Gene Therapy: Melanoma Theory to Practice

Rowena N. Schwartz, Pharm.D., BCOP
The Johns Hopkins Hospital

Melanoma: Targeting the Immune System

Melanoma is one of the most immunogenic of all solid tumors:

- spontaneous regression
- identification of tumor associated antigens, tumor antigenspecific antibodies, tumor-specific cytotoxic T cells
- CD8 T cells has been shown to prevent tumor formation in vivo and in vitro, and the presence of infiltrating CD8 T cells within tumors is positively correlated with better prognosis in cutaneous melanoma
- many immunotherapy strategies have been evaluated to increase tumor control and patient survival

Fang L, et al. J Invest Dermatol 2008;128:2956-2605

Melanoma: Vaccine Therapy

- Whole-cell vaccines
- Dendritic cell vaccines
- Peptide vaccines
- Ganglioside vaccines
- DNA vaccines
- Viral vectors

Lens M. Expert Opin Biol Ther 2008

Melanoma: Whole-Cell Vaccines

- Autologous whole-cell vaccines
- Heat-shock proteins
- Allogeneic whole-cell vaccines
 - Canvaxin™
 - Melacine®
- Allogeneic vaccines prepared from vaccinia melanoma lysates

Melanoma Vaccines: Heat Shock Proteins

- Heat-shock proteins (HSP) expression is increased when cells are exposed to stressful conditions and act as "chaperones" to upregulated antigens on antigenpresenting surfaces
- Patients with metastatic melanoma vaccinated after surgery with autologous tumor-derived HSP peptide complexs gp96 have been shown to develop class I HLA-restricted tumor-specific T cell immunity

Belli F, et al. JCO 2002

 Phase II trial combined GM-CSF given at the site of the HSPPC-96 injection in combination with interferon alfa Pilla L, et al. Cancer Immunol Immunother 2006

Melanoma: Autologous Tumor-Derived Heat Shock Protein gp96 Peptid Complex Vaccine (Vitespen)

- Aim: Assess antitumor activity of autologous, tumorderived HSP gp96 peptide complex in patients with stage IV melanoma
- Method:
 - Phase III multinational study
 - Patients randomized 2:1 to receive vaccine versus physician's choice (PC)*
- Endpoint:

Primary: overall survival

* PC = dacarbazine or temozolomide or IL2 or resection Testori A, et al. JCO 2008

Melanoma: Autologous Tumor-Derived Heat Shock Protein gp96 Peptid Complex Vaccine (Vitespen)

- Patient treatment:
 - **Physician choice:**
 - 107 assigned ⇒ 79.8% received Vitespen
 - 215 assigned ⇒61.9% received
 - number of injections ranged 0 to 87; median 6
- Results:
 - ITT analysis no statistical difference in OS
 - Patients in the M1a and M1b substages receiving a larger number of immunization survived longer than those receiving fewer treatments

Testori A, et al. JCO 2008

Melanoma: Vaccine Therapy

- Whole-cell vaccines
- Dendritic cell vaccines
- Peptide vaccines
- Ganglioside vaccines
- DNA vaccines
- Viral vectors

Dendritic Cells (DC)

- Most effective antigen presenting cells (APCs) capable of capturing, processing and presenting antigens to T-and B- lymphocytes.
- Catagories of DC:
 - plasmacytoid DC
 - myeloid DC
 - inflammatory DC
- DC vaccination
 - development of techniques to generate large number of these cells in vitro from blood monocytes or CD34+ progenitor cells

Dendritic Cell Vaccination Trials

- Proof of principle studies performed in 1990s
- Clinical studies:
 - DC-vaccination with non-matured DC
 - DC-vaccination with mature DC
- Responses
 - Objective responses: 5-10%
 - Type of responses: stabilization of disease, mixed responses
- Changing the way we look at results:
 - Immunologic responses
 - Conventional RECIST criteria may not be appropriate
 - Redefining dose

Lesterhuis WJ, et al. Critical Rev Oncol Hematol 2008

Melanoma: Dendritic Cell Vaccine

- Phase III evaluation of autologous peptide-loaded dendritic cell vaccine vs dacarbazine in patients with metastatic melanoma
- Treatment:
 - Dacarbazine 850 mg/m2 IV q 4 weeks
 - DC vaccines loaded with MHC class I and II restricted peptides applied SQ every 2 weeks x 5, then q 4 weeks
- Enpoints:
 - primary: objective response
 - Secondary: toxicity, overall survival, progressive free survival

Schadendorf D, et al. Ann Oncol 2006

Dendritic Cell-Based

Therapy	No	OR	CR	PR + SD	
Peptide or tumor lysate	32	8	2	6	Nestle, 2006
Peptide vs peptide +GMCSF	13	1	0	2	Slingluff, 2003
Peptide/lysate vs DTIC	53	3	0	10	Schalendorf, 2006

Melanoma: Dendritic Cell Vaccine

- Phase III evaluation of autologous peptide-loaded dendritic cell vaccine vs dacarbazine in patients with metastatic melanoma from the Dermatologic Cooperative Oncology Group
- Treatment:
 - Dacarbazine 850 mg/m2 IV q 4 weeks
 - DC vaccines loaded with MHC class I and II restricted peptides applied SQ every 2 weeks x 5, then q 4 weeks
- Enpoints:
 - primary: objective response
 - secondary: toxicity, overall survival, progressive free survival

Schadendorf D, et al. Ann Oncol 2006

Melanoma: Dendritic Cell Vaccine

- Phase III evaluation of autologous peptide-loaded dendritic cell vaccine vs. dacarbazine in patients with metastatic melanoma from the Dermatologic Cooperative Oncology Group
- Results:
 - at time of first interim analysis 108 patients enrolled
 - OR was low: VAC 3.8 % vs. dacarbazine 5.5%
 - Data Safety & Monitoring Board recommended closure of the study
 - Unscheduled subset analyses: patients with normal LDH and/or stage M1a/b survived longer in both arms
 - Observed association of performance status and HLA haplotype and survival in patients treated with vaccine

Schadendorf D, et al. Ann Oncol 2006

Melanoma: Vaccine Therapy

- Whole-cell vaccines
- Dendritic cell vaccines
- Peptide vaccines
- Ganglioside vaccines
- DNA vaccines
- Viral vectors

Melanoma: Peptide Vaccines

- Immunogenic peptides
 - tissue specific antigens
 - cancer testis antigens
 - mutated cancer-specific antigens
- A peptide derived from tissue specific antigen (gp100) has been synthesized in a mutated form to enhance HLA-A2.1 binding ⇒ T cell stimulation
 - initial small clinical trials demonstrated increase immune response but no antitumor response

Rosenberg SA, et al. Nat Med 1998 Miller AM, et al. Cancer 1981

- combination therapy with interleukin-2 is a method that may increase antitumor effects

Combination Therapy for Advanced Melanoma: gp100 Peptide and Interleukin-2

- Three separate Phase II trials evaluating the combination of high-dose interleukin-2 (HD IL2) and gp100 peptide vaccine in patients with advanced melanoma
- Treatment:
 - gp100 (210M) peptide SQ during week 1,4,7, 10
 - HD IL-2

Trial 1: week 1 and 3 Trial 2: week 7 and 9

Trial 3: week 1, 4, 7 and 10

Sosman JA, et al. JCO 2008

Combination Therapy for Melanoma: gp100 Peptide and Interleukin-2

- N= 130 patients (Sept 1998 Nov 2003)
- Median follow-up time of 60 months

Cohort	No.*	CR	PR	RR	95% CI (%)
Trial 1	42	6	4	23.8	12 to 40
Trial 2	40	4	1	12.5	4 to 27
Trial 3	39	1	4	12.8	4 to 27
Overall	121	11	9	16.5	10 to 26
HD IL	270	17	26	15.9	12 to 21
database					

* number assessed

Sosman JA, et al. JCO 2008

Combination Therapy for Melanoma: gp100 Peptide and Interleukin-2

Immune Correlates for Response:

- Paired samples from peripheral blood obtained prior to treatment and on week 12 (n=53)
- There was insufficient power to detect differences between responders and non-responders in any single trial.
- Limitation of immune testing is the amount of intra subject variation inherent in the assays.

Sosman JA, et al. JCO 2008

Melanoma: Vaccine Therapy

- Whole-cell vaccines
- Dendritic cell vaccines
- Peptide vaccines
- Ganglioside vaccines
- DNA vaccines
- Viral vectors

Melanoma: Adjuvant Therapy EORTC Study 18961

- Aim: Detect difference in disease free survival (DFS) at 5 years between patients receiving adjuvant vaccine (ganglioside GM2-KLH21) treatment versus observation
- Methods:
 - Phase III trial
 - Stage II melanoma post resection of melanoma
 - Stratification by sentinel lymph node staging, depth, ulceration, gender, treatment center
 - Recruited from March 2002 Dec 2005

Eggermont AM, et al. JCO 2008 (abst)

Melanoma: Ganglioside Vaccines

- Aim: Detect difference in disease free survival (DFS) at 5 years between patients recieiving adjuvant vaccine (ganglioside GM2-KLH21) treatment versus observation
- Treatment strategy:
 - Ganglioside GM2-KLH/Q3-21 vaccine subcutaneously weekly x 4, then q 3 months from week 12 for 2 years, then q 6 months during 3rd year (#14)
 - Observation
- Endpoint:
 - Primary: DFS
 - Secondary: survival, toxicity

Eggermont AM, et al. JCO 2008 (abst)

Melanoma: Adjuvant Therapy EORTC Study 18961

From randomized ITT population (n=1314):

Disease Free Survival

Obs

VAC

HR (98% CI) p value 1.02 (0.77, 1.36) 0.85 1.0 (0.75, 1.34) 0.99

Distant Metastatic Free Survival

HR (98% CI) p value
Obs 1.33 (0.77, 2.28) 0.08
VAC 1.32 (0.76, 2.30) 0.10

Eggermont AM, et al. JCO 2008 (abst)

Melanoma: Adjuvant Therapy EORTC Study 18961

- EORTC IDMC reviewed safety and efficacy data and recommended that the trial be stopped and vaccinations be halted in patients receiving VAC.
- Conclusion: This strategy of vaccine was ineffective and may even be detrimental in patients with stage II melanoma.

Eggermont AM, et al. JCO 2008 (abst)

Melanoma: Vaccine Therapy

- Whole-cell vaccines
- Dendritic cell vaccines
- Peptide vaccines
- Ganglioside vaccines
- DNA vaccines
- Viral vectors

T-Cell Activation

T cells require two signals from dendritic cells for full activation:

- binding of major histocompatibility complex antigen to the T cell receptor
- binding of co-stimulatory molecules expressed on mature dendritic cells

Melanoma: CD8 T-Cell Response

Criteria for antitumor response:

- generation of sufficient quantity of antitumor specific CD8 T cells
- CD8 T cells must be able to infiltrate into the tumor
- activation of CD8 T cells within the tumor ⇒ cell death

Melanoma: CD8 T-Cell Response

Strategies to optimize CD8 T-cell response for treatment:

- Non-specific stimulation of anti-tumor immune responses
 - stimulation of endogenous effector cells
 - removing inhibitory signals for T cell activation
- Active immunization to enhance endogenous antitumor responses in vivo
 - vaccines
- Adoptive cell-transfer therapy

Melanoma: Adoptive Cellular Therapy

- Cytotoxic T lymphocyte therapy (CTL)
- Tumor infiltrating lymphocyte therapy (TIL)
 - TILs and interleukin-2
 - non-myeloablative lymphodepleting
 preconditioning ⇒ TILs and interleukin-2
 - generate and adoptively transfer engineered autologous T cells that express high affinity for melanoma-specific antigens

Melanoma: Options for Pharmacotherapy

- Chemotherapy
- Immunotherapy
 - cytokine (IL-2, interferon)
 - cytotoxic T-lymphocyte antigen-4 antibodies
 - vaccines
- Targeting signal transduction pathways
- Apopototic therapy
- Antiangiogenic therapy

Melanoma: Options for Pharmacotherapy

- Melanoma vaccines can induce cellular immune and/or antibody responses
- The science of melanoma vaccines:
 - Best target(s)
 - Best delivery
- Clinical trials with melanoma:
 - Small numbers
 - Endpoints: immune response vs. clinical response
 - Strategy: vaccine vs. vaccine + adjuvant vs. combination
 - Timing: early disease vs. late disease