

Read My Lips: A Case-Based Approach to Managing Acute Angioedema

Disclosure

All planners, presenters, and reviewers of this session report no financial relationships relevant to this activity.

- Review current causes and treatments for patients presenting with general angioedema.
- Evaluate treatment for patients who present with acute hereditary angioedema.
- Select treatment for patients who present with angiotensinconverting enzyme inhibitor angioedema.

Don't Take My Breath Away: Recognizing and Treating the Acute Angioedema Patient

Katelyn R. Dervay, Pharm.D., M.P.H., BCPS, FASHP Pharmacotherapy Specialist – Emergency Medicine Directory – PGY2 Emergency Medicine Tampa General Hospital Tampa, FL

Patient Case 1

45 yo AAM arrives in your ED with a complaint of tongue and lip swelling he noticed when brushing his teeth. Patient denies any medical conditions, allergies, previous angioedema events, or events in his family. Patient's wife states he was at the beach all day & ate at a new Thai restaurant.

Which type of angioedema might he be presenting with?

Patient Case 1

- A. Immunologic/Allergy
- B. Hereditary
- C. ACE-Inhibitor Induced
- D. Physically Induced

Angioedema

- 80,000-120,000 ED visits annually
 - ~18% are hospitalized
- May coexist with urticarial
- Enhanced vascular permeability results in subcutaneous or submucosal tissue swelling
- Skin appears normal
 - Non-pitting
 - Non-pruritic
- Commonly affects lips, tongue & eyelids

Moellman JJ, et al. Acad Emerg Med. 2014 April;21(4):469-484.

Classification of Angioedema

	Immunological/Allergic	 IgE mediated reaction 				
	Hereditary	 Deficiency in quantity or functionality of C1- INH due to genetic defect 				
	Acquired	 Deficiency in quantity or functionality of C1- INH not due to genetic defect 				
	ACE-Inhibitor Induced	 Adverse reaction to a medication 				
	Physically Induced	 Extremes of temperature, physical activity, UV radiation or vibration 				
	Idiopathic	Unknown etiology with multiple attacks				
Wilkerson GR. EM Pract. 2012 Nov;14(11).						

STEP 1: STABILIZE

File - Celtin

C. C. C. C.

and a construction

C. C. Han

Contraction of

Stabilization

- Vitals
- Airway assessmet
- O₂ status
- ECG monitoring
- Prepare for intubation
- Placement in area for frequent assessment

Ishoo Staging of Angioedema

Stage	Site	Episodes (%)	Outpatien t Tx (%)	Floor Tx (%)	ICU Tx (%)	Interventi on (%)
1	Face, lip	31	48	52	0	0
П	Soft palate	5	60	40	0	0
III	Tongue	32	26	7	67	7
IV	Larynx	31	0	0	100	24

Ishoo E, et al. Otolaryngology – Head Neck Surg. 1999;121(3)265.

Tools for Oxygenation

- Flexible fiber optic laryngoscopy
- Laryngeal mask
- Nasopharyndeal oxygenation

https://www.aliem.com/2014/03/trick-trade-nasopharyngeal-oxygenation

Monitoring and Intubation

- Monitoring
 - General respiratory management
 - To intubate or not to intubate?
- Intubation
 - Nasal vs. oral intubation
 - Fiberoptic
 - Cricothyrotomy

http://www.aschoolofairway.com/airway_devices/fiberoptics_ rigid_or_flexible

Orotracheal Intubation

http://image.slidesharecdn.com/advancedairwaymanagement-111229140903-phpapp02/95/advanced--airway-management-22-728.jpg?cb=1325169055

Nasotracheal Intubation

STEP 2: DIFFERENTIATE

ist a Bert

10-10-10 m

STEP 1: STABILIZE

in to a Prost

States and

5 E 5 1 6 - 4

Differential Diagnosis

- Classes of angioedema +/urticaria
- Anaphylaxis
- Edema
- Dermatitis
- Cellulitis
- Muckle-Wells syndrome

- Venous obstructive diseases
- Gleich syndrome
- Ascher syndrome
- Melkersson-Rosenthal syndrome
- Filariasis

History & Physical

- Prior attacks
- Family history (hereditary)
- Medical history
- Current medications
- Allergies & triggers
- Symptoms
- Onset & progression

- Edema location
- Laboratory findings
 - C1-INH levels
 - C4 levels

STEP 3: TREATMENT

10-41

STEP 2: DIFFERENTIATE

int + ta-

STEP 1: STABILIZE

to the thing &

a har Brank

Patient Case 2

You provider would like to intubate the patient at this time due to wheezing and angioedema, but the patient is very concerned and would like to see if anything else can be done prior.

Which medication would you recommend as the first medication?

Patient Case 2

- A. Epinephrine 0.3 mg IV
- B. Prednisone 60 mg PO
- C. Epinephrine 0.3 mg IM
- D. Diphenhydramine 25 mg IV

Treatment Options

- Is there evidence of anaphylaxis?
- What type of angioedema are you dealing with?
- What other medications is the patient on?
- If I'm not sure I go with empiric treatment!

Epinephrine

- First-line in patients with respiratory distress, severe laryngeal edema or anaphylaxis
- Dosing:
 - 0.3 mg (0.2-0.5 mg) IM q15-20 minutes
 - 0.01 mg/kg (max of 0.3 mg)
- IM better than SQ in studies
- Lateral thigh superior to deltoid
 - Only need 60 mmHg to absorb
- Use 1 mg/mL concentration
 - **Note: labeling changed to only reflect mg/mL
 (no more 1:1,000 vs 1:10,000 Yay!!!)

Simons, et al. J Allergy Clin Immunol. 2001;108:871-873. Simons, et al. J Allergy Clin Immunol. 1998;101:33-37

Epinephrine IV

- Reserved for patients in cardiac arrest or receiving multiple IM doses commonly
- Must dilute!!!!!
- Dosing:
 - 1-4 mcg/min
 - Consider starting lower beta activity

Glucagon

- May consider in patients taking beta-blockers
 - May have decreased response to epinephrine
- Glucagon affects cAMP independently of beta-receptor
- Dosing:
 - 1-5 mg IV over 5 min
 - 20-30 mcg/kg IV (max of 1 mg) in pediatrics
 - Infusion: 5-15 mcg/min

Sampson HA, et al. Ann Emerg Med. 2006;47(4)373-380.

Histamine Antagonists

Second-line in anaphylaxis situations

- H1 Antagonist
 - Guidelines suggest second generation
 - Limitations in formulation and availability
 - Diphenhydramine most commonly use as IV
- H2 Antagonists
 - 15% of histamine receptors in skin are H2

Dibbern, D.A., et al. *Immunol Allergy Clin North Am*. 2004.24(2):141-62. Kanani, et al. *Allergy, Asthma & Clinical Immunology*. 2011.7(suppl 1):59

Corticosteroids

- Inhibits T helper cells & inflammatory mediators
- Second line agent
 - Delayed effect
 - May prevent rebound or longer reaction
- No high-quality data to show efficacy in angioedema

Wilkerson GR. EM Pract. 2012 Nov;14(11).

Biphasic Reactions

- Potential for 2nd episode up to 8hr after
- Only 5 of 496 anaphylaxis visits had
 - 2 within ED visit
 - 3 after discharge
 - No deaths
- Probably don't need long observation

Grunau BE, et al. Ann Emerg Med. 2014 June;63(6):736-744.

STEP 1: STABILIZE

4 + + Parts

STEP 2: DIFFERENTIATE

STEP 3: TREATMENT

STEP 4: PREVENT

Prevention

- Remove offending allergen (if identified)
- Send patient home with self-administered epinephrine!!!!
 - Epi-pen (0.3 mg IM)
 - Epi-pen JR (0.15 mg IM)
- Education on use
- If possible fill/dispense prior to leaving ED

Key Takeaways

- Key Takeaway #1
 - Differentiation of types of angioedema are key to selecting therapeutic options. If unknown, empiric therapies should be started after stabilization.
- Key Takeaway #2
 - Epinephrine IM is the first-line agent for all patients with respiratory distress, severe laryngeal edema or anaphylaxis
- Key Takeaway #3
 - All patients should receive a self-administration epinephrine device

Swelling That's Not Swell: Managing Acute Hereditary Angioedema

Megan Musselman, Pharm.D., M.S., BCCP, BCPS Clinical Pharmacy Specialist- Emergency Medicine/Neurotrauma ICU PGY1 Pharmacy Practice Residency Coordinator North Kansas City, MO North Kansas City Hospital

Patient Case Part 1

TY is a 17-year-old female with no known PMH that presents with face and neck swelling and laryngeal edema. Patient denies any known food or medication allergies. Patient is unable to report any family history of angioedema and other family members are not available at this time.


Which of the following would be the most appropriate empiric treatment option based on symptoms?

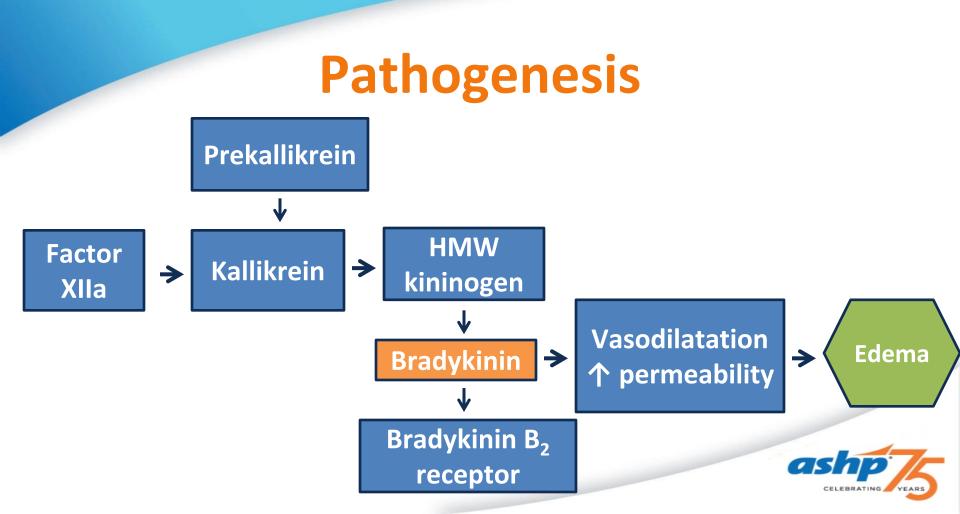
Patient Case cont.

- A. Icatibant
- B. C1INH (Berinert[®])
- C. Epinephrine, methylprednisolone, and diphenhydramine
- D. Ecallantide

Khan DA. Allerg Asthma Proc 2011;51:doi: 10.2500/aap.2011.32.3411.

Hereditary Angioedema (HAE)

- Rare, autosomal-dominant disorder
- Manifests in childhood and associated with high morbidity but low mortality
- Three types of HAE:
 - > Type I deficiency of C1 esterase inhibitors (80-85%)
 - > Type II- malfunction of C1 esterase inhibitors (20-25%)
 - Type III- normal C1 esterase activity (rare)


Zuraw BL, et al. Clinic Rev Allerg Immunol 2016;51:216-229.

HAE Diagnosis

- Clinical criteria is usually first sign
 - Recurrent non-pruritic edema
 - Family history
- Diagnosis of exclusion
- Laboratory studies:
 - $-\downarrow$ C1 esterase inhibitor concentrations
 - Improper C1 esterase inhibitor activity
 - Abnormal genetic markers

Zuraw BL, et al. *Clinic Rev Allerg Immunol* 2016;51:216-229. Zuraw BL, et al. *J Allergy Clin Immunol* 2013;131:1491-3.

Patient Case Part 2

TY's mother has arrived to the ED. She states that there is history of HAE in the family. Patient has increased laryngeal edema and is unable to protect her airway.

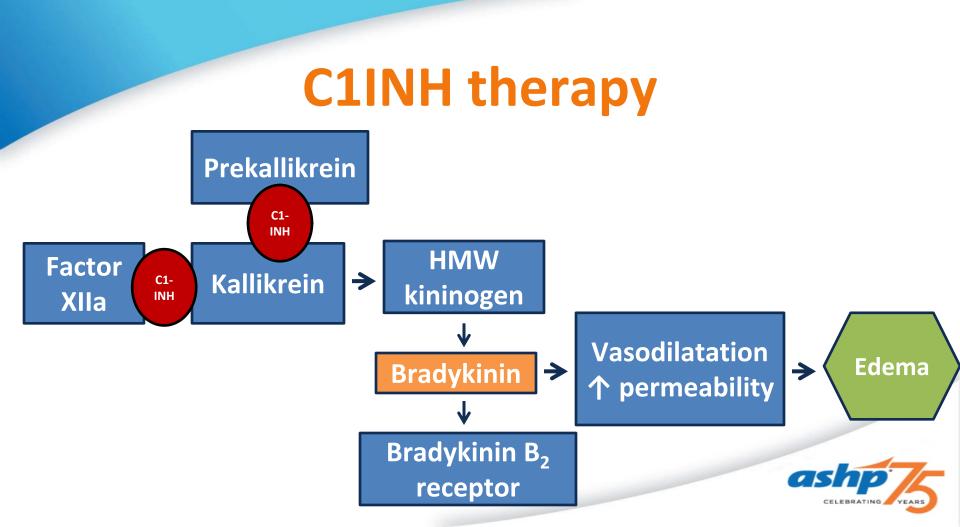
Which of the following would be the most appropriate treatment option based on symptoms?

Patient Case Cont.

- A. Ecallantide
- B. C1INH (Berinert[®])
- C. Fresh frozen plasma
- **D**. Intubation/supportive care measures

Acute Treatment of HAE

- Empiric treatment for unknown diagnosis:
 - Epinephrine, antihistamines and corticosteroids
 - Usually not efficacious but leads to HAE diagnosis
- Secure airway/supportive care
 - Intubation if laryngeal edema
- C1 inhibitor therapy, icatibant, or ecallantide
 - Based on swelling location and availability


Bowen T, et al. Allergy Asthma Clin Immunol 2010;6:24.

HAE Treatment

- Goals of treatment:
 - Avoidance of swelling
 - Reduction of attack frequency and severity
- Available treatment targets:
 - Replacement of C1INH
 - Bradykinin B₂ receptor blocker
 - Plasma kallikrein inhibitor
 - Increase concentrations of C4 complement
 - Inhibition of plasminogen

Zuraw BL, et al. *Clinic Rev Allerg Immunol* 2016;51:216-229. Zuraw BL, et al. *J Allergy Clin Immunol* 2013;131:1491-3.

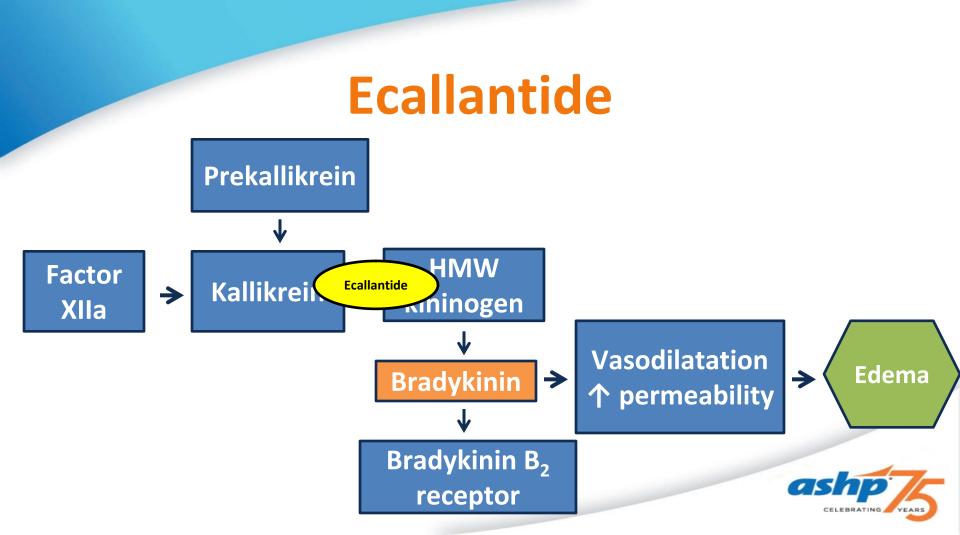
C1INH Concentrates (Berinert[®]/ Cinryze[®])

- C1INH Replacement
- Clinical trials have shown significantly faster symptom resolution during acute treatment
- Median onset is 30-60 mins
- Must be brought to room temperature and reconstituted prior to administration
- Preferred treatment in children < 12 yrs of age and pregnancy

Bork K, et al. *Arch Intern Med* 2001;161:714-8. Craig TJ, et al. *J Allergy Clin Immunol* 2009;124:801-8. Craig TJ, et al. *J Clin Immunol* 2010;30:823-9. Zuraw BL, et al. *N Engl J Med* 2010;363:513-22.

Conestat alfa

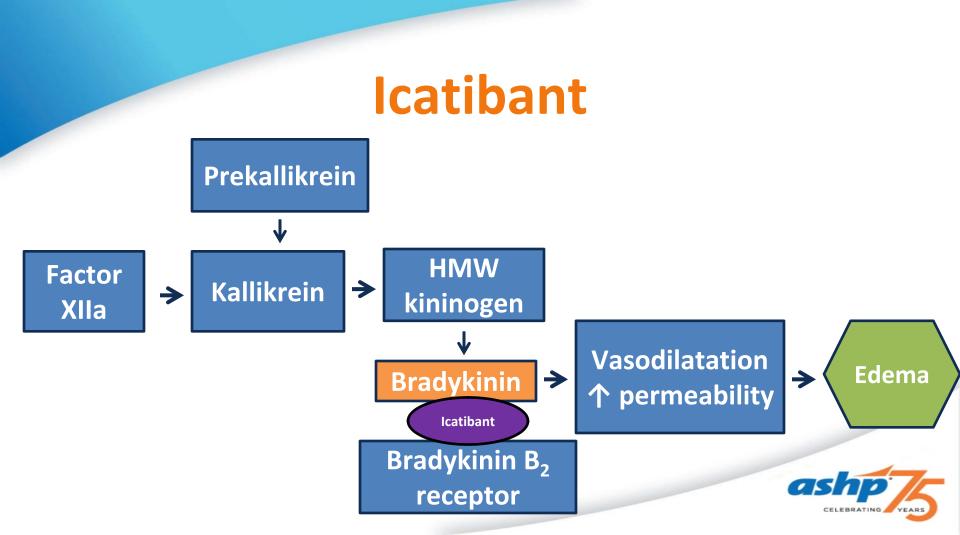
- Recombinant human C1INH
- Trials have shown that administration was safe and more effective then placebo in reducing HAE symptoms
- Contraindicated in patients with allergy to rabbits or rabbitderived products
- Must be brought to room temperature and reconstituted prior to administration


Zuraw BL, et al. *N Engl J Med* 2010;363:513-22. Riedl MA, et al. *Ann Allergy Asthma Immunol* 2014;112:163-9.

Fresh Frozen Plasma (FFP)

- C1INH replacement
- Considered 2nd line to the other C1INH therapies
 - No head to head trial comparing C1INH therapies to FFP
- Monitor volume overload
- Long thaw time and potential for transfusion-associated adverse outcomes

Prematta M, et al. Ann Allergy Asthma Immunol 2007;98:383-8.



Ecallantide

- EDEMA3:
 - Improvement in patient reported treatment scores (p=0.004)
 - No difference in time to significant improvement (p=0.14)
- EDEMA4:
 - Greater change in severity score from baseline (p=.01) and treatment score (p=0.003)
- Black Box Warning:
 - Risk of possible anaphylaxis and should be administered in a controlled setting

Cicardi M, et al. N Engl J Med 2010b;363:523-31. Levy RJ, et al. Ann Allergy Asthma Immunol 2010;104:523-9.

Icatibant

- FAST-1: Placebo vs. icatibant
 - Median time to clinically significant relief: 2.5 hrs icatibant vs.
 4.6 hours placebo, p=0.14
- FAST-2: Oral TXA vs. icatibant
 - Median time to clinically significant relief: 2 hrs icatibant vs. 12 hours TXA, p<0.001
- FAST-3: Placebo vs. icatibant
 - Decreased time to symptom relief in cutaneous, abdominal and laryngeal HAE, p<0.001
- Caution use in patients with ischemic heart disease
 - Blockage of B2 receptor \downarrow coronary blood flow

Cicardi M, et al. *N Engl J Med* 2010;363:532-41. Lumry WR, et al. *Ann Allergy Asthma Immunol* 2011;107:529-37.

Patient Case Part 3

TY has now been intubated, stabilized, and supportive care measures have been started. The physician would like to start a pharmacological agent for the treatment of HAE.

Which of the following would be the most appropriate treatment option?

Patient Case Cont.

- A. Ecallantide
- B. Icatibant
- C. C1INH (Berinert[®])
- D. Anything I can find in the pharmacy!

Key Takeaway #1

- If HAE diagnosis unknown, empiric treatment should consist of epinephrine, corticosteroids, and antihistamines
- Key Takeaway #2
 - Patients with significant laryngeal/oropharynx edema and airway issues, focus should be intubation/supportive care vs. pharmacological treatment
- Key Takeaway #3
 - No head to head studies have compared inpatient HAE treatments, selection based on formulary and drug availability

ACE the Approach: Managing ACE-I-induced Angioedema

Jeremy P. Hampton, Pharm.D., BCPS Clinical Associate Professor / Emergency Medicine Clinical Specialist UMKC School of Pharmacy / Truman Medical Center Kansas City, MO

CLINICAL CASE

- 59 year old AAF
- Inspiratory dyspnea, lingual edema, globus sensation with onset 1 hour prior to arrival
- Vital signs within normal range, maintaining 100% SpO₂ on 2L
 NC
- Home medications include lisinopril 20mg PO daily

ACE-I ANGIOEDEMA: WHAT WE KNOW

- Likely precipitated by the accumulation of bradykinin
- Conventional treatment largely ineffective

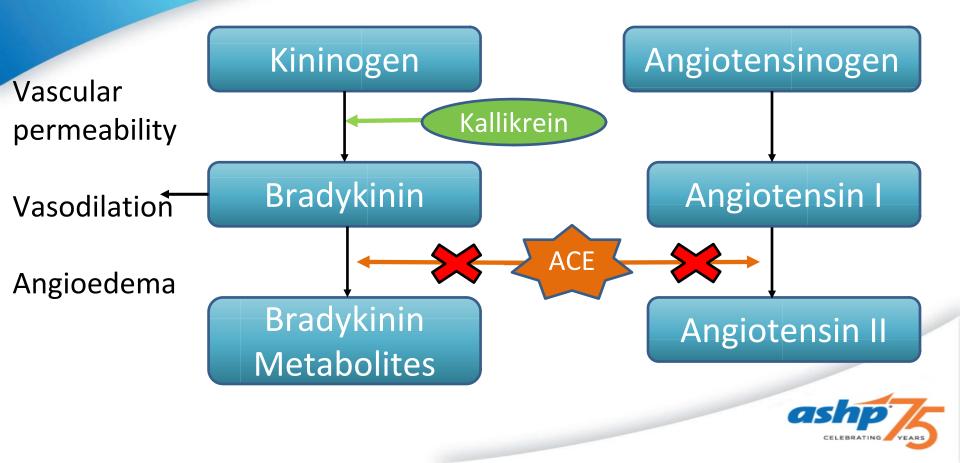
ACE-I ANGIOEDEMA: WHAT WE KNOW

 Data limited, but possible treatments include FFP, kallikrein inhibitors, C1esterase inhibitor concentrate, and icatibant

ACE-I ANGIOEDEMA: WHAT WE KNOW

 Loss of airway is the most life-threatening problem, should be primary focus for acute management in the ED

Mechanism and defining characteristics


Possible treatment options and available data

Where we are today and possible approach to care

FLIGHT PLAN

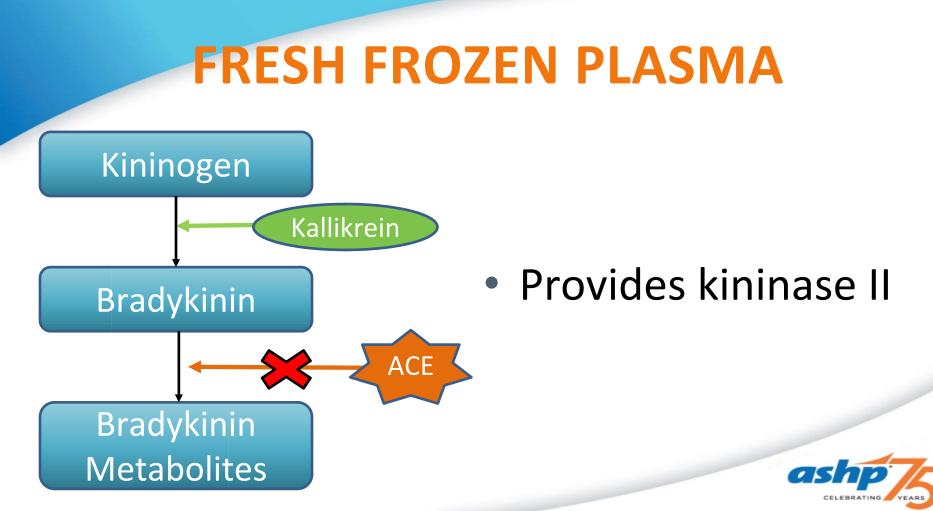
ACE-I ANGIOEDEMA MECHANISM

HISTAMINE vs.

- IgE mediated
- Pruritic urticaria common
- Responsive to "standard" treatment
- Idiopathic, drug-induced (NSAIDS, aspirin), allergic

BRADYKININ

- Not associated with IgE
- Increased bradykinin production or insufficient degradation
- No urticaria
- Not responsive to "standard" treatment

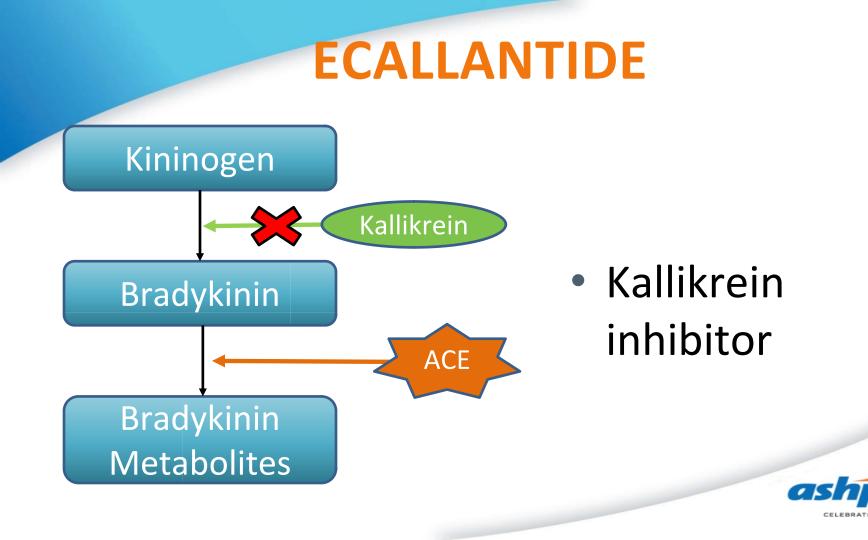


CHOOSE YOUR WEAPON

- FFP
- Ecallantide
- C1 Esterase Inhibitor Complex
- Icatibant

FRESH FROZEN PLASMA

- Limited evidence
 - -4 case reports, 10 patients¹
 - Average dose 1-4 units (10-15 ml/kg)
 - Initial improvement median 2 hours
 - Lack of good controls


FRESH FROZEN PLASMA

Inexpensive

Ubiquitous

Logical mechanism

Infectious transmission Hypersensitivity Volume overload Thawing time **Delayed onset of symptom** reduction Symptom exacerbation

ECALLANTIDE

- Bernstein, et al²
 - Randomized, triple-blind, placebo-controlled
 - Ecallantide 30mg (n=26) vs placebo (n=24)
 - Primary end point discharge within 4 hours
 - 8 (31%) ecallantide, 5 (21%) placebo Not significant
 - Open label ecallantide if symptoms worsening
 - 11 (42%) ecallantide, 13 (54%) placebo

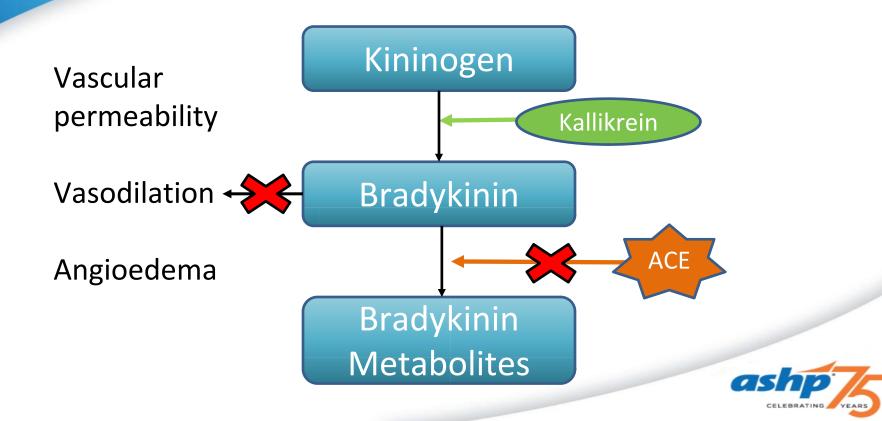
ECALLANTIDE

Lewis et al.³ - multicenter, phase 2, double-blind trial

- Ecallantide 10mg (n=20), 30mg (n=19), 60mg (n=19), vs placebo (n=18)
- Primary endpoint discharge within 6 hours
- Study terminated: High response rates in all arms
- High rate of adverse effects
 - New or worsening angioedema n=20 ecallantide; n=4 placebo

C1 ESTERASE INHIBITOR CONCENTRATE

- Blocks conversion of kininogen to bradykinin
- 2 case reports, 2 case series¹
 - Total 23 patients
 - 22 patients symptom improvement mean of 80 minutes
 - 1 patient no symptom improvement, no further details
 - No adverse events reported
- Phase 3 recruiting, estimated completion late 2018


Bradykinin-2 receptor antagonist Hereditary angioedema treatment

<u>Cost</u>

\$9,440.78 (wholesale acquisition) \$4,689.88 (340b)

ICATIBANT

ICATIBANT EVIDENCE

- Case reports
- 3 case series
- 1 published, phase-II, randomized controlled trial
- 1 published, phase-III, randomized controlled trial

ICATIBANT – CASE REPORTS

- 26 patients¹
 - 25 with symptom improvement, range 10-30 minutes
 - 1 without improvement

ICATIBANT – CASE SERIES Bas et al⁴

- 47 patients (historical comparator)
 - Standard treatment
 - Full resolution 33 hours
 - Airway intervention 5 patients
- 8 patients, icatibant 30mg subcutaneously
 - Initial symptom relief 50.6 +/- 21 minutes
 - Full resolution 4.4 hours
 - Airway intervention zero patients

ICATIBANT – CASE SERIES DeBard et al.⁵

Pre-protocol

- 44 patients
- 18 admitted
- 6 (13.6%) airway intervention
- LOS 7.7 days
- Cost \$17,878

Post-protocol

- 7 patients (icatibant)
- Zero airway intervention
- LOS 0.5 days
- Cost \$5,951

ICATIBANT – CASE SERIES Bova et al.⁶

Icatibant 30mg SQ following standard treatment

- 13 patients
- Symptom onset to icatibant – 3 hours
- Icatibant to onset of relief
 30 minutes
- Full resolution 5 hours

Standard treatment (historical)

- 10 patients, 27 episodes
- Symptom onset to initial relief – 11 hours
- Full resolution 54 hours

ICATIBANT – PHASE 2 RCT Bas et al.⁷

- Multicenter, double-blind, double-dummy
- Icatibant 30mg vs. "standard therapy"
- Primary end point
 - Time to complete resolution of symptoms

Icatibant 30mg SQ

- 13 patients
- Primary end point 8 hours*
- Complete resolution within 4 hours – 5 (38%)[†]
- Onset of relief 2 hours[§]

Prednisolone 500mg + Clemastine 2mg

- 14 patients
- Primary end point 27.1 hours
- Complete resolution within 4 hours – zero
- Onset of relief 11.7 hours

ICATIBANT PHASE 3 RCT Sinert et al.⁸

- 31 centers, 4 countries
- Randomized 1:1 to icatibant 30mg or placebo, both administered subcutaneously

- Primary endpoint
 - Time to meet discharge criteria
- Secondary endpoint
 - Time to onset of symptom relief
 - Occurrence of airway intervention

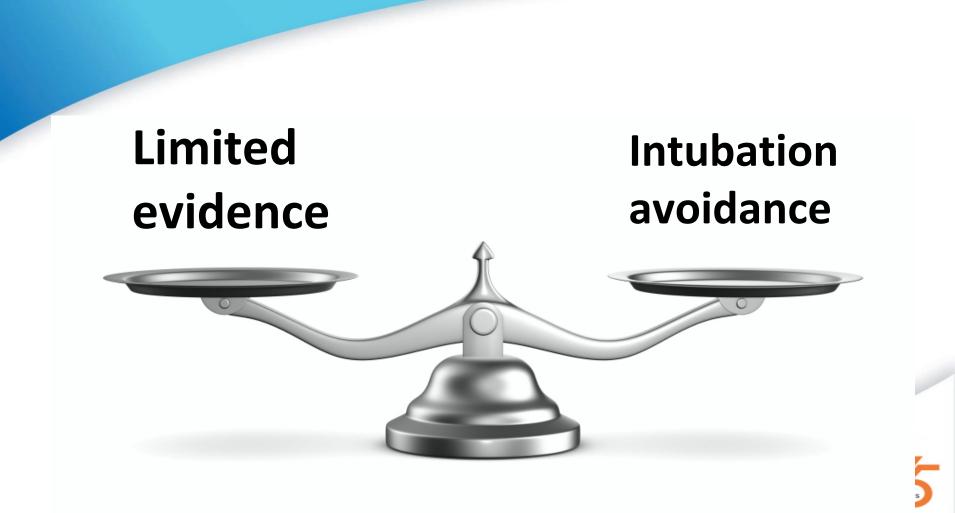
Icatibant 30mg SQ

- 60 patients
- Primary end point 4 hours[†]
- Onset of relief 2 hours[¥]

Placebo

- 58 patients
- Primary end point 4 hours⁺
- Onset of relief 1.6 hours[¥]

- Median time from attack onset to study drug
 - Placebo: 7.9h [range, 2.0 12.4]
 - Icatibant: 7.8h [range, 1.7 12.2]
- 1 patient (icatibant group) received airway intervention
 - 4.75 hours after attack onset
 - 1.5 hours after icatibant administration



- Author's conclusion:
 - Icatibant had no appreciable benefit in treating ACE-Iinduced angioedema

©2017 JEREMY P. HAMPTON | FINAL APPROACH PHOTOGRAPHY

- Kieu, et. al.⁹
- Assess predictors for airway intervention
 - Time of presentation
 - High-risk clinical signs and symptoms
 - Anatomical regions in the head and neck that may indicate need for intubation

- 311 adult patients diagnosed with ACE-induced angioedema
- 52 patients (16.7%) required airway intervention
- Presenting within 4 hours of symptom onset correlated with 2-fold increase in likelihood of requiring intubation

- Highest risk symptoms
 - Dysphagia
 - Dysphonia
 - Globus sensation
 - Drooling
 - Respiratory distress

- Highest risk anatomical locations
 - Tongue
 - Soft palate
 - Vallecula
 - Aryepiglottic folds
 - True vocal cords

- Lowest risk locations
 - Face
 - Lower lip
 - Upper lip

WHERE DOES THIS LEAVE US?

RETURN TO THE CASE

- Lisinopril discontinued
- Icatibant 30mg SQ administered
- Subjective report of symptom reduction within 45 minutes
- Admitted, monitored in ICU, discharged following day

WHAT WOULD YOU DO?

Key Takeaway #1

ACE-inhibitor-induced angioedema is mediated by bradykinin accumulation and is largely unresponsive to "conventional" therapy

Key Takeaway #2

There is a paucity of data regarding the use of FFP, ecallantide, C1 esterase inhibitor concentrate, and icatibant in ACE-I-induced angioedema

Key Takeaway #3

Consideration may be given for use of icatibant in patients who are at high risk of requiring airway intervention, e.g., patients presenting within 4 hours of symptom onset, who present with drooling, respiratory distress, dysphagia, dysphonia, or globus sensation, or who present with affected tongue, soft palate, vallecula, aryepiglottic folds, or true vocal cords.

REFERENCES

- 1. Culley CM, DiBridge JN, Wilson GL. Off-label use of agents for management of serious or life-threatening angiotensin converting enzyme inhibitor-induced angioedema. *Ann Pharmacotherapy*. 2016;50(1):47-59.
- 2. Bernstein JA, Moellman JJ, Collins SP, et al. Effectiveness of ecallantide in treating angiotensin-converting enzyme inhibitor-induced angioedema in the emergency department. *Ann Allergy Asthma Immunol.* 2015;114:245-49.
- 3. Lewis LM, Graffeo C, Crosley P, et al. Ecallantide for the acute treatment of angiotensin-converting enzyme inhibitorinduced angioedema: a multicenter, randomized, controlled study. *Ann Emerg Med*. 2015;65(2):204-213.
- 4. Bas M, Greve J, Stelter K, et al. Therapeutic efficacy of icatibant in angioedema induced by angiotensin-converting enzyme inhibitors: a case series. *Ann Emerg Med.* 2010;56:278-82.
- 5. DeBard ML, Keating E, Schieber A. Prevention of invasive airway management in drug-induced angioedema using icatibant. *Ann Emerg Med*. 2014;64(4S):s14.
- 6. Bova M, Guilarte M, Sala-Cunill A, et al. Treatment of ACEI-related angioedema with icatibant: a case series. *Intern Emerg Med*. 2015;10:345-50.
- 7. Bas M, Greve J, et al. A randomized trial of icatibant for ACE-inhibitor-induced angioedema. *N Engl J Med*. 2015;372:418-25.
- 8. Sinert R, Levy P, et al. Randomized trial of icatibant for angiotensin converting enzyme inhibitor induced upper airway angioedema. *J Allergy Clin Immunol Pract*. 2017;5(5):1402-1409.
- 9. Kieu MCQ, Bangiyev JN, et al. Predictors of airway intervention in angiotensin-converting enzyme inhibitor-induced angioedema. *Otolaryngology Head and Neck Surgery*. 2015;153(4):544-550.

THOUGHTS? QUESTIONS?