Gene Therapy for Parkinson’s Disease

Jack J. Chen, PharmD, BCPS, CGP
Associate Professor (Neurology)
Movement Disorders Center
Schools of Medicine and Pharmacy
Loma Linda University

Objectives

• Discuss the outcomes of gene therapy clinical trials in Parkinson’s disease.

• Define areas where future research is expected.

Dopaminergic Nigrostriatal Fibers

Put
Thal
Caudate
GP
STN
SN

Parkinson’s Disease Diagnosis

Resting Tremor
Bradykinesia
Rigidity
Postural Instability

Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinsons Disease. Arch Neurol 1999; 56:33-39

© 2008 American Society of Health-System Pharmacists
Why Gene Therapy for PD?

- **Current Therapies are Symptomatic**
 - Amantadine / Anticholinergics
 - MAO-B inhibitors
 - Levodopa / Dopamine receptor agonist
 - COMT inhibitors
 - Deep brain stimulation
- **Improve QOL, employment, motor symptoms**
- **Not effective for non-motor symptoms**
- **Not effective for balance & gait problems**

Levodopa-induced Dyskinesia

57 y/o man, PD x 11 yrs
“On” meds with dyskinesias
Limitations of Current Therapies

- Disease modifying?
- Non-physiologic
- Gold standard: Levodopa & motor complications
- Side effects: cognitive, behavioral
- Complex regimens
- Ineffective for non-motor symptoms, falling, freezing, gait
- DBS requires hardware maintenance and longitudinal programming

Dopaminergic Fetal Cell Transplantation: Disappointing

- Series of small, open-label trials
- 2 NIH-supported, double-blind, sham surgery controlled trials = negative results
- “Runaway” off-state dyskinesias
- Lewy pathology in transplants
- Issues: Pt selection, # of donor embryos, graft site, cell tissue preparation and source, immunosupression

Basal Ganglia Anatomy

Gene Therapy: Clinically-studied Approaches

- Restore basal ganglia activity
 - STN GAD
- Enhance synaptic dopamine
 - AADC
- Neurorestorative
 - GDNF analog: neuturin

Basal Ganglia in PD: Abnormal Functional Anatomy

Parkinson’s Disease

- Prefrontal
- Insular
- Cingulate
- Sensory Motor
- Suppl. Motor
- Premotor
- Prefrontal

Striatum

D2

D1

Thalamus VA/VL

- = excitatory
- = inhibitory

Brainstem

SC

SNc

SNe

SNr

GPe

GPI

STN

Glu

DA

GABA

subst P

enk

Gene Therapy: Restoring Basal Ganglia Activity

- Target: Subthalamic nucleus [STN]
- Glutamic acid decarboxylase [GAD] produces GABA
- Analogous to STN DBS but:
 - more physiologic?
 - no hardware
 - no programming
 - no hardware / electrical-related AEs
AAV2-GAD gene for PD: an open label, dose-escalation Phase I trial

- Glutamic acid decarboxylase
- AAV2-GAD 65/67 vector; unilateral STN delivery [50 μL]
- 12 month study; 3 doses
 - Low: 1×10^{11} viral genomes (vg)/mL
 - Med: 3×10^{11} vg/mL
 - High: 1×10^{12} vg/mL
- N=12 (11 men)
- Age: 58.2 ± 5.7 years
- PD 6-13 yrs, HY stage ≥3, levodopa motor complications

AAV2-GAD gene for PD: Improvement in UPDRS

AAV2-GAD gene: Changes in metabolic brain networks

Feigin A et al. PNAS 2007;104:19559-19564

AAV2-GAD gene for PD: Phase I results

- UPDRS “on” & “off” state: Improvement
- Functional imaging correlated to improvement
- ADL: Trend for improvement
- Dyskinesias: Trend for improvement
- PD meds: No change in doses
- No changes in anti-GAD 65 or 67 antibodies; IgA; IgM over time
- No study intervention related adverse events or unexpected neurological complications
Gene Therapy: Clinically-studied Approaches

- Restore basal ganglia activity
 - STN GAD
- Enhance synaptic dopamine
 - AADC
- Neurorestorative
 - GDNF analog: neuturin

Levodopa conversion to Dopamine

Tyrosine → Dopa → Dopamine

Tyrosine

Dopa

Dopamine

Tyrosine Hydroxylase

Aromatic Amino Acid Decarboxylase

Dopamine β-Hydroxylase
Gene Therapy: Enhancing Synaptic Dopamine

- Target: Neurotransmitter augmentation
- Analogous to carbidopa but:
 - more physiologic
 - Less dependence on exogenous carbidopa
 - Still requires exogenous L-dopa

AAV2-\(h\)AADC gene therapy for PD: an open label Phase I trial

- Human aromatic L-amino acid decarboxylase
- AAV2-\(h\)AADC vector; bilateral delivery
 - postcommissural putamen
- 6 month study; dose = \(9 \times 10^{10}\) vg [200\(\mu\)L]
- N=5 (4 women)
- Mean age: 63 years
- Mean duration L-dopa therapy = 11 yrs
- Levodopa motor complications

AAV2-hAADC gene for PD: Phase I results

- UPDRS “on” & “off” state: Improvement
- PET scan: increase in AADC putamen expression
- PD meds: Slight reduction [NS]
- No therapy related adverse events or unexpected neurological complications

Gene Therapy: Clinically-studied Approaches

- Restore basal ganglia activity
 - STN GAD
- Enhance synaptic dopamine
 - AADC
- Neurorestorative
 - GDNF analog: neurturin
Intrastriatal GDNF infusions for PD

- 2 double-blinded, placebo-controlled trials = negative
 - Intracerebroventricular / intraputamenal infusion
 - Paresthesias, hyponatremia
 - No sig improvement despite increased 18F-dopa uptake in posterior putamen
- Adequate delivery / distribution / dose of GDNF throughout striatum?

AAV2-neurturin gene (CERE-120) for PD: an open label Phase I trial

- Neurturin (NRTN) – natural GDNF analog
- AAV2-NRTN vector; bilateral intraputaminal delivery [80 μL total]
- 12 month study; 2 doses
 - Low: 1.3×10^{11} vg
 - High: 5.4×10^{11} vg
- N=12 (9 men)
- Age: 57 ± 8 years
- PD 11 ± 3.2 yrs, HY stage 3-4, levodopa motor complications

Marks WJ et al. Lancet Neurol 2008;7:400-08
AAV2-neurturin gene (CERE-120): Phase I results

- UPDRS “on” and “off” state: Improvement
- 18F-dopa PET scan: No change
- No therapy related adverse events or unexpected neurological complications
- No significant immune responses to neurturin
- Dose-related, transient elevation of anti-AAV2 antibodies

Marks WJ et al. Lancet Neurol 2008;7:400-08

Studies in Progress

- Phase II: STN AAV2-GAD [Neurologix, Inc]
- Phase II: CERE-120 [aav2-neurturin] [Ceregene]. Double-blind, sham surgery, controlled. Intraputaminal delivery.

www.clinicaltrials.gov
Unresolved Issues

• Vector profile, selection & technology
 – Viral, nonviral, insert size, tropism, pathogenicity, efficiency, long-term expression

• Transgene system [single, multiple]

• Vector dose

• Delivery site [putamen, STN]

• Transgene regulators / promoters

• Efficacy & safety superior to current therapies?
 – Motor & non-motor

• Patient selection & transgene product
 – Patient specific

Summary

• Safety: Phase I open label data
• Many unresolved issues
• Need for scientific rigor & replication
• Fulfillment of unmet needs?
 • Superior to current medical/surgical modalities?
• Neurorestorative or disease modifying?