

Brain Matters and Blood Splatters: Drug Therapy in the Emergency Trauma Patient

Disclosure

 The program chair and presenters for this continuing education activity have reported no relevant financial relationships.

Blood Splatters

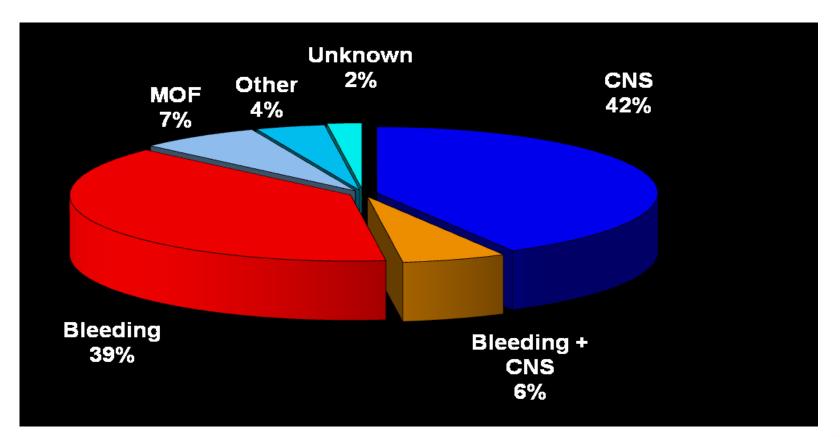
Nicole M. Acquisto, Pharm.D., BCPS Emergency Medicine Clinical Pharmacy Specialist Assistant Professor, Department of Emergency Medicine University of Rochester Medical Center Rochester, NY

Objective

 Determine the appropriateness of pharmacologic agents used for traumatic hemorrhage

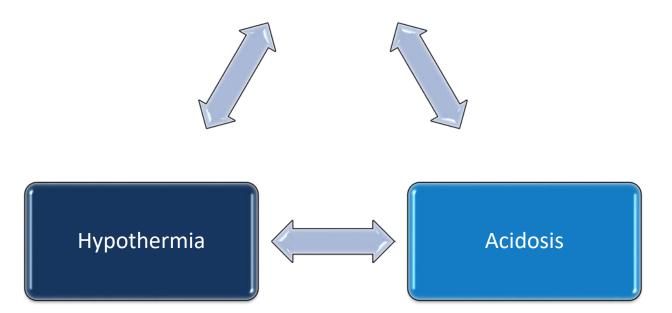
Photo credit: Kate Kokanovich

- 19 yo male MCC vs. car, level 1 trauma
- SBP reported as 85 and repeat 79
- Bilateral lower extremity bone and soft tissue injuries, concern for pulses on R leg, early compartment syndrome on R leg
- R wrist open fracture, pneumothorax L chest, positive FAST

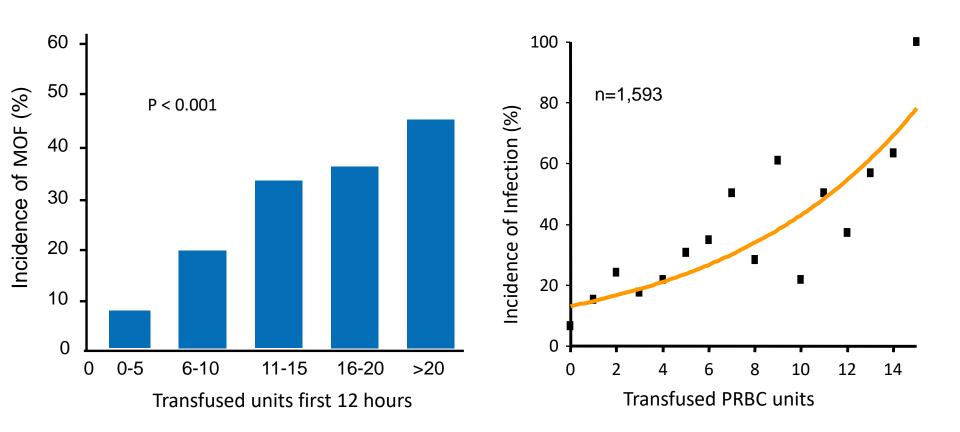


Which management is the most appropriate for resuscitation?

- Administer crystalloid fluids
- Administer blood products alone
- Administer blood products and tranexamic acid (TXA)
- Administer blood products and prothrombin complex concentrates (PCC)

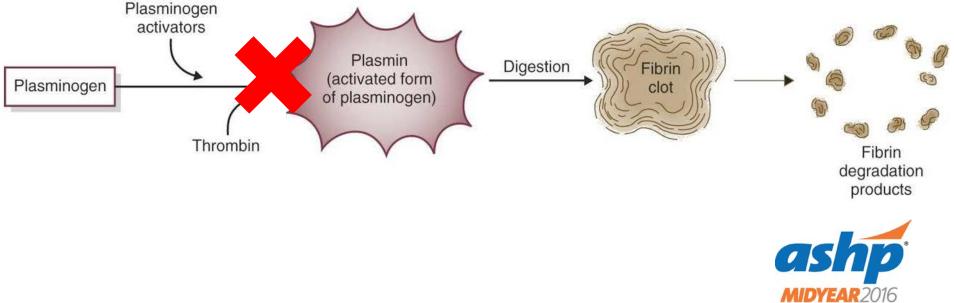

Bleeding is the Major Cause of Death in Trauma

Lethal Triad -> High Mortality Rate


Coagulopathy ↑INR, ↑PT/aPTT, ↓Plt, ↓Fibrinogen

Holcomb J, et al. *J Trauma* 2005; 58: 1298-1303 Vincent JL, et al. *Crit Care* 2006; 10:R120 Mohr A, et al. *Crit Care* 2005; 9:S37-S42.

More Blood, More Problems



Moore FA, et al. *Arch Surg* 1997;132:620-4 Claridg JA, et al. *Am Surg* 2000;68:566-72

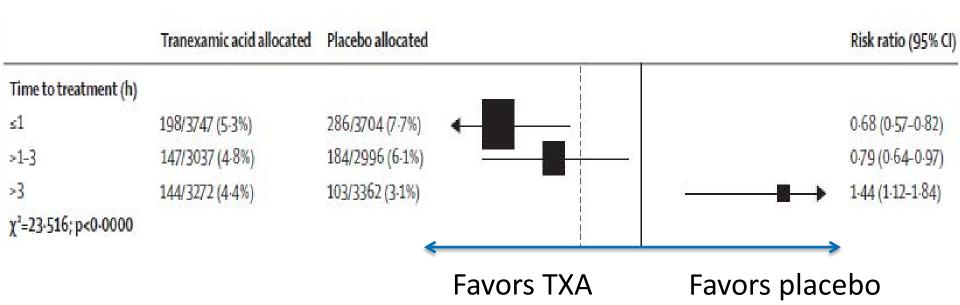
Tranexamic Acid (TXA)

- Hyperfibrinolysis in trauma
 - Dysfunction from severe shock and major tissue trauma
 - Present 2.5-7% of all trauma patients

Clinical Meeting & Exhibition

CRASH-2 Trial

- Randomized, placebo controlled trial
- 40 countries, 274 hospitals, n = 20,211 with or at risk for bleeding
- Randomization uncertainty principle
- SBP < 90 mm Hg or HR > 110 bpm or thought to be at risk of significant hemorrhage
- 1 g over 10 minutes, then 1 g over 8 hours or placebo


CRASH-2 Trial Results

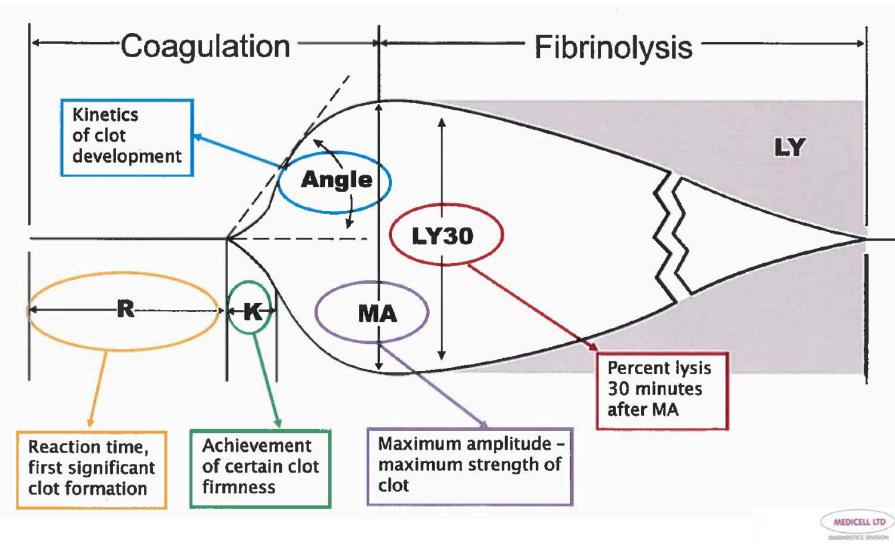
Death in the hospital within 4 weeks of injury

	TXA (n=10,060)	Placebo (n=10,067)	RR (95% CI)	p-value
Any cause of death	1463 (14.5%)	1613 (16.0%)	0.91 (0.85–0.97)	0.0035
Bleeding	489 (4.9%)	574 (5.7%)	0.85 (0.76–0.96)	0.0077
Vascular occlusion	33 (0.3%)	48 (0.5%)	0.69 (0.44–1.07)	0.096
Multi-organ failure	209 (2.1%)	233 (2.3%)	0.90 (0.75–1.08)	0.25
Head injury	603 (6.0%)	621 (6.2%)	0.97 (0.87–1.08)	0.60
Other causes	129 (1.3%)	137 (1.4%)	0.94 (0.74–1.20)	0.63

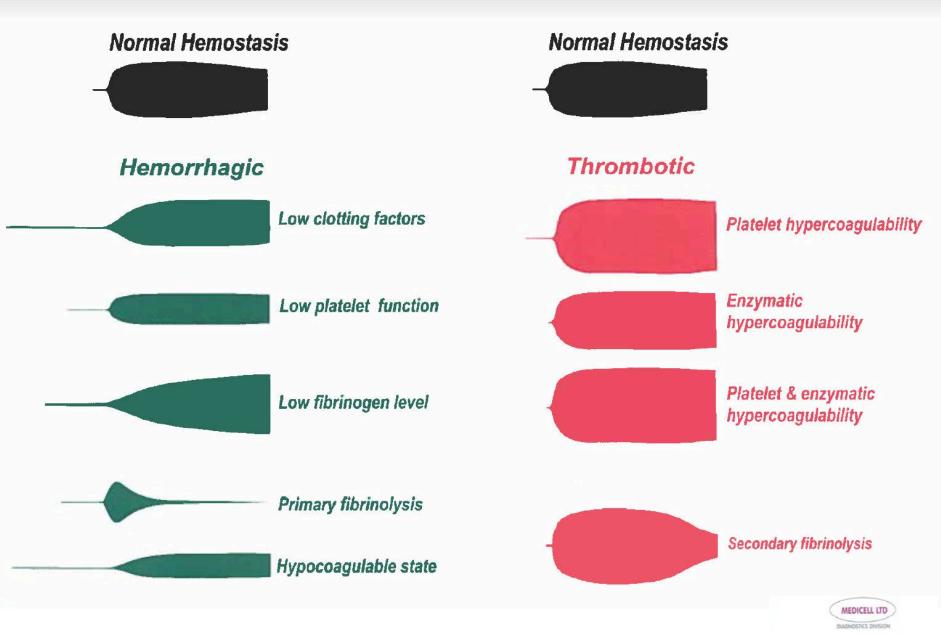
Mortality Subgroup Analysis

Limitations

	TXA (n=10,060)	Placebo (n=10,067)
Blood products transfused	5067 (50.4%)	5160 (51.3%)
Mean units transfused	6.06 (SD ± 9.98)	6.29 (SD ±10.31)
Systolic blood pressure (mm Hg) ≤ 75 76-89 ≥ 90	15.5% 16% 68.4%	15.9% 16.8% 67.1%
Heart rate (bpm) < 77 77-91 92-107 > 107	8.7% 17.1% 25.3% 48.3%	8.6% 17.5% 25.2% 48%


Controversy with CRASH-2

- Design
- Lack of modern trauma systems
- Lack of laboratory monitoring of coagulation function
- No Injury severity scores
- Need for an antifibrinolytic agent since only half required blood transfusion
- NNT 67


- New York Times Article
 "Cheap drug is found to save lives"
- Death avoidance paper
- WHO essential medications list

Thromboelastometry (TEG, ROTEM)

(t) 020 8371 9908

MATTERs

- Retrospective, consecutive patients Jan 2009-Dec 2012
- Received at least 1 unit of RBC within 24 hours of injury
- **2009**
 - TXA administered at discretion
- 2010 and after
 - TXA administered to those requiring emergent transfusion or based on thromboelastogram data (documented hyperfibrinolysis)
- Loading dose was given, continuation was at discretion

MATTERs Results

- In-hospital mortality
- TXA lower unadjusted mortality
 - 17.4% (n = 293) vs. 23.9% (n = 603), p = 0.03
- Massive transfusion unadjusted mortality
 - 14.4% (n = 125) vs. 28.1% (n = 196), p = 0.004
 - TXA independently associated with survival
 Odds Ratio 7.228 (95% CI 3-17)
 NNT 7

Thromboembolism Risk

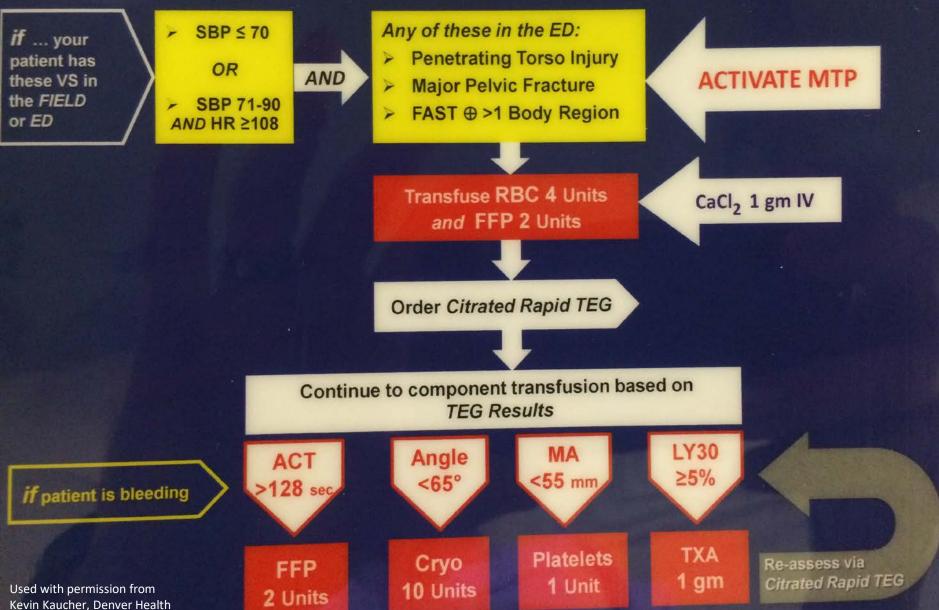
Study	ТХА	Placebo
CRASH-2 (any vasoocclusive event)	1.7%	2%
MATTERs		
PE	2.7%	0.3%*
DVT	2.4%	0.2%*
Massive transfusion + PE	3.2%	0%*
Massive transfusion + DVT	1.6%	0.5%
Swendsen, et al. (PE/DVT)	11.5%	0%*
Cole, et al. (Shock patients: PE/DVT)	8%	2%*

*Statistically significant

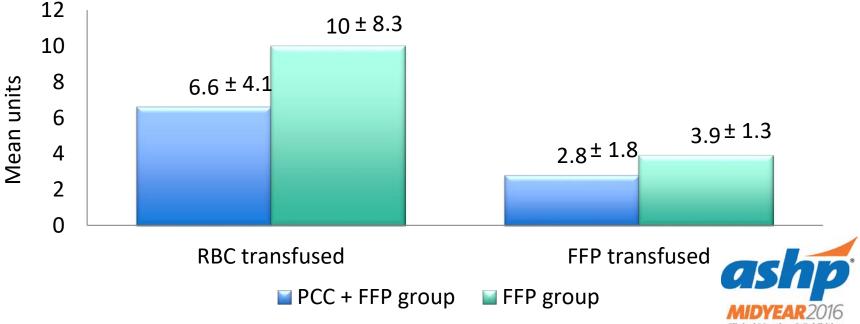
Shakur H et al. *Lancet* 2010;376(9734):23-32. Morrison JJ, et al. *Arch Surg* 2012;147(2):113-9. Swendsen H, et al. *J Trauma Treat* 2013;doi:10.4172/2167-1222.1000179 Cole E, et al. *Ann Surg* 2015;261:390-4.

TXA Questions

- Unknown mechanism
 - Anti-fibrinolysis vs. anti-inflammatory
- Is there more to the pathophysiology of trauma induced coagulopathy
- Hyperfibrinolysis determination
 - LY30 3% or greater predicts requirement for massive transfusion/risk of mortality
 - Hyperfibrinolysis (18%), physiologic (18%), shutdown (64%)
- Correct dose
- Pre-hospital use (STAAMP trial, The PATCH study,)


Roberts I, et al. *Crit Care* 2014;18:685 Binz S, et al. *J Blood Transfus* 2015;874920 Chapman MP, et al. *J Trauma Acute Care Surg* 2013;75:961-7 Moore HB, et al. *J Trauma Acute Care Surg* 2013;77:811-7 Brown JB, et al. *Prehosp Emerg Care* 2015;19:79-86 Clinicaltrials.gov

MASSIVE TRANSFUSION PROTOCOL (MTP)


Prothrombin Complex Concentrate (PCC)

- Contain factors IX, II, X, ± VII
- Reversal of trauma induced dilutional coagulopathy
- Retrospective, n = 20 non-warfarin patients (8 TBI)
- Median ISS: 29 (21-44)
- Base deficient > 4: 80%
- 3F-PCC dose: 1,760 ± 576 units (25 units/kg)

	Before PCC	After PCC	p-value
INR	2 ± 0.6	1.4 ± 0.4	0.001
RBC (mean units ± SD)	9.8 ± 6.8	3.8 ± 4.8	0.002
FFP (mean units ± SD)	6 ± 6	3 ± 3.2	0.077
Thromboembolic events = 2 (10%)			

PCC vs. FFP and Reversal of Coagulopathy

- Retrospective, propensity matched, n = 252 coagulopathic (INR ≥ 1.5) trauma patients, 3F-PCC 25 units/kg
- Median ISS: 27 (16-38)
- Correction of INR: 394 vs. 1,050 min, p= 0.001
- Mortality 23 vs. 28%, p = 0.04

PCC Administration Guided by Thromboelastography

No. Patients	Criteria for PCC	No. PCC (%)	Dose	Mortality/Transfusi on	Safety
128 (≥ 5 units RBC, fibrinogen concentrate)	EXTEM clotting time > 1.5 x normal	98 (75%)	1800	Mortality 24 vs. 34% (predicted by ISS)	
681 (ISS ≥ 16, fibrinogen concentrate ± PCC vs. FFP)	EXTEM clotting time > 1.5 x normal	43 (54%)	1200	Avoidance of RBCs in 29% combination gp vs. 3% FFP gp)	
144 (ISS ≥ 15, fibrinogen concentrate ± PCC vs. FFP)	PT < 50% or INR > 1.5 or EXTEM clotting time > 90 s	66		RBC 2 vs. 9 units Platelets 0 vs. 1 unit Fewer MOF or sepsis than FFP gp	9%

Photo credit: Kate Kokanovich

- 19 yo male MCC vs. car, level 1 trauma
- SBP reported as 85 and repeat 79
- Bilateral lower extremity bone and soft tissue injuries, concern for pulses on R leg, early compartment syndrome on R leg
- R wrist open fracture, pneumothorax L chest, positive FAST

Which management is the most appropriate for resuscitation?

- Administer crystalloid fluids
- Administer blood products alone
- Administer blood products and tranexamic acid (TXA)
- Administer blood products and prothrombin complex concentrates (PCC)

Combat Gauze

- Impregnated with kaolin
- Kaolin is a negatively charged inert material
- Does not contain animal or human proteins
- Promotes activation of FXII → activates FXI → initiation of clotting cascade → promotes formation of fibrin

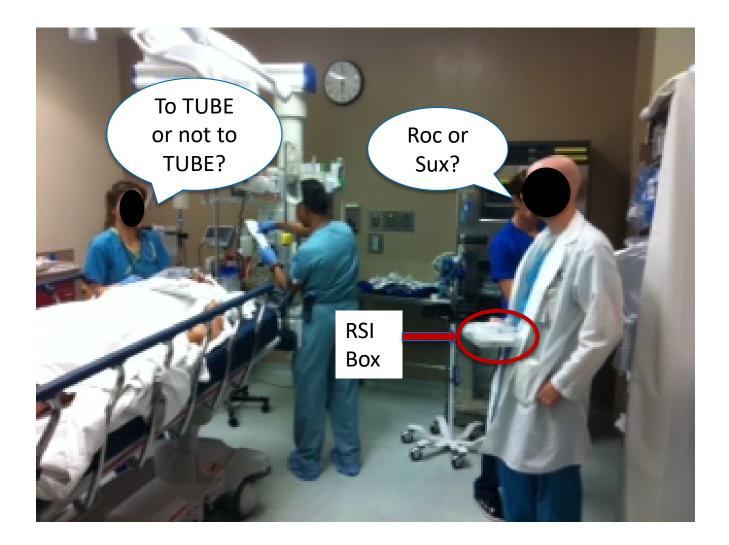
- Key Takeaway #1
 - Trauma induced coagulopathy is complicated and multifactorial
- Key Takeaway #2
 - Use of tranexamic acid (TXA) remains controversial but may be guided by thromboelastography
- Key Takeaway #3
 - 4F-PCC may decrease overall blood product use but may increase thromboembolic events

Thank You!

WIVERSITY of MEDICAL CENTER

200103.00

Brain Matters


Sid Patanwala, Pharm.D., BCPS, FCCP, FASHP Associate Professor The University of Arizona

Objectives

- Select appropriate pharmacological therapy for the traumatic brain injury patient
- Evaluate the pharmacists role during traumatic resuscitation in the brain injury patient

The Scenario

Which agent would you choose?

Rocuronium

Succinylcholine

Intubation Success

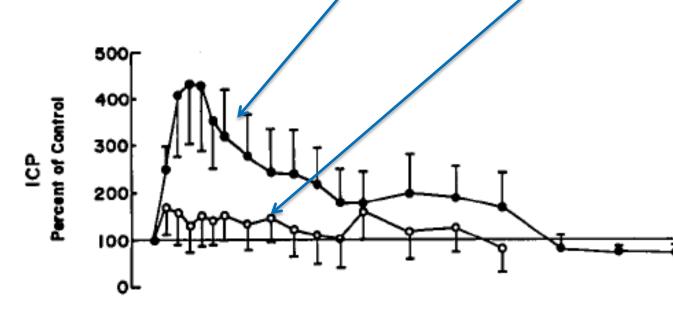
Analysis of 327 adult patients who received RSI

	Succinylcholine	Rocuronium	P value
First attempt success rate	72.6%	72.9%	0.95
Median number of attempts (IQR)	1 (1-2)	1 (1-2)	0.87
Median dose	1.6 mg/kg 🤇	1.2 mg/kg	

<u>Multivariate regression</u>: Association of NMBA with intubation success (OR 1.02, 95% CI 0.61-1.7, p=0.95)

Patanwala et al. Acad Emerg Med 2011; 18:11-14

ICP Basic Science - Cats


	Before SUX	After SUX	P Value
ICP-Normotensive (n=9)	8.2 ± 1.1	16.3 ± 2.7	0.01
ICP-Hypertensive (n=8)	27 ± 1.3	47 ± 4.0	0.01

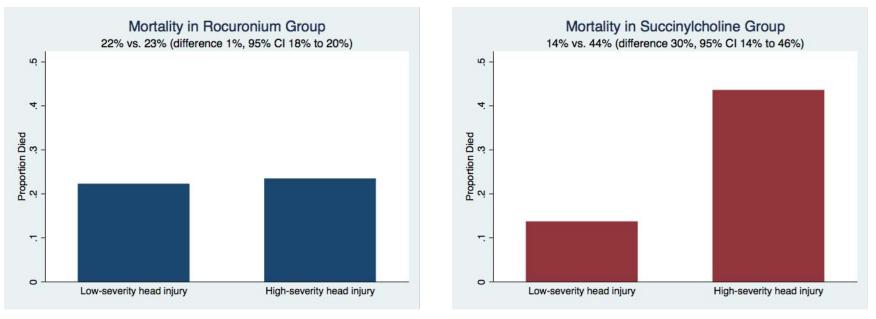
Cottrell et al. Anesth Analg 1983;62:1006-9

ICP Basic Science - Dogs

Time	SUX (N=6)	Placebo (N=2)	SUX + Pancuronium (N=2)
0-15 min (% Control)	291 ± 89	138 ± 46	118 ± 39
15-30 min (% Control)	189 ± 70	127 ± 54	98 ± 48

Lanier et al. Anesthesiology 1986;64:551-9

Succinylcholine: **^**ICP?


Study	N	Design	Population	ICP
Brown et al. 1996	11	RCT	<48 hrs s/p TBI	ΝοΔ
Kovarik et al. 1994	6	Case Series	1-5 days s/p TBI	Νο Δ
Lam et al. 1984	24	Case Series (abstract only)	Aneurism clipping	No Δ (CSF-P)
McLesky et al. 1974	4	Case Series	Neurosurgery	个ICP (2/4)
Marsh et al. 1980	8	Case Series (abstract only)	Neurosurgery	个ICP (mean Δ 5.2)

Clancy et al. Emerg Med J 2001;18;373-375

Traumatic Brain Injury

Analysis of 233 adult TBI patients who received RSI

Patanwala AE, et al. Pharmacotherapy 2016;36(1):57-63

Mortality

Severe or critical head injury patients ^a					
Variable	Odds Ratio	95% CI	P-value		
Paralytic					
Rocuronium	[Reference]				
Succinylcholine	4.08	1.18 to 14.13	0.026		
Glasgow Coma Score ^c	0.36	0.20 to 0.68	0.001		
Age ^a	1.04	1.00 to 1.08	0.045		
Less than severe head injury patients ^b					
Paralytic					
Rocuronium	[Reference]				
Succinylcholine	0.75	0.29 to 1.92	0.548		
Glasgow Coma Scale ^c	0.48	0.31 to 0.74	0.001		
Age ^u	1.03	1.00 to 1.06	0.026		

Patanwala AE, et al. Pharmacotherapy 2016;36(1):57-63

Due to the potential for transtentorial herniation the team would like to initiate a hyperosmolar agent. Which would you recommend?

🗖 Mannitol

Hypertonic saline (NaCl 5%)

EXPERIMENTAL ALTERATION OF BRAIN BULK

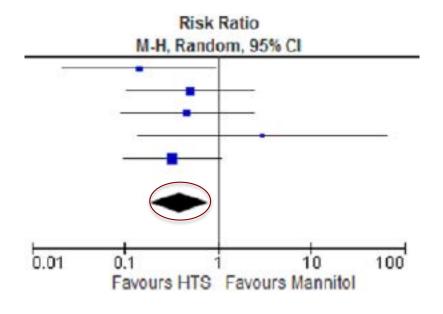
LEWIS H. WEED, Capt., Med. Corps

AND

PAUL S. McKIBBEN, 1st Lt., San. Corps

From The Army Neuro-Surgical Laboratory, Johns Hopkins Medical School, Baltimore, Maryland

Received for publication March 22, 1919


- HyPERtonic Solution ----> Size of the brain
- Hy**PO**tonic Solution ----> ↓Size of the brain

Weed L, McKibben PS. 1919;48:531-558

Mannitol Versus Hypertonic Saline

- Systematic Review (n=7 RCTs)
 - No difference in mortality, neurological outcome, or ICP reduction
 - Hypertonic saline may lead to fewer treatment failures

Burgess et al. Ann Pharmacother. 2016 Apr;50(4):291-300

Guideline Recommendations

 "Although hyperosmolar therapy may lower intracranial pressure, there was insufficient evidence about effects on clinical outcomes to support a specific recommendation, or to support use of any specific hyperosmolar agent, for patients with severe traumatic brain injury"

Carney et al. Neurosurgery 0:1–10, 2016 [Ahead of Print]

Mannitol Versus Hypertonic Saline

Quick Lesson About Filters

Quick Lesson About Filters

Seizure prophylaxis is indicated. Which would you choose?

Phenytoin

Levetiracetam

Levetiracetam Versus Phenytoin

Prospective Observational Study in Blunt Head Trauma

	Levetiracetam (n=406)		Phenytoin (n=407	P value
Seizures	1.5%		1.5%	0.997
Adverse drug reaction	7.9%		10.3%	0.227
Mortality	5.4%		3.7%	0.236

1000 mg IV q12 hours

Inaba et al. J Trauma Acute Care Surg. 2013;74:766-773.

Guideline Recommendations

- Phenytoin recommended to decrease early post-traumatic seizures (within 7 days), when benefit outweighs risk for treatment
- Prophylaxis with phenytoin or valproate not indicated for late seizures
- Insufficient evidence to recommend levetiracetam compared to phenytoin

Carney et al. Neurosurgery 0:1–10, 2016 [Ahead of Print]

You plan to use levetiracetam. What dose would you recommend?

A 1000 mg IV q12

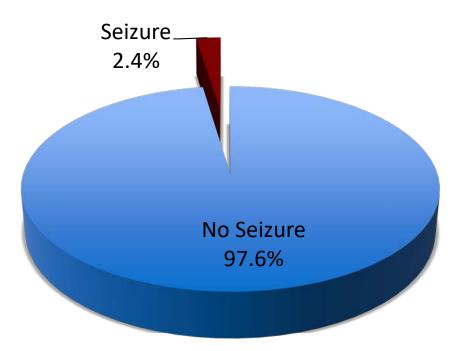
500 mg IV q12

Product Labeling

2 DOSAGE AND ADMINISTRATION

2.1 Dosing for Partial Onset Seizures

Adults 16 Years and Older


Initiate treatment with a daily dose of 1000 mg/day, given as twice-daily dosing (500 mg twice daily). Additional dosing increments may be given (1000 mg/day additional every 2 weeks) to a maximum recommended daily dose of 3000 mg. There is no evidence that doses greater than 3000 mg/day confer additional benefit.

Package Insert. Levetiracetam injection. UCB, Inc. (Accessed 9/1/16)

Low Dose Effective?

Retrospective cohort of patients with TBI (n=169) All patients given levetiracetam 500 mg IV q12

Patanwala et al, Brain Inj. 2016;30(2):156-8

- Key Takeaway #1
 - Consider rocuronium for RSI (Note: my data is only hypothesis generating)
- Key Takeaway #2
 - Insufficient evidence to support mannitol versus hypertonic saline. Consider logistical issues.
- Key Takeaway #3
 - Observational studies show levetiracetam equally effective to phenytoin. Adequately powered RCT needed.

