

Jill Kolesar, PharmD, BCPS, FCCP

Associate Professor of Pharmacy University of Wisconsin

Director, 3P Laboratory (Analytical Instrumentation Laboratory for Pharmacokinetics, Pharmacodynamcis and Pharmacogenetics) University of Wisconsin Paul P. Carbone Comprehensive Cancer Center Madison, Wisconsin

Pharmacogenomics: The Questions

- Clinical relevance
- Social and ethical aspects
- Economic impact

Valid Biomarkers

- A valid biomarker is described as a "biomarker that is measured in an analytical test system with well established performance characteristics and for which there is an established scientific framework or body of evidence that elucidates the physiologic, toxicologic, pharmacologic, or clinical significance of the test results." The classification of biomarkers is context specific.
- Reference is made to the requirement of testing for the biomarker:
 - 1 = test required;
 - 2 = test recommended; 2* test for at-risk populations
 - 3 = information only

http://www.fda.gov/cder/genomics/genomic_biomarkers_table.htm

Marker	Test	Drug with Label Change	Associated Drugs
C-kit expression	3	Imatinib	
CCR-5 chemokine receptor	1	Maraviroc	
CYP2C19	2	Voriconazole	Omeprazole Pantopazole Esmeprazole Diazepam Nelfinavir Rabeprazole
CYP2C9	2	Celacoxib	
CYP2C9	2	Warfarin	

Valid Biomarkers					
Marker	Test	Drug with Label Change	Associated Drugs		
CYP2D6	3	Atomexatine	Venlafaxine, rispiridone, tamoxifen, timolol		
CYP2D6	3	Fluoxetine	Many		
5q-deletion	3	Lenalidomide			
DPD	3	Capecitabine			
EGFR	3	Erlotinib, cetuximab (head and neck cancer)	Gefitinib		
EGFR	1	Cetuximab (Colon cancer)	Panitumomab, Gefitinib		

Valid Biomarkers					
Marker	Test	Drug with Label Change	Associated Drugs		
Familial hypercholesterolemia	2	Atorvastatin			
G6PD	2	Rasburicase	Dapsone		
G6PD	3	Primaquine	Chloroquine		
Her-2-neu	1	Trastuzumab	Lapatinib		
HLA-B*1502 allele presence	2	Carbamezapine			
NAT	3	lsoniazid, pyrazinamide, rifampin	lsosorbide Hydralazine		

Valid Biomarkers					
Marker	Test	Drug with Label Change	Associated Drugs		
Philadelphia chromosome	3	Busulfan			
Philadelphia chromosome	1	Imatinib, Dasatinib			
PML/RAR (alpha) fusion gene presence	3	Tretinoin	Arsenic trioxide		
Protein C deficiency	2	Warfarin			
ТРМТ	2	Azathioprine	6-mercaptopurine Thioguanine		
UGT	2	Irinotecan			

Valid Biomarkers				
Marker	Test	Drug with Label Change	Associated Drugs	
UGT	3	Nilotinib		
Urea cycle disorder	2	Valproic acid		
VKORC1	2	Warfarin		

2008 Midyear Clinical Meeting Supplemental Handout Materials

Current State Of The Art In Using Pharmacogenomics To Determine Appropriate Doses And Drugs

Jill Kolesar, PharmD, BCPS, FCCP

Associate Professor of Pharmacy University of Wisconsin

Director, 3P Laboratory (Analytical Instrumentation Laboratory for Pharmacokinetics, Pharmacodynamcis and Pharmacogenetics) University of Wisconsin Paul P. Carbone Comprehensive Cancer Center Madison, Wisconsin

Clinical Pharmacogenetics: Already in Routine Practice

- Selective therapy
 - Her-2-neu testing for trastuzumab
 - Philadelphia chromosome for imatinib
- Minimize toxicity
 - TPMT testing for 6-mercaptopurine (6-MP)
 - UGT testing for irinotecan

Clinical Pharmacogenetics: Close to Routine and Will Be Covered Today

Selective therapy

 Cetuximab, panitumomab, gefitinib and erlotinib and the EGFR/Kras pathway

Minimize toxicity

 Tamoxifen and CYP2D6

Case: Controlling Costs

- YT is a 64-year-old man with metastatic colon cancer set to begin therapy with cetuximab. His tumor is mutated for Kras. What do you suggest?
 - Start cetuximab as planned
 - Switch to panitumumab
 - Best supportive care or phase 1 trial

The KRAS Oncogene

- The *KRAS* gene encodes the human cellular homolog of the transforming gene Kirsten rat sarcoma-2 virus
- KRAS is a self-inactivating signal transducer
 - It cycles from GDP bound ("off" state) to GTP bound ("on" state) in response to receptor activation
 - This response is transient due to the intrinsic GTPase activity
- KRAS oncogenes harbor activating mutations yielding proteins with reduced GTPase activity
- These activating *KRAS* mutations are among the most common oncogenic alterations in cancer

Malumbres, Barbacid. Nat Rev Cancer. 2003;3:459-65.

- Retrospective evaluation of individuals with metastatic colorectal cancer (n = 59) receiving cetuximab in combination with irinotecan or oxaliplatin
- Response rate in those without Kras mutation 32% (5% CR, 28% PR)
- Response rate in those with a Kras mutation 0

Di Foire F, et al. Br J Cancer. 2007;96:1166-69.

	Panitumumab + BSC	BSC alone	Total
Patients randomized, n	231	232	463
KRAS not tested, n (%)	11 (5)	7 (3)	18 (4)
KRAS tests failed, n (%)	12 (5)	6 (3)	18 (4)
Patients included in <i>KRAS</i> analysis, n (%)	208 (90)	219 (94)	427 (92
Wild-type <i>KRAS</i> , n (%)	124 (60)	119 (54)	243 (57)
Mutant <i>KRAS</i> , n (%)	84 (40)	100 (46)	184 (43

Objective Tumor Response (Central Radiology)

	KRAS					
	All Evaluable n (%)		Mutant n (%)		Wild-type n (%)	
Desmense	Pmab	BSC	Pmab	BSC	Pmab	BSC
Response	(N = 208)	(N = 219)	(N = 84)	(N = 100)	(N = 124)	(N = 119)
CR	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
PR	21 (10)	0 (0)	0 (0)	0 (0)	21 (17)	0 (0)
SD	52 (25)	22 (10)	10 (12)	8 (8)	42 (34)	14 (12)
PD	104 (50)	149 (68)	59 (70)	60 (60)	45 (36)	89 (75)
CR, PR, SD	73 (35)	22 (10)	10 (12)	8 (8)	63 (51)	14 (12)

Pmab, panitumumab; BSC, best supportive care; CR, complete response; PR partial response; SD, stable disease; PD, disease progression

R.G. Amado

R.G. Amade

			Obj Res N	ective ponse (%)
Reference	Treatment (panitumumab or cetuximab)	No of patients (WT:MT)	МТ	wт
A. Liévre, et al. (AACR Proceedings, 2007)	cmab ± CT	76 (49:27)	0 (0)	24 (49)
S. Benvenuti, et al. (Cancer Res, 2007)	pmab or cmab or cmab + CT	48 (32:16)	1 (6)	10 (31
W. De Roock, et al. (ASCO Proceedings, 2007)	cmab or cmab + irinotecan	113 (67:46)	0 (0)	27 (40
D. Finocchiaro, et al. (ASCO Proceedings, 2007)	cmab ± CT	81 (49:32)	2 (6)	13 (26
F. Di Fiore, et al. <i>(Br J Cancer, 2007)</i>	cmab + CT	59 (43:16)	0 (0)	12 (28
S. Khambata-Ford, et al.	cmab	80 (50:30)	0 (0)	5 (10)

Cost of Cetuximab in Metastatic Colon Cancer (Unselected Patients)

- Single Agent
 - The LYG ranged between 1.7 and 2.0 years. The median cost per patient treated was calculated to 34,256 Euro to 45,764 Euro yielding a cost per LYG in the range between 205,536 Euro and 323,040 Euro.
- Combination with irinotecan
 - "While it is difficult to suggest whether cetuximab represents value for money, indirect comparisons suggest that the incremental cost-utility of cetuximab plus irinotecan is unlikely to be better than pound 30,000 per QALY gained"
 - Incremental cost per life-year gained with cetuximab/irinotecan therapy compared with active/best supportive care was 42 975 pounds. The incremental cost per quality adjusted life-year gained was 57 608 pounds

Tappenden P, et al. Health Technol Assess. 2007;11:1-128; Starling N. Br J Cancer. 2007;96:206-12; Norum J. J Chemother. 2006;18:532-7.

Case: Controlling Costs

- YT is a 64-year-old man with metastatic colon cancer about to begin therapy with cetuximab. His tumor is EGFR positive and mutated for Kras. What do you suggest?
 - Start cetuximab as planned
 - Response rates range from 0-6%
 - Switch to panitumumab
 - Response rates range from 0-6%
 - Best supportive care

EGFR, Kras, and EGFR Inhibitors

- Mounting evidence suggests that EGFR expression and wild-type Kras predict better response to EGFR inhibitors
- Why do we continue to use these expensive drugs in unselected populations
 - Many patients have already exhausted all other therapeutic options
 - EGFR inhibitors less toxic than standard chemotherapy

Case: Preventing Drug Interactions

 LL is a 57-year-old postmenopausal woman with stage III breast cancer who was recently started on adjuvant tamoxifen. She comes to the clinic complaining of hot flashes and the oncology fellow gives her a prescription for fluoxetine.

- What should you do?

Tamoxifen: Indications

Indications	Year of
Metastatic breast cancer	Approval 1977
(postmenopausal)	
node +)	1986
Metastatic breast cancer (premenopausal)	1989
Adjuvant breast cancer (postmenopausal node -)	1990
Metastatic breast cancer (male)	1993
Reduction in breast cancer incidence	1998
Ductal carcinoma in situ (DCIS)	2000
http://www.fidla.gov//	

CYP2D6 Polymorphism

Allele	Enzyme Activity	Caucasia n	African American	Japanese
*2xn	Increased	1%-5%	0-2%	2%
*4	None	18%-23%	7%-9%	<1%
*5	None	2%-4%	6%-7%	5%-6%
*6	None	1%	<1%	N/A
*10	Reduced	4%-8%	3%-8%	39%-41%
*17	Reduced	N/A	15%-26%	N/A

Background

Selective serotonin reuptake inhibitors (SSRIs)

- Antidepressants that are often prescribed to treat hot flashes in women who take tamoxifen
- Paroxetine, sertraline, citalopram, fluoxetine, and venlafaxine
- Inhibition of CYP2D6 by SSRIs likely to affect metabolism of tamoxifen

Study Design and Methods

- 80 women newly diagnosed with breast cancer
- Baseline blood sample taken
- Measured plasma concentrations of tamoxifen and its metabolites (after 1 and 4 months of therapy)
- Genotype analysis (CYP2C9, CYP3A5, SULT1A1, CYP2D6)
- Examined effects of CYP2D6 inhibitors on plasma endoxifen concentrations
- Examined association of SSRIs and plasma endoxifen concentration

Kaplan–Meier Estimates of RFS Based on CYP2D6 Metabolism 100 Relapse-free survival (%) Extensive n=115 80 60 40 Decreased n=65 20 P=0.007 0 2 6 8 10 4 12 Years after randomization In a multivanate analy time to recurrence (P = .034; HR=1.91) and worse RFS (P = .017; HR=1.74) relative to patients with "extensive" metabolism. Goetz MP, et al. Breast Cancer Res Treat. 2007;101:113–21.

CYP2D6 Substrates • 25% of all therapeutic drugs, 50 of the 100 best selling drugs					
Substrates of CYP2D	6				
Beta blockers	Cardioactive drugs	Antidepressants	Antipsychotics	Others	
alprenolol carvedilol S-metoprolol propafenone propranolol timolol	amiodarone encainide flecainide lidocaine mexiletine perhexiline	amitriptyline clomipramine desipramine doxepin (E-isomers) fluoxetine fluvoxamine imipramine maprotiline nortriptyline paroxetine venlafaxine	haloperidol perphenazine risperidone thioridazine zuclopenthixol	amphetamine codeine dexfenfluramine methoxyamphetamine ondansetron phenacetin phenformin tamoxifen tramadol	

Case: Preventing Drug Interactions

- LL is a 57-year-old postmenopausal woman with stage III breast cancer who was recently started on adjuvant tamoxifen. She comes to the clinic complaining of hot flashes and the oncology fellow gives her a prescription for fluoxetine.
 - What should you do?
 - Start fluoxetine as planned
 - Pick another SSRI with less CYP2D6 inhibition (sertraline)
 - Switch to an aromatase inhibitor

