When Patients Outweigh the Mold: Pharmacotherapy in Pediatric Obesity

Peter (Pete) N. Johnson, Pharm.D., BCPS, BCPPS, FPPAG
Associate Professor of Pharmacy Practice
University of Oklahoma College of Pharmacy

Brady S. Moffett, Pharm.D., M.P.H.
Clinical Pharmacy Specialist
Texas Children’s Hospital
Disclosure

- The program chair and presenters for this continuing education activity have reported no relevant financial relationships.
Objectives

1. Interpret literature on pharmacokinetic alterations & specific dose adjustment tools in the obese population
2. Justify drug dosing for common & high-risk medications in overweight/obese pediatric patients
3. Evaluate dosing strategies for common agents used as continuous infusions
Background
Pediatric Obesity

• Definitions:

<table>
<thead>
<tr>
<th>BMI Percentile</th>
<th>CDC Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 85th</td>
<td>Healthy weight</td>
</tr>
<tr>
<td>85th - 94th</td>
<td>Overweight</td>
</tr>
<tr>
<td>≥ 95th</td>
<td>Obese</td>
</tr>
</tbody>
</table>

• Prevalence:
 - 17% of 2-19 years obese (2011-2014)
 - No significant difference between 2005-2006 & 2013-2014

In-Patient Obese Admissions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number (%) or Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>1448 (50.9)</td>
</tr>
<tr>
<td>TCH Admissions</td>
<td>2010 (70.7)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.8 ± 4.7</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>55.2 ± 31.7</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>134.7 ± 28.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.3 ± 7.1</td>
</tr>
<tr>
<td>BMI percentile</td>
<td>98.0 ± 7.1</td>
</tr>
</tbody>
</table>

2844 (18.8%) 15,119 admissions 2-17 years

TCH = Texas Children’s Hospital
BMI = Body mass index

Top 25 Medications (n=28,234)

- Sedatives and analgesics: 36.0%
- Corticosteroids: 12.0%
- Gastrointestinal: 20.0%
- Antibiotics: 20.0%
- Other: 12.0%
PK Alterations in Obesity

• Distribution:
 - $\uparrow Vd_{ss}$ for lipophillic medications
 - $\downarrow Vd_{ss}$ for hydrophillic medications

• Excretion:
 - \uparrow kidney size
 - \uparrow glomerular filtration rate

$Vd_{ss} = \text{Volume distribution at steady state}$

Pro/Con Debate #1: Weight-based dosing adjustments
Pediatric Pharmacists should routinely use weight-based dosing adjustments.

A TRUE
B FALSE
Dose Adjustment Tools:

We should use drug adjustment tools
Dosing Strategies

- Continuous infusion dosing:
 - Fixed-dose (mcg/hr)
 - Weight-based dosing (mcg/kg/hr)

- Weight-based dosing:
 - Total body weight (TBW)
 - Body surface area (BSA)
 - Ideal body weight (IBW)
 - Adjusted body weight (ABW)
 - Lean body mass (LBM)

Body Composition

- **TBW = FM and FFM**
- **Fat-free mass:**
 - Consists of muscle, bone, vital organs, & ECF
 - Free-fat mass differs from LBM:
 - Lipids in CNS & bone marrow contained in LBM not FFM
 - Differences NOT appreciable
 - FFM interchangeable with LBM

- FM = Fat mass
- FFM = Free fat mass
- ECF = Extracellular fluid
- LBM = Lean body mass
Body Composition Comparison

<table>
<thead>
<tr>
<th>Factor</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obese</td>
<td>Controls</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>65.3 ± 18.2</td>
<td>40.1 ± 12.1</td>
</tr>
<tr>
<td>Total body water (L)</td>
<td>29.7 ± 7.2</td>
<td>24.4 ± 8.5</td>
</tr>
<tr>
<td>Body volume (L)</td>
<td>65.0 ± 18.4</td>
<td>38.2 ± 11.4</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>26.3 ± 10.1</td>
<td>7.7 ± 3.6</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>39.0 ± 10.0</td>
<td>32.4 ± 11.4</td>
</tr>
<tr>
<td>FFM hydration (%)</td>
<td>76.5 ± 1.8</td>
<td>75.3 ± 1.7</td>
</tr>
</tbody>
</table>

↑ volume, & FFM adjusting for age, sex, & height (p <0.0001)

TBW = Total body water
FM = Fat mass
FFM = Free fat mass

Dosing Considerations

• ↓ Percentage of lean tissue per TBW (kg)
• 30% ↓ in water content in adipose tissue
• Therapeutic alterations:
 - Altered concentrations
 - ↑ or ↓ efficacy
• Alterations in dosing:

<table>
<thead>
<tr>
<th>Dosing</th>
<th>Hydrophilic</th>
<th>Lipophilic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading dose</td>
<td>↓ per TBW (kg)</td>
<td>↑ per TBW (kg)</td>
</tr>
<tr>
<td>Maintenance dose</td>
<td>↓ per TBW (kg)</td>
<td>↓ per TBW (kg)</td>
</tr>
</tbody>
</table>

Types of Weight-Based Adjustments

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW</td>
<td>Reflective of indirect assessment of LBM</td>
<td>(50% BMI for age) x (height in m²)</td>
</tr>
<tr>
<td>ABW</td>
<td>Reflective of LBM plus proportion of excess mass determined by cofactor</td>
<td>IBW + Pre-specified cofactor x (TBW – IBW)</td>
</tr>
<tr>
<td>LBM</td>
<td>Estimation of lean tissue mass minus adipose tissue</td>
<td>• LBM = IBW + 0.29 (TBW – IBW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FFM (male) = (\frac{9.27 \times 10^3 \times TBW}{6.68 \times 10^3 + [216 \times BMI]})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FFM (female) = (\frac{9.27 \times 10^3 \times TBW}{8.78 \times 10^3 + [244 \times BMI]})</td>
</tr>
</tbody>
</table>

IBW = Ideal body weight
ABW = Adjusted body weight
LBM = Lean body mass

Summary Pro: Use Adjustments

- Obese kids have altered body composition
- Weight-based dosing may lead to ↑ adverse events
- Utilize weight-based adjustments:
 - Validated approaches
 - Work in obese adults
Dose Adjustment Tools:
We should NOT use drug adjustment tools
Summary Con: Don’t Use Adjustments

- Outcomes
- Therapeutic Drug Monitoring
- Technology Limitations
Patient Outcomes

- No clear data on improved patient outcomes when adjusting medications for body habitus.

- Propofol use in morbidly obese pediatric patients
 - Patients required a lower dose for sedation

- Esophagogastroduodenoscopy, colonoscopy, or both
 - Airway obstruction (1%), cough (0.9%), and laryngospasm (0.6%).
 - 5 years old or younger, American Society of Anaesthesiologists greater than or equal to 2, esophagogastroduodenoscopy ± colonoscopy, and coexisting medical conditions of obesity and lower airway disease were independent predictors of higher adverse event

- TNA surgery
 - Weight < 14 kg (underweight) associated with complications

Top 25 Medications (n=28,234)

- Sedatives and analgesics: 36.0%
- Corticosteroids: 12.0%
- Gastrointestinal: 12.0%
- Antibiotics: 20.0%
- Other: 20.0%

Therapeutic Drug Monitoring

- Vancomycin
 - Obese (6.9 ± 4.30 μg/mL) versus nonobese children (4.8 ± 3.08 μg/mL; P = 0.052)

- Aminoglycosides
 - Higher values in obese pediatric patients
 - Monitoring is standard anyway
 - Dose limits and prescribing practices saw no differences

Therapeutic Drug Monitoring

- What about drugs with no monitoring?
 - Corticosteroids
 - Gastrointestinal medications
 - Analgesic / Sedative medications

- Risk versus Benefit

- Overdosing vs underdosing
Technology Limitations

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW</td>
<td>Reflective of indirect assessment of LBM</td>
<td>(50% BMI for age) x (height in m²)</td>
</tr>
<tr>
<td>ABW</td>
<td>Reflective of LBM plus proportion of excess mass determined by cofactor</td>
<td>IBW + Pre-specified cofactor x (TBW – IBW)</td>
</tr>
<tr>
<td>LBM</td>
<td>Estimation of lean tissue mass minus adipose tissue</td>
<td></td>
</tr>
</tbody>
</table>

Which one do you use?

Seriously, who is going to calculate this?

IBW = Ideal body weight
ABW = Adjusted body weight
LBM = Lean body mass

Summary **Con**: Don’t Use Adjustments

- No data suggest improved outcome
- Obesity doesn’t always mean reduce the dose
- Calculations are labor intensive and have not had clinical evaluation
- Current guidelines prevent errors
Pediatric Pharmacists should routinely use weight-based dosing adjustments.

A TRUE
B FALSE
Pro/Con Debate #2: Dosing for high-risk meds (anti-coagulants)
Patient Case #1

- 9 year-old Male (68 kg; 147 cm) admitted for multiple bowel perforations:
 - Ulcerative colitis
 - Obesity (99th percentile for age, height, gender)
- HD 1: Transferred to PICU
- HD 12:
 - Abdominal ultrasound revealed portal vein thrombosis
 - Normal renal function

What dose of SQ enoxaparin should be used?

HD = Hospital day
Dosing Controversies for High-Risk Medications:

We *should* make empiric dose adjustments for anti-coagulants
Summary **Pro**: Use An Adjustment

- **Unfractionated Heparin**
 - Lower doses required in obese patients
 - Initial Doses: 17.4 vs 20.2 U/kg/hour; $P = 0.013$
 - Maintenance dose: 19.1 vs 24.3 U/kg/hour; $P = 0.033$
 - Xa: 0.45 vs 0.29 unit/mL; $P = 0.045$

- **Enoxaparin**
 - Anti-Xa: 0.67 ± 0.27 vs 0.53 ± 0.24 unit/mL, $P = 0.028$
 - Lower doses were required over time

Summary Pro: Use An Adjustment

- Warfarin
- Max Initial Dose of Warfarin: 0.2 mg/kg/dose (5 mg per day)
 - Initial and maximum doses of warfarin per kg significantly lower in obese patients (P<0.05).
- Time to therapeutic INR value was twice as long in obese patients
 - Median=6 [range, 4 to 28 d] vs median=3 [range, 1 to 10 d]; P<0.01.

Summary **Pro**: Use Adjustments

- Clinically relevant endpoints are different for obese patients
- Risk of overdosing
 - Increased monitoring
- Risk of increasing length of stay
Dosing Controversies for High-Risk Medications:

We should not use empiric adjustments (use total body weight) & follow therapeutic concentrations to adjust dosing.
Heparin & Warfarin

• Heparin:
 - Rarely used outside of CV surgery population
 - Titrate to effect due to post-operative bleeding

• Warfarin:
 - Drug interactions & PG affect dosing
 - Obese adults cap dose—5-10 mg

• Recommendations:
 - Dose using TBW & cap at adult dosing
 - Monitor vigilantly & titrate to effect

PG = Pharmacogenomics
TBW = Total body weight
Enoxaparin Prophylaxis in Kids

<table>
<thead>
<tr>
<th>Patient</th>
<th>Weight (kg)</th>
<th>Enoxaparin Dose</th>
<th>Enoxaparin Dose (mg/kg/day)</th>
<th>Anti-Factor Xa Value (IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>358.6</td>
<td>40 mg SQ daily</td>
<td>0.11</td>
<td>< 0.02</td>
</tr>
<tr>
<td></td>
<td>338.6</td>
<td>40 mg SQ bid</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>336.4</td>
<td>60 mg SQ bid</td>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>324.5</td>
<td>90 mg SQ bid</td>
<td>0.55</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>324.5</td>
<td>95 mg SQ bid</td>
<td>0.59</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>302.3</td>
<td>100 mg SQ bid</td>
<td>0.66</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>285</td>
<td>100 mg SQ bid</td>
<td>0.7</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>277</td>
<td>40 mg SQ daily</td>
<td>0.14</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>40 mg SQ bid</td>
<td>0.29</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>45 mg SQ bid</td>
<td>0.32</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>81.5</td>
<td>40 mg SQ daily</td>
<td>0.49</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>81.5</td>
<td>40 mg SQ bid</td>
<td>0.49</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Prophylaxis anti-Xa range: 0.1-0.3 IU/mL

Enoxaparin Treatment in Kids

<table>
<thead>
<tr>
<th>Data</th>
<th>Obese (n = 30)</th>
<th>Non-obese (n = 30)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD or Number (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>11.6 ± 4.4</td>
<td>11.4 ± 4.3</td>
<td>NA</td>
</tr>
<tr>
<td>Initial dose (mg/kg)</td>
<td>0.93 ± 0.16</td>
<td>0.98 ± 0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>Therapeutic dose (mg/kg)</td>
<td>0.81 ± 0.12</td>
<td>1.1 ± 0.14</td>
<td>0.005</td>
</tr>
<tr>
<td>Dose changes:</td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Increases</td>
<td>26 (38%)</td>
<td>35 (52%)</td>
<td></td>
</tr>
<tr>
<td>Decreases</td>
<td>42 (62%)</td>
<td>32 (48%)</td>
<td></td>
</tr>
<tr>
<td>Supratherapeutic anti-Xa concentration:</td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Patients</td>
<td>21 (70%)</td>
<td>14 (47%)</td>
<td></td>
</tr>
<tr>
<td>Concentration (IU/mL)</td>
<td>1.12 ± 0.17</td>
<td>1.08 ± 0.08</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Both groups required dose ↑’s & ↓’s

Question other affects on clearance

Summary Con: Use TBW

- Case series suggest ↑ dosing for prophylaxis
- ↓ dosing needed for treatment in obese group:
 - Similar age groups
 - All groups needed dose adjustments
 - Unclear affect of other factors on clearance
- Data unclear so dose using TBW & monitor anti-Xa concentrations

TBW = Total body weight
What Dose of SQ Enoxaparin Should be Used?

A. Use ABW & monitor anti-Xa concentrations
B. Use IBW & monitor anti-Xa concentrations
C. Use LBM & monitor anti-Xa concentrations
D. Use TBW & monitor anti-Xa concentrations

Patient Case # 1 Summary:

- 9 year-old
- Wt = 68 kg
- Normal renal function
Pro/Con Debate #3: Continuous infusion dosing
PICU Obese Admissions (n=834)

Represent 12.8% of all PICU admissions

Continuous Infusions in Obese Kids (n=94)

<table>
<thead>
<tr>
<th>Rank Order</th>
<th>Agent</th>
<th>Number (%)</th>
<th>Rank Order</th>
<th>Agent</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fentanyl</td>
<td>12 (12.8)</td>
<td>11</td>
<td>Furosemide</td>
<td>3 (3.2)</td>
</tr>
<tr>
<td>2</td>
<td>Regular insulin</td>
<td>12 (12.8)</td>
<td>12</td>
<td>Cisatricurium</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>3</td>
<td>Milrinone</td>
<td>12 (12.8)</td>
<td>13</td>
<td>Nitropruside</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>4</td>
<td>Epinephrine</td>
<td>11 (11.7)</td>
<td>14</td>
<td>Norepinephrine</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>5</td>
<td>Midazolam</td>
<td>10 (10.6)</td>
<td>15</td>
<td>Propofol</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>6</td>
<td>Dopamine</td>
<td>6 (6.4)</td>
<td>16</td>
<td>Vasopressin</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>7</td>
<td>Dobutamine</td>
<td>5 (5.3)</td>
<td>17</td>
<td>Aminophyllline</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>8</td>
<td>Remifentanl</td>
<td>5 (5.3)</td>
<td>18</td>
<td>Amiodarone</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>9</td>
<td>Aminocaproic acid</td>
<td>4 (4.3)</td>
<td>19</td>
<td>Morphine</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>10</td>
<td>Dexmedetomidine</td>
<td>4 (4.3)</td>
<td>20</td>
<td>Phenylephrine</td>
<td>1 (1.1)</td>
</tr>
</tbody>
</table>

- **35%** for sedation, analgesia, and NMB
- **40%** for hemodynamic support

Patient Case #2

- 11 year-old Male (81.5 kg; 165 cm) admitted for septic shock secondary to pneumonia:
 - Ulcerative colitis
 - Obesity (99th percentile for age, height, gender)

- **HD 1**: Admitted to PICU
- **HD 2**:
 - Intubated in PICU
 - Team wishes to initiate fentanyl infusion

What dose of fentanyl should be used (mcg/kg/hr or mcg/hr)?

HD = Hospital day
Dosing Strategies for Continuous Infusions:

We should use non-weight based dosing
Summary Pro: Non-weight Based Dosing

- Overdosing Risk
- Titration
- Other medications
Summary Pro: Non-weight Based Dosing

- Fentanyl
- 1 mcg/kg/hr = 81.5 mcg/hr
- Severe pain, intermittent: 25-35 mcg
- Infusion: 25 to 100 mcg bolus followed by an initial rate of 25 to 200 mcg/hour
Summary Pro: Non-weight Based Dosing

- Titration of continuous infusions
- Difficult due to multiplying scale
- Titrating by 10%
 - 1.1 mcg/kg/hour, 1.2 mcg/kg/hour...
 - Used to larger increments
Summary Pro: Non-weight Based Dosing

- Other medications:
 - Vasopressin
 - Norepinephrine

- Weight, as a pharmacokinetic variable, is not as relevant once patients achieve adult size.
Summary

- Initiation and titration using weight based dosing will result in greater than expected changes in dose.

- Pharmacokinetics don’t support the inclusion of weight as a variable once a patient has reached ‘adult’ size.

- Adult patients receive adult doses at adult hospitals regardless of weight.
Dosing Strategies for Continuous Infusions:

We should use fixed-dosing or weight-based dosing depending on the patient or drug
Not A Straightforward Answer

• Depends on degree of lipophilicity & compartment type (zero, 1st, 2nd, 3rd)

• Variability in weight-based clearance vs clearance differences based on age

Lim SY, et al. (Unpublished data)
Fentanyl Clearance: Obese vs Controls

Lim SY, et al. (Unpublished data)

N = 4,376

11-30% ↓ clearance in all obese groups
Fentanyl Pharmacokinetics

- V_{dss} values \uparrow 50% in obese vs non-obese children > 10 years
- C_{ss} using weight-based dosing in obese vs non-obese children:
 - 4 YO: 25%
 - 9 YO: 77%
 - 15 YO: 50%

V_{dss} = Volume of distribution at steady state

C_{ss} = Steady state concentration

Lim SY, et al. (Unpublished data)
4 YO: 1 mcg/kg/hr

9 YO: 1 mcg/kg/hr

15 YO: 1 mcg/kg/hr

15 YO: 50 mcg/hr

Lim SY, et al. (Unpublished data)
Summary Con: Always Fixed-Dosing

- Not one-sized fits all answer
- Use weight-based dosing based on TBW
- Utilize pharmacodynamic target & adjust dosing:
 - Sedation scores
 - Mean arterial pressure
 - Urine output (mL/kg/hr)

TBW = Total body weight
What Dosing Units Should Be Used (mcg/kg/hr OR mcg/hr)?

A. Use mcg/kg/hr based on TBW
B. Use mcg/kg/hr based on IBW
C. Use mcg/kg/hr based on ABW
D. Use mcg/hr
D. None of the above

Patient Case # 2 Summary:

- 11 year-old
- Wt = 81.5 kg
- Intubated & placed on fentanyl infusion
Key Takeaways

1. Number of obese children hospitalized children are ↑’ng
2. Dosing in obese children is NOT straightforward
3. Consider pharmacokinetic analysis & employ monitoring with pharmacodynamic targets
When Patients Outweigh the Mold: Pharmacotherapy in Pediatric Obesity

Peter (Pete) N. Johnson, Pharm.D., BCPS, BCPPS, FPPAG
Associate Professor of Pharmacy Practice
University of Oklahoma College of Pharmacy

Brady S. Moffett, Pharm.D., M.P.H.
Clinical Pharmacy Specialist
Texas Children’s Hospital