Pharmacogenomics principles and concepts

Howard L. McLeod, PharmD, FCCP
Institute for Pharmacogenomics and Individualized Therapy
Division of Pharmacotherapy and Experimental Therapeutics
University of North Carolina at Chapel Hill
Eshelman School of Pharmacy

Objectives:
1. Describe and define pharmacogenomic concepts and taxonomy
2. Identify the key advances that have been made in the Human Genome Project
3. Describe pharmacogenomic principles and the effect on pharmacokinetics and dynamics

“A surgeon who uses the wrong side of the scalpel cuts her own fingers and not the patient;
if the same applied to drugs they would have been investigated very carefully a long time ago”

Rudolph Bucheim
Beitrage zur Arzneimittellehre, 1849

All patients with same diagnosis

Standard Treatment
Responders and Patients Not Predisposed to Toxicity

Alternate therapy
non-responders and toxic responders

© 2009 American Society of Health-System Pharmacists
Page 1 of 6
The clinical problem

• Multiple active regimens for the treatment of most diseases
• Variation in response to therapy
• Unpredictable toxicity

With choice comes decision

Pharmacodynamics
What the drug does to the body

Pharmacokinetics
What the body does to the drug

What Exactly is Genetics?

Genetics is the study of heredity…

…and of variation between individuals

Pharmacogenetics vs Pharmacogenomics

- Pharmacogenetics
 - The effect of genetic variation on drug response (disposition, safety, tolerability, and efficacy)

- Pharmacogenomics
 - The application of genome science (genomics) to the study of human variability in drug response

The History of Pharmacogenetics

Content removed for copyright compliance

1866 – Gregor Mendel establishes rules of heredity
2003 – FDA issues draft guidelines for submission of pharmacogenetic data with NDAs
Chromosomes

- Every human cell with the exception of the gametes contains 23 pairs of chromosomes.
- Code for all the proteins in every cell.
- Resides in the cell nucleus.
- Each chromosome contains one DNA molecule.

DNA

- DNA building blocks = 4 nucleotide bases: A (adenine), G (guanine), T (thymine), C (cytosine).
- Single strand: Sugar-phosphate backbone.
- Double strand: Double helix bound by hydrogen bonds. Always A-T; C-G.

Anatomy and Expression of a Gene

SNP (pronounced snip) single nucleotide polymorphism

- Variation in DNA sequence.
- >1% population = genetic polymorphism.
- Variations: CAUSE OF HUMAN DIFFERENCES.
- Alter protein synthesis and mRNA function.

SNP’s and Human Variation

- ...CCATTGACT
 - CCA = proline
 - CCG = proline
 - No AA change = synonymous SNP
- ...GAAAGCCCC
 - AGC = serine
 - GGC = glycine
 - AA change = non-synonymous SNP

Other Polymorphisms -- Insertions

- Insertion: UGT1A1
- Nucleotide change = Insert T and A repeat (TA)6>(TA)7
- ↓ function; ↓ glucuronidation
- Gilbert’s syndrome, drug toxicity
Other Polymorphisms – Deletion and Duplication

- Deletion (see diagram a)
 - CYP2D6
 - Delete several nucleotide base pairs
 - Loss of function; decreased metabolism
 - Phenotype = Poor metabolizer

- Copy Number Variation (see diagram b)
 - CYP2D6
 - Increased copies of CYP2D6 gene
 - Phenotype = Ultra-extensive metabolizer

Allele

- Alternative forms at a genetic locus on one chromosome
- Most loci – humans have 2 chromosomes which carry the same or 2 different alleles
- One of several variants of a gene
 - Usually specific site within a gene

Heterozygous vs Homozygous

- Homozygous = two of the exact same alleles
 - Example CYP2C19*1/*1 (2 *1 alleles)

- Heterozygous = two different alleles
 - Example CYP2C19*2/*3 (one *2 and one *3 allele)

Human Genome Project

- Genomics: study of genes and their function
- Human Genome Project (HGP)
 - Began in 1990
 - Coordinated by Dept of Energy & NIH
 - Working draft published (90% complete)

- Science & Nature Feb 2001

Human Genome Project

- HGP Goals:
 1. Determine the sequence of the 3 billion DNA nucleotides
 2. Chart variations among the sequences
 3. Label functions of the ~30,000 human genes
 4. Address ethical, legal, and social issues

Genetic polymorphisms of drug disposition and drug targets

Growing list of published examples

- > 35 Drug metabolizing enzymes
- > 12 Drug transporters
- > 40 Drug targets

Clopidogrel Clinical Pharmacology

Content removed for copyright compliance

Ellis KJ et al. Pharmacogenomics. 2009; (in press).

Clopidogrel PGx – PK/PD

Clopidogrel

\[\text{CYP2C19*1 (wild-type)} \]

Active metabolite

Platelet Function

Clopidogrel PGx – PK

Clopidogrel

\[\text{CYP2C19*2 or *3} \]

PK (higher clopidogrel exposure)

Active metabolite

Clopidogrel PGx – PD

Clopidogrel

\[\text{PD (less inhibition of aggregation)} \]

Korean HVTs

Clopidogrel PGx – PK/PD

Clopidogrel

\[\text{CYP2C19*2 or *3} \]

Active metabolite

Platelet Function

Clopidogrel PGx – Clinical Outcome

TRITON-TIMI 38, PGx Sub-Analysis (N=1459)

Content removed for copyright compliance

Kim et al. CP&T. 2008;84:236-42.

Kim et al. CP&T. 2008;84:236-42.

© 2009 American Society of Health-System Pharmacists
Page 5 of 6
Pharmacogenomic examples-2009

- *bcr/abl* or 9:22 translocation—imatinib mesylate
- HER2-neu—trastuzumab
- C-kit mutations—imatinib mesylate
- Epidermal growth factor receptor mutations—gefitinib
- Thiopurine S-methyltransferase—mercaptopurine and azathioprine
- UGT1A1-irinotecan
- CYP2C9/VKORC1-warfarin
- CYP2C19-clopidogrel
- HLA-B*5701-abacavir
- HLA-B*1502-carbamazepine
- Cytochrome P-450 (CYP) 2D6—5-HT3 receptor antagonists, antidepressants, ADHD drugs, and codeine derivatives, tamoxifen

PharmGKB (www.pharmgkb.org)

Content removed for copyright compliance

Resources for Pharmacogenomic Information

- PharmGKB (www.pharmgkb.org)
- NLM (http://ghr.nlm.nih.gov)
- JAMA 3 article series 2009
 - How to use an article about genetic association
 - Author John Attia
 - Great appendix of terms
- FDA
 - http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm

Goal of Pharmacogenomics

Content removed for copyright compliance

Comprehensive optimization of patient care

- Disease Genotypes
- Infection Defense Genotypes
- Toxicity-risk Genotypes
- Supportive Care Genotypes

© 2009 American Society of Health-System Pharmacists