous infusion.</td>
</tr>
<tr>
<td>Antithrombin concentrate</td>
<td>Thrombate III®</td>
<td>Human Plasma</td>
<td>Patients with hereditary Antithrombin 3 deficiency in connection with surgical or obstetrical procedures or when they suffer from thromboembolism</td>
<td>Room temperature, not to exceed 25°C (77°F)</td>
<td>500 IU vial range*</td>
<td>IV: Administer over 10 to 20 minutes as tolerated</td>
</tr>
<tr>
<td>Factor I (Fibrinogen) concentrate</td>
<td>RiaSTAP®</td>
<td>Human plasma</td>
<td>Treatment of acute bleeding in patients with congenital fibrinogen deficiency, including afibrinogenemia and hypofibrinogenemia</td>
<td>Room temperature at 2-25°C (36-77°F)</td>
<td>900-1300 mg*</td>
<td>IV: Administer at a rate not to exceed 5 mL/minute</td>
</tr>
<tr>
<td>Activated Factor VII</td>
<td>Novoseven RT®</td>
<td>Recombinant</td>
<td>Treatment of bleeding episodes in patients with hemophilia A or B. Prevention of bleeding in surgical interventions or invasive procedures in patients with hemophilia A or B with inhibitors to Factor VIII or Factor IX and in patients with acquired hemophilia. Prevention of bleeding episodes in patients with congenital Factor VII deficiency. Prevention of bleeding in surgical interventions or invasive procedures in patients with congenital Factor VII deficiency.</td>
<td>Refrigerate or store at 2-25°C (36-77°F)</td>
<td>1, 2, 5, 8 mg vials</td>
<td>Hemophilia with inhibitors Bleeding: IV every 2 hours until hemostasis is achieved. Surgery: IV Before surgery and every 2 hours during the procedure. Congenital Factor VII deficiency Bleeding episodes or surgery: IV every 4-6 hours until hemostasis is achieved. Acquired hemophilia bleeding episodes or surgery: IV every 2-3 hours until hemostasis is achieved.</td>
</tr>
</tbody>
</table>

*Potency is stated on labeled vial.
Blood factors (continued)

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Brand Name</th>
<th>Source</th>
<th>Indications</th>
<th>Storage</th>
<th>Supply Unit</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-inhibitor complex concentrate (Factor VIII inhibitor bypassing activity), Complex of Factors II, VIIa, IX, X, Xa</td>
<td>FEIBA NF®</td>
<td>Human plasma</td>
<td>Patients with VIII inhibitors only for the control of spontaneous bleeding episodes or to cover surgical interventions in hemophilia A and B.</td>
<td>Room temperature, not to exceed 25°C (77°F)</td>
<td>500, 1000, 2500 unit vial ranges*</td>
<td>IV: The maximum injection or infusion rate must not exceed 2 units/kg/min</td>
</tr>
<tr>
<td>Complex of inactivated Factors IX, II, X, VII</td>
<td>Profilnine SD®</td>
<td>Human plasma</td>
<td>Prevention and control of bleeding in patients with Factor IX deficiency due to Hemophilia B.</td>
<td>Refrigerate at 2-8°C (36-46 °F)</td>
<td>500, 1000, 1500 IU FIX vial ranges*</td>
<td>IV: Administer at a rate not to exceed 10 mL/minute</td>
</tr>
<tr>
<td>Prothrombin complex concentrate (Factors II, VII, IX, X, Protein C, Protein S)</td>
<td>Kcentra®</td>
<td>Human plasma</td>
<td>Urgent reversal of vitamin K antagonists in patients with acute major bleeding or need for an urgent surgery or invasive procedure</td>
<td>Room temperature at 2-25°C (36-77°F)</td>
<td>500-1000 units* vials</td>
<td>IV: Administer at a rate of 3-210 units/kg/min</td>
</tr>
</tbody>
</table>

*Potency is stated on labeled vial.
Know your Business

- Velocity of events
- Utilization patterns
- Opportunities for improvement
- Predictors of reversal agent blood product use

* Brigham and Women’s Hospital internal data
Know your Business

- Velocity of events
- Utilization patterns
- Opportunities for improvement
- Predictors of reversal agent blood product use

BWH DOAC Annual Utilization*

* Brigham and Women’s Hospital internal data
Know Other People’s Business

- Retrospective cohort study using Commercial and Medicare supplemental database.
- Propensity score matching to balance age, sex, region, baseline comorbidities, and comedinations.
- NVAF patients 18+ years newly prescribed an oral anticoagulant.
- Major bleeding on anticoagulant was defined as first major bleeding requiring hospitalization.

Portals of Entry, Sites of Injury

- **Presentation**
 - Emergency Department
 - Electro-physiology laboratory
 - Operating room

- **Supply location(s)**
 - Central Pharmacy
 - Satellite Pharmacy
 - Automated dispensing cabinets
 - Kits
Preparation and Administration

- **Preparation**
 - Pharmacy or bedside “immediate use”

- **Administration**
 - IV push versus Infusion
 - Device drug library
 - Infusion rate

Powder for reconstitution
Preparation and Administration

- Preparation
 - Pharmacy or bedside “immediate use”

- Administration
 - IV push versus Infusion
 - Device drug library
 - Infusion rate
Preparation and Administration

- **Preparation**
 - Pharmacy or bedside “immediate use”

- **Administration**
 - IV push versus Infusion
 - Device drug library
 - Infusion rate
 - 600 mL per hour, infuses each vial over 5 minutes.

Reconstitution not required

Smythe MA. Am J Health-Syst Pharm. 2016; 73(suppl 2):s27-48
Drug Preparation and Administration

- Preparation
 - Pharmacy or bedside “immediate use”
- Administration
- IV push versus Infusion
- Device drug library
- Infusion rate
- 600 mL per hour, infuses each vial over 5 minutes.
- Kits

Smythe MA. Am J Health-Syst Pharm. 2016; 73(suppl 2):s27-48
Outline

- Case presentation
- Pharmacy logistics
- Support systems
- Value and cost
The OR calls and wants to know the correct dose of aPCC to reverse dabigatran?

A. Look in the package insert for the dosing.

B. Google the International Society for Thrombosis and Thrombolysis (ISTH) and find the most recent guideline authored by Levy, J.

C. Page the hematologist on call and ask him/her for a recommended dose.

D. Go to the Hospitals’ intranet site and print the Hospital guideline and drug administration guide.
Guidelines

- External Professional organization
 - European Society of Cardiology

- AC Forum

- National Comprehensive Cancer Network, Clinical Practice Guidelines in Oncology
 - Cancer Associated Venous Thromboembolic Disease Available at: https://www.nccn.org/professionals/physician_gls/pdf/vte.pdf

- Expert opinion

- Internal crafted
 - UC Davis, University of Washington, University of Kentucky, West Suffolk-NHS
Intranet Access

- Central site for information
- Accessible by handheld devices
- Add “Favorite” list
- Knowledge links via EHR

Medication and Disease Management Guidelines

Anticoagulation and Hematology

- Anticoagulants Parenteral Conversion Guideline
- Anticoagulation Monitoring Guidelines
- Anticoagulation for ECMO
 - ECMO Specialist Anticoagulation Policy
 - ECMO Heparin Titration Nomogram
 - ECMO Dicoumarin Titration Nomogram
 - ECMO Education Resources
- Anticoagulation in Mechanical Circulatory Support
 - Anticoagulation Bridging in Mechanical Circulatory Support Guideline
 - Anticoagulation for Mechanical Circulatory Support
 - Gastrointestinal Bleeding in Patients Supported by Continuous Flow Left Ventricular Assist
- Anticoagulation Reversal Guideline
- Anti-XA Monitoring Guideline
- Critically High INR Guideline
- Critically Low INR Guideline
- Direct Thrombin Inhibitor Dosing and Titrations Guideline for HIT
- Factor VIIa Guidelines
- Heparin Induced Thrombocytopenia Guidelines
- Heparin Nomogram
- Management of Symptomatic Intracerebral Hemorrhage after Administration of Alteplase (t-PA) Guidelines
- Per-operative Anticoagulation and Bridging Guideline
- Per-Procedural DOAC Management
- Regional Anesthesia in the Anticoagulated Patient
- Topical Hemostatic Agents Available at BWH
Electronic Health Records (EHR)

- Get IT resources, access
- Add agents to the medication list
 - J code, billing units
- Add or Preference lists
- Craft enterprise wide order set
 - Task Force or Committee
- Documentation
- Best practice alerts
- Billing Surveillance

Diagram:

1. MD order
2. Pharmacy or Blood Bank Dispensing
3. Nursing or Physician Administration
4. Documentation
5. Revenue Integrity Review
6. Bill to Insurer
Value-Added Service

- Utilizing local expertise-Gatekeeper
- Rapid Response teams
 - Clinical deterioration
 - PERT
 - Code Aorta
- Structured Teams
 - Anticoagulation Management Service
 - Hemostatic Stewardship programs
Stewardship Structure

- **Hospital Administration**
- **Pharmacy and Therapeutics Committee**
- **Hemostatic and Antithrombotic Stewardship**
- **Hematology**
- **Prescriber**
- **Patient**

Value-Added Service

- **Direct Thrombin Inhibitor Management**
 - Updated Heparin-Induced Thrombocytopenia Guidelines
- **Clotting Factor Management**
 - Ensure appropriate use of agents (i.e. aPCC, PCC, VIIa, etc)
- **Anticoagulation Management of Mechanical Circulatory Support Devices**
 - ECMO, TAH, VAD

Provider Education and Communication

Education

- Engage and utilize local experts
 - Support with data collectors
- Review cases at M&M rounds
- Annual mandatory education requirement
- Web-based CEU programs
- Live-Sponsored CME/ACPE educational programs
- Tool kits
 - Michigan Anticoagulation Quality Improvement Initiative (MAQI²), SVM

Communication

- Document events
 - RE-VECTO Registry
 - SOAR Registry
 - UPSTREAM Registry
- Report events
 - Disseminate successes
- Partnerships are key
 - Align with key stakeholders
Outline

- Case presentation
- Pharmacy logistics
- Support systems
- Value and cost
Value and Cost*

* Wholesale acquisition cost
Value and Cost

- AF patient population (n=48,069)
- Analysis of Medical and pharmacy claims
- All-cause health care costs

- VTE patient population (n=112,885)
- Commercial and Medicare databases
- Bleed-related health care costs

Ghate SR. J Manag Care Pharm. 2011;17(9):672-84.
>5% of all U.S. deaths are stroke related.

- 73% are ischemic
- 16% are intracerebral hemorrhage (ICH)
- 4% are subarachnoid hemorrhage (SAH)

50% of deaths occur in hospitals

>20% of patients hospitalized for stroke are discharged to a skilled nursing facility

30% of all patients remain permanently disabled

Reversal Agent Check List

<table>
<thead>
<tr>
<th>Item</th>
<th>Responsible Party</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood factor procurement</td>
<td>Blood Bank, Pharmacy</td>
<td>Supply Chain</td>
</tr>
<tr>
<td>Reversal agent procurement</td>
<td>Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Inventory quantities needed</td>
<td>Blood Bank, Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Storage locations</td>
<td>Pharmacy</td>
<td>Operations</td>
</tr>
<tr>
<td>Preparation</td>
<td>Pharmacy, Nursing</td>
<td></td>
</tr>
<tr>
<td>Infusion device “Library” programming</td>
<td>Biomedical, Pharmacy, Nursing</td>
<td>Biomedical</td>
</tr>
<tr>
<td>Patient selection</td>
<td>Emergency, Hematology, Cardiology, Pharmacy, Blood Bank</td>
<td>Clinical</td>
</tr>
<tr>
<td>Guideline or treatment plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Health Record-Order entry</td>
<td>Prescriber, Pharmacy</td>
<td>Info Systems</td>
</tr>
<tr>
<td>Electronic Health Record-Documentation</td>
<td>Pharmacy, Nursing, Revenue Integrity</td>
<td>Finance</td>
</tr>
<tr>
<td>Provider education</td>
<td>Emergency, Hematology, Cardiology, Pharmacy, Blood Bank</td>
<td>Clinical</td>
</tr>
<tr>
<td>Surveillance, effectiveness programs</td>
<td>Pharmacy, Quality</td>
<td>Quality, Safety</td>
</tr>
</tbody>
</table>

Smythe MA. Am J Health-Syst Pharm. 2016; 73(suppl 2):s27-48
Case Study: Conclusion

- Patient is transported to the OR
- OR Pharmacy Satellite obtains Idarucizumab from Central Pharmacy refrigerator
- On call Stewardship pharmacist is paged and reviews case.
- Idarucizumab IV 2.5 g, 2 doses (5 min apart) is administered
- Hospital course
 - Patient brought to OR: locking/nonlocking screws used to compress fracture and plate onto bone. Multiple screws placed, good stability.
 - POD #2: Dabigatran restarted
 - POD #4: Patient discharged, clinic follow-up in 2 wk

POD, postoperative day
Key Takeaways

- **Key Takeaway #1**
 - Pharmacies will play an important role in anticoagulant reversal agent procurement and dispensing.

- **Key Takeaway #2**
 - Support systems can be implemented to help identify appropriate patients, ensure safe administration, and accurate documentation.

- **Key Takeaway #3**
 - Reversal agents are expensive and contribute to overall cost of patient care.
Balancing Act: Managing Bleeding and Thrombosis with DOACs Pro/Con Debate
Specific Reversal Agents are a Better Option for Reversal than Clotting Factors

Michael P Gulseth, Pharm. D., BCPS, FASHP
Sanford USD Medical Center
Sioux Falls, SD
Objectives

- Describe, in theory, why specific reversal agents are a better option for DOAC reversal than concentrated clotting factors
- Identify the risk of using concentrated clotting factors
- Compare and contrast the specific reversal agents on the market or in development
- Identify challenges in stocking agents in smaller hospitals
Primum non nocere

- “First, do no harm”
 - The patient’s wellbeing is the primary concern
 - Reminds us that sometimes, doing nothing can be a better idea than intervening

- In our pharmacy world, this concept should make us think carefully how we use agents that are known to cause harm if used in ways not rigorously tested when better tested alternatives exist

- Despite not actually being in the Hippocratic Oath, it is a concept nearly all healthcare practitioners have heard and is part of our ethics training

http://medical-dictionary.thefreedictionary.com/First,+do+no+harm; accessed 9/28/16
When a concentrated clotting factor is used to reverse DOAC therapy, which of the following is true?

A. The concentrated clotting factor is repleting clotting factors to physiologic levels to restore normal coagulation function

B. Concentrated clotting factors directly bind to the DOAC and inactivate the DOAC permanently

C. Concentrated clotting factors promote DOAC removal from the plasma

D. Concentrated clotting factors have to be given in a dose large enough to “overwhelm” the pharmacological activity of the DOAC
Theory of reversal

Warfarin

Vitamin K reductase

Oxidized vitamin K

Reduced vitamin K

Vitamin K dependent carboxylase

Precursor clotting factors II, VIII, IX, and X

Functional clotting factors II, VIII, IX, and X

Functional clotting levels reduced by warfarin therapy

FFP/PCC immediately restore functional clotting factors as warfarin (unlike DOACs) has no direct effect on circulating clotting factors

Activation

Ila, VIIa, IXa, and Xa

Dabigatran

Rivaroxaban, apixaban, edoxaban

Note: Activated clotting factors produced from FFP/PCC would be inhibited by DOACs; when a PCC is used for reversal, the intent is to overwhelm the pharmacologic activity with clotting factors.

Gulseth MP. Overview of direct oral anticoagulant therapy reversal. AJHP May 15, 2016 vol. 73 no. 10 Supplement 2 S5-S13
Theory of reversal

![Bar chart showing the comparison between Warfarin and DOAC in terms of PCC used or not used. The x-axis represents Warfarin and DOAC, and the y-axis represents the number of cases. The chart shows a higher number of cases where PCC was used for DOAC compared to Warfarin.](image)
Why I worry......recombinant factor VIIa

Phase 2:
- Randomized trial in intracerebral hemorrhage not on warfarin
- Patients given within 3 hours of onset:
 - Placebo (96 patients)
 - 40 mcg rVIIa/kg (108 patients)
 - 80 mcg rVIIa/kg (92 patients)
 - 160 mcg rVIIa/kg (103 patients)
- rVIIa reduced hematoma volume compared to placebo and there was less death/severe disability in the rVIIa patients
- More thromboembolism in the rVIIa patients, mainly MI and CVA (not statistically significant like the above findings)

Phase 3:

- Randomized trial in intracerebral hemorrhage not on warfarin
- Eligible if + CT scan within 3 hours of onset; given:
 - Placebo (268 patients)
 - 20 mcg rVIIa/kg (276 patients)
 - 80 mcg rVIIa/kg (297 patients)
- Only the 80 mcg/kg group had a significant reduction in hematoma growth over placebo (11% increase vs. 26% increase, \(p<0.001 \))
- No differences between groups in outcomes (mortality, modified Rankin score)
- Arterial thromboembolism was more common in the 80 mcg/kg group than placebo (9% vs. 4% \(p=0.04 \))

Factor product thromboembolism reports

- Activated prothrombin complex concentrate (APPC, FEIBA®) had a reported rate of 4-8 events per 10,000 infusions when used for thrombophilia
 - Most common in those at risk for thrombosis
- One the same studies found an incidence rate of 25 events per 10,000 infusions for recombinant VIIa (rVIIa)
- In 2006, it was reported from 03/99 to 12/04 that 185 possible thromboembolisms due to rVIIa had been reported to the FDA; about a third of the reports were off label use
 - In 36 of 50 deaths, the probable cause of death was thrombosis

Factor product thromboembolism reports

- Safety of rVIIa was analyzed in a combined analysis of 35 randomized clinical trials to determine frequency of thromboembolic events
- No difference from placebo for venous thromboembolism
- Higher rates of arterial thromboembolism versus placebo
 - 5.5% vs 3.2%, p=0.003
 - 2.9% vs 1.1% for coronary events, p=0.002
 - If ≥ 65 yo, 9% vs 3.8%, p=0.003
 - If ≥ 75 yo, 10.8% vs 4.1%, p=0.02
 - Dose likely matters

What is in aPCC/PCC?

<table>
<thead>
<tr>
<th>Vitamin K-dependent factors</th>
<th>4F-PCC Nonactivated</th>
<th>Plasma</th>
<th>4F-aPCC activated (factor VIIa)</th>
<th>3F-PCC</th>
<th>rFVIIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>VII</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️ Activated</td>
<td>Low levels</td>
<td>✔️ Activated</td>
</tr>
<tr>
<td>IX</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>X</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Protein C</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein S</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kcentra [package insert]. Kankakee, IL . CSL Behring; 2013
Which of the following concentrated clotting factor agents has a boxed warning of thrombosis risk in its PI?

A rVIIa
B 4 factor PCC
C aPCC
D All of the above
Are PCCs/aPCC safer than rVIIa?

- Short answer is I don’t think we can say for sure
- rVIIa package label:
 - Boxed warning regarding risk of thrombosis
- aPCC
 - Boxed warning: “Thrombotic and thromboembolic events have been reported during postmarketing surveillance following infusion of FEIBA VH or FEIBA NF, particularly following the administration of high doses and/or in patients with thrombotic risk factors”
- 4 factor PCC
 - Boxed warning: Warns of risk of thrombosis in those at risk since warfarin patients are inherently at risk
Specific Reversal Agents for NOACs: Approved and in Development

<table>
<thead>
<tr>
<th>Antidote</th>
<th>Target</th>
<th>Mechanism of Action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idarucizumab<sup>1,2</sup> (BI 655075)</td>
<td>Dabigatran</td>
<td>Humanized Fab: specifically binds dabigatran (binding affinity $\approx 350 \times$ higher than binding of dabigatran to thrombin) NO reversal for FXa inhibitors or LMWH/fondaparinux</td>
<td>Approved by US FDA October 16, 2015 for use in patients on dabigatran during emergency situations when there is a need to reverse dabigatran’s blood-thinning effects<sup>3</sup></td>
</tr>
<tr>
<td>Andexanet alfa<sup>1,3</sup> (PRT064445)</td>
<td>FXa inhibitors</td>
<td>Recombinant FXa analogue that binds to direct FXa inhibitors and antithrombin, so provides reversal for rivaroxaban, apixaban, edoxaban, LMWH, fondaparinux NO reversal for dabigatran</td>
<td>Phase 2 completed for rivaroxaban, apixaban, enoxaparin; ongoing for edoxaban Phase 3 completed for apixaban, rivaroxaban; started or planned for edoxaban</td>
</tr>
<tr>
<td>Ciraparantag<sup>1</sup> (PER977)</td>
<td>Universal</td>
<td>Synthetic small molecule that binds to NOACs, heparins and fondaparinux</td>
<td>Phase 1 completed for edoxaban</td>
</tr>
</tbody>
</table>

Fxa, factor Xa

Idarucizumab: A Specific Reversal Agent for Dabigatran

- Humanized Fab fragment
- Binding affinity ≈350 × higher than dabigatran to thrombin
- IV administration, immediate onset of action
- Short half-life
- No procoagulant or anticoagulant effects expected

Idarucizumab for Dabigatran Reversal

Prospective cohort study to determine safety of 5 g IV idarucizumab, its capacity to reverse anticoagulant effects of dabigatran
- Group A (n=51): Serious bleeding
- Group B (n=39): Required urgent procedure

Median maximum percentage reversal 100% (95% CI, 100–100)\(^a\)
- Normalized test results in 88% to 98%, effect evident within minutes
- In group A (N=35 evaluable pts) hemostasis restored at median of 11.4 h
- In group B (N=36) pts who underwent a procedure
 - 33 pts: normal intraoperative hemostasis reported
 - 2 pts: mildly abnormal hemostasis
 - 1 pt: moderately abnormal hemostasis
- One thrombotic event within 72 h after idarucizumab administration in a patient in whom anticoagulants had not been reinitiated

\(^a\)Among 68 patients with an elevated dilute thrombin time and 81 with an elevated ECT at baseline
Key Takeaways

- Key Takeaway #1
 - We don’t know the full risks of raising coagulation factors to concentrations well over physiologic levels; clotting factor use in this population is fundamentally different than warfarin patients or hemophiliacs.

- Key Takeaway #2
 - We have tried raising clotting factor levels to over physiologic levels before without success (ICH and rVIIa).

- Key Takeaway #3
 - Specific reversal agents that are approved have/will have more rigorous data to support safe and efficacious use.
DOAC-Specific Antidote

PLUS PCC

A. Josh Roberts, Pharm.D., BCPS-AQ Cardiology
What are Our Goals?

- Urgent / Emergent Anticoagulant Removal
- Emergent, sustained hemostasis!
- Patient stabilization
 - Discharge ALIVE !!!
Antidote + PCCs

- Guideline recommendations for antidote + PCC
 - NONE

- “Real Life” Experience
 - Infancy
 - Messy
Watch and Wait ???

- When the storm is raging and the water is rising, it’s not a good time to sit-back, wait, and see what happens.

http://www.floodsafety.noaa.gov/during.shtml (photo credit: USGS)
Let’s do the “if this were friend or my Grandma” test?

Let’s call our patient / friend “Mike”

“Mike” has a lot to live for...

Let’s give “Mike” every chance to discharge home on his own two feet
Major Bleeding & Fatality in Phase-3 Trials: Clinically Acceptable?

- Time to Antidote = Hours

- Significant Mortality Rates with single agent treatment
 - Dabigatran + PCC/aPCC: 18.6%
 - Idarucizumab + dabigatran (active bleed group): 17.6%
 - Andexanet Alfa + Anti-FXa Inhibitors: 15%

Exsanguinating Bleed - DO WE HAVE THE TIME??

Pla C. Bo
Nov 2016

RIP
“Auntie” Dote
Dec 2016

R.X. D-Lay
797 Clean
Bench vs Bedside

- Time to clinical hemostasis post antidote >10hrs
 - Some bleeds hard to assess (ICH, RPB)
 - *All the more reason for addition of PCC*

- DOAC-specific antidotes are coag-inert, only bind drug
 - Normalization lab parameters ≠ hemostasis
 - other drivers of anticoagulation & hemostasis
 - Antidotes do NOT directly promote thrombosis

Bedside Clinicians in Clinical Trials

- **Idarucizumab**
 - Bleeding: PRE-antidote aPCC (n=2) >> *nothing post*
 - Procedure: PRE-antidote aPCC (n=1), post-aPCC (n=1)

- **Andexanet Alfa**
 - Post administration: 8% received plasma, TXA, or platelets
Does One Size Reverse All?

- Supra-therapeutic DOAC levels
 - Greater redistribution?
 - Overwhelm standard antidote doses?
Is giving the antidote enough?

- 65M with GIB on Dabigatran >> idarucizumab 5gm
 - Corrected Thrombin Time
 - EGD 3hrs later = actively hemorrhaging vessel
 - Unable to control hemorrhage
 - **Administered aPCC** + PRBCs
 - Discharged home

Complete, Sustained Reversal

- Short lived reversal
- Post infusion rebound
- Drug redistributes
- Can tenuous, critically ill patient tolerate “re-anticoagulation?”
Clinical Effects of Anticoagulant Redistribution

- 79F with GI perforation on Dabigatran + clopidogrel >> idarucizumab 5gm
 - Hemorrhage Cessation + normalization thromboelastomeric parameters
 - 11hrs later rebound hemorrhage + rebound dabigatran (290ng/ml)
 - Considered REPEAT (did not admin) idarucizumab 5gm
 - Deceased
PCC May **Add To** The Reversal Effect

- PCC’s correct coagulation parameters ex-vivo in animal models
 - solely aPCC 30-50 units/kg normalizes parameters
- PCC may reduce additional blood products
- Low dose (9-14 units/kg) aPCC clinical stabilized major GIB and non-ICH bleeds

Schultz N, et al. ISTH 2015;13(suppl 2): OR317
Castellucci LA, et al. ISTH 2015;13(suppl 2): PO320
Dager WE, et al. ISTH 2015;13(suppl 2): PO359
Dager WE, et al. SCCM 2017; in press
You see this mess we now have?

Is he still alive?

Maybe we should’ve given stopped the flow sooner

http://www.floodsafety.noaa.gov/ (photo credit: FEMA)
Rebuttal:
Specific Reversal Agents are a Better Option for Reversal than Clotting Factors

Michael P Gulseth, Pharm. D., BCPS, FASHP
Sanford USD Medical Center
Sioux Falls, SD
Current literature opinions

- Deborah M. Siegal, MD, McMaster University, 2015
 - “Given the lack of established efficacy of DOAC treated patients with bleeding complications, these agents should be administered with caution due to their thrombogenic potential.”

- TIMI study group, Brigham and Women’s Hospital, 2016
 - “In a patient with serious bleeding, however, specific reversal agents (if available) should be used instead of general hemostatic agents because of the nonspecific agents are less effective in reversing coagulation abnormalities, have not been shown to improve outcomes, and are potentially prothrombotic.”

Current literature opinions

 - Algorithm for management of bleeding or surgery specifically says “Idarucizumab is the preferred treatment to reverse dabigatran.”

- Statement from the Neurocritical Care Society and the Society of Critical Care Medicine, 2016
 - Recommends use of idarucizumab to reverse intracranial hemorrhage associated with dabigatran
 - Recommends PCC and aPCC only be used in intracranial hemorrhage associated with dabigatran if “Idarucizumab is not available.”

The difference from UC Davis to the typical SD hospital
Cost of reversal

- **PCC3 (Profilnine®)**
 - $1.14/unit
 - 500 units=$570
 - 25 units/kg dose, 80 kg patient=$2280

- **PCC4 (Kcentra®)**
 - $1.51/unit
 - 500 units=$755
 - 25 units/kg dose, 80 kg patient=$3020

- **aPCC (Feiba®)**
 - $1.76/unit
 - 500 units=$880
 - 25 units/kg dose, 80 kg patient=$3520

- **Idarucizumab (Praxbind®)**
 - $1741.25/2.5 gram vial
 - $3482.50/dose
 - BUT, some hidden advantages
Idarucizumab perks

- Idarucizumab, after purchase, can be returned:
 - Products with less than 3 months remaining shelf life but not more than 6 months beyond expiration date
 - Product must be in original container bearing its original label and legible lot number and expiration date
 - Full and partial containers are accepted
- Idarucizumab qualifies for new technology add on payments from Medicare until September 30, 2017
 - Additional reimbursement of up to $1,750 when idarucizumab exceeds the Medicare Severity Diagnosis-Related Groups (MS-DRG) payment amount
Rebuttal:
There is a Role for PCC!

A. Josh Roberts, Pharm.D., BCPS-AQ Cardiology
What is there to be scared of??

- Bleeding?
- Clotting?
- Cost?
- We can affect all these things
Front-line Experience

- Concede to ‘watch and wait’ approach of antidote strategy in the relatively stable patient with mild-to-moderate bleed

- Mike – “Have you been to the ER and managed a massive bleeding event in a DOAC-anticoagulated patient?”

- Severe, **Massive bleeding event >> Time is everything**
 - Clinical Trials - administration of antidote >4hr
 - If you miss the “wave”, you may lose the patient
 - Massive bleeding >> no time to “sit and wait” 10-12hrs for ‘clinical hemostasis’
Fatal Bleeding Events

- Antidote ALONE
 - Time to clinical hemostasis post antidote $>10\text{hrs}$
 - Idarucizumab: 5 fatal bleeds
 - acute bleed group: 9 deaths
 - Andexanet Alfa: 7 deaths

- aPCC
 - Some fatalities within case series

- Antidote + PCC
 - ??? – none identified thus far

Effectiveness of a Low Dose Strategy

- Low dose non-ICH (n = 19)
- Mean Dose: ~10 units/kg
 - N=9 had 500 units
 - N=8 had 1000 units
 - N=2 had 1500 unit
- Hospital Mortality: None
- 30-day Thromboembolism (n=2; 10%)
 - n=1: 9 day post tx
 - Heparin SQ prophylaxis started 8 days post aPCC
 - n=1: 30 days post aPCC
 - Receiving apixaban 5mg BID

DOAC Interruption & Thromboembolism Risk

- >20-fold Increase risk of Thromboembolism
 - Median 14 days (1-37 days)

- Idarucizumab: 10%
- Andexanet Alfa: 18%
- low dose aPCC: 10%
- antidote + PCC: ??

Photo Courtesy of A. Josh Roberts, Pharm.D.

Tips for Potentially Avoiding Thromboembolism

- Restarting anticoagulation 7 days post-GIB

- Majority of thrombotic events occur >7 days post anticoagulant cessation / reversal

- Infrequent events <7 days
 - idarucizumab n=1
 - andexanet alfa n=6

Cost-effective Therapy: Don’t think in the silo
Consider all products in treating the patient

Pharmacy
- Idarucizumab: $3482
 - 2.5g vial = $1741
- Andexanet Alfa: $???
- PCC-4: $1.51 / unit
- aPCC: $1.76 / unit
 - 500 unit = $880
 - 1000 unit = $1760

Blood Bank
- PRBC: $200
- FFP (~300ml): $100
- Platelets: $500
- Cryoprecipitate: $300
Cost of Treating Our 80kg Patient

Idarucizumab 5gm = $3482

Idarucizumab + aPCC 25 units/kg
- Idarucizumab 5gm + aPCC 2000 unit = $7002

Idarucizumab + Low Dose, Titration
- Idarucizumab 5gm + aPCC 500 unit = $4362

Low-dose aPCC
- aPCC 500 unit = $880
- aPCC 1000 unit = $1760

Low-dose aPCC vs Antidote
- Cost avoidance favors aPCC = $1722 - $2602

✓ 25% - 50% PRICE over Antidote alone

Will Andexanet alfa & Ciraparantag be cost competitive or prohibitive??
Finally...

- Let’s give our massive bleeding patients the best chance to discharge home alive

- No head-to-head comparisons between PCC and antidotes
 - Is there equivalence in terms of clinically efficacy???
 - Antidote with labeled indication though cost-prohibitive?
 - What’s the threshold to switch from one to the other?

- What’s the cost of a life?
Panel Discussion

William Dager
John Fanikos
Michael Gulseth
Aaron Roberts
Post Debate Analysis
For “Major” Non-ICH Bleed

A. Antidote alone

B. 4 factor PCC/aPCC + Antidote if Urgent

C. 4 Factor PCC/aPCC alone

D. A, B or C depending on the Urgency of the situation and Cost if Antidote is very expensive
Case

AJ is a 65 year old, 80kg male with a history of unprovoked DVT 1 year ago who was managed on warfarin for 3 months. 2 months ago, he was diagnosed with atrial fibrillation and requested to be on a different oral agent as warfarin was very hard to keep controlled with a lot of lab testing and dosing adjustments done. He takes the agent twice daily, but does not remember what the name is and is very confused. He is now being admitted with bright red blood in his stools that has been going on for several hours and very weak.

- PHH: CAD (NSTEMI), GERD, DVT, HTN, AF and CKD IV
- Labs: Scr 3.5, Hgb 5.2, INR 2.6
For AJ – what is your next management step

A. Thrombin Time
B. Anti-Xa activity
C. Bedside assessment of the current bleeding
D. All of the above
For AJ – what anticoagulation reversal approach would you initiate

A. rFVIIa

B. 4 factor PCC/aPCC – 50 units/kg

C. Idarucizumab or Andexanet

D. Low dose PCC/aPCC – 8-12 units/kg and watch
Questions?
Panel Discussion

William Dager
John Fanikos
Michael Gulseth
Aaron Roberts