

(Management Case Study) Clinical Decision Support System Enhancements to Reduce Order Entry Errors for Pediatric Infusion Orders

> Amy Chan, MS, Pharm.D Elena Mendez-Rico, Pharm.D

## Disclosure

 The program chair and presenters for this continuing education activity have reported no relevant financial relationships.



# **Learning Objectives**

- Identify types of medication errors associated with medication infusion orders.
- Describe the process for medication drip concentration autoselection.
- Outline how automation processes improves patient safety.



## **Self-Assessment Questions**

#### Question 1

Implementing clinical decision support in the medication order entry process will improve patient safety.

#### Question 2

Using patient's daily fluid maintenance as a guide to determine medication drip concentration can avoid potential fluid overload.

#### Question 3

Pharmacists are not equipped to provide input in system design.



# - NewYork-Presbyterian

- Ranked #1 New York metropolitan area and #6 nationally
- 2650 beds (2,515 certified beds and 135 bassinets),
   6,900 affiliated physicians (residents/fellows and attending physicians)
  - Columbia University Medical Center
  - Weill Cornell Medical Center
    - The Komansky Center for Children's Health
  - The Allen Hospital
    - Morgan Stanley Children's Hospital
  - Lower Manhattan Hospital
  - Westchester Division



# **Rationale/Challenges**



Intravenous medications account for more than 56% of total medication errors<sup>1</sup>



- Intravenous medications account for more than 56% of total medication errors<sup>1</sup>
- Delivering continuous infusions in pediatric and neonatal patients is an error-prone process<sup>2,3,4,5</sup>

- 1. Am J Health Syst Pharm. 2003;60(10):1046-2487
- 2. Pediatrics. 2005 Jul;116(1):e21-5
- 3. Arch Pediatr Adolesc Med. 1996 Jul;150(7):748-52
- 4. BMJ. 1995 May 6;310(6988):1173-4
- 5. Crit Care. 2008;12(2):208



- Intravenous medications account for more than 56% of total medication errors<sup>1</sup>
- Delivering continuous infusions in pediatric and neonatal patients is an error-prone process<sup>2,3,4,5</sup>
  - Weight based dosing

- 1. Am J Health Syst Pharm. 2003;60(10):1046-2487
- 2. Pediatrics. 2005 Jul;116(1):e21-5
- 3. Arch Pediatr Adolesc Med. 1996 Jul;150(7):748-52
- 4. BMJ. 1995 May 6;310(6988):1173-4
- 5. Crit Care. 2008;12(2):208



- Intravenous medications account for more than 56% of total medication errors<sup>1</sup>
- Delivering continuous infusions in pediatric and neonatal patients is an error-prone process<sup>2,3,4,5</sup>
  - Weight based dosing
  - Critically ill

- 1. Am J Health Syst Pharm. 2003;60(10):1046-2487
- 2. Pediatrics. 2005 Jul;116(1):e21-5
- 3. Arch Pediatr Adolesc Med. 1996 Jul;150(7):748-52
- 4. BMJ. 1995 May 6;310(6988):1173-4
- 5. Crit Care. 2008;12(2):208



- Intravenous medications account for more than 56% of total medication errors<sup>1</sup>
- Delivering continuous infusions in pediatric and neonatal patients is an error-prone process<sup>2,3,4,5</sup>
  - Weight based dosing
  - Critically ill
  - Multiple infusions
  - High alert meds

- 1. Am J Health Syst Pharm. 2003;60(10):1046-2487
- 2. Pediatrics. 2005 Jul;116(1):e21-5
- 3. Arch Pediatr Adolesc Med. 1996 Jul;150(7):748-52
- 4. BMJ. 1995 May 6;310(6988):1173-4
- 5. Crit Care. 2008;12(2):208



- Complex calculations
  - Weight based dose per minute vs per hour
- Various units of measure
  - Milligram, microgram, gram 1000X difference
  - microgram/kg/min vs microgram/min
- Higher risk of medication error



## **Other Challenges**

- Potential errors during order entry
  - Wrong dose
  - Inappropriate infusion line
  - Inappropriate concentration
  - Conversion error between dosing and concentration units
  - Wrong infusion rate calculation
  - Misplacement of decimal points
  - Inappropriate infusion volume
  - Drug and diluent incompatibility



## **Other Challenges**

- Fluid maintenance in critically ill patients
  - Weight gain first week of ICU stay<sup>6,7</sup>
  - Children with respiratory failure<sup>7</sup>
  - Worsening oxygenation in pediatric ICU patients<sup>8,9</sup>
  - Worse outcome and mortality for adults and children<sup>10,11,12</sup>

6. Crit Care Med. 2002 Oct;30(10):2175-82
8. Crit Care Med. 2004 Aug;32(8):1771-6
10. Pediatr Nephrol. 2004 Dec;19(12):1394-9
12. Blood Purif. 2010;29(4):331-8

Pediatr Crit Care Med. 2012 May;13(3):253-8
 Pediatrics. 2001 Jun;107(6):1309-12
 Crit Care. 2008;12(3):R74



# **Clinical Background**



### **Maintenance Daily Fluids**

Fluid that is needed to maintenance homeostasis and daily physiologic processes (urine, sweat, respiration, and stool)



# **Maintenance Fluids**

- Calculation of Fluid Therapy:<sup>17</sup>
  - Body Weight Method
    - $\circ$  < 10kg = 100 mL/kg/day
    - $\odot$  10-20 kg = 1000 mL + 50 mL/kg for each kg > 10 kg
    - $\circ$  >20 kg = 1500 mL + 20 mL/kg for each kg > 20 kg
  - Hourly Rate Method
    - $\circ$  < 10 kg = 4 mL/kg/hour
    - $\circ$  10-20 kg = 40 mL/hr + 2 mL/kg for each kg > 10 kg
    - $\circ$  > 20 kg = 60 mL/hr + 1 mL/kg for each kg > 20 kg
- Specific Requirements
  - VLBW neonates may need 180-220 ml/kg/day
  - neonates with congenital heart disease (PDA) may require fluid restriction to < 100 ml/kg/day</li>



# **Optimization of Concentrations**

- Standardization of infusion concentrations<sup>13,14,15,16</sup>
  - Pediatric patients come in different sizes
  - One size (infusion concentration) does not fit all
  - Limit each infusion med to 2-3 different concentrations
  - Premixed infusion concentration
- Percentage of maintenance fluid each infusion occupies<sup>13,14,15,16</sup>
  - Fluid load management on patient with multiple medications
  - Standardized fluid restriction
  - 3-8% of daily maintenance fluid
- Standardization infusion diluent<sup>13,15,16</sup>
  - Compatibility and stability considerations
  - Separate nutrition with medication administration



 13. Qual Saf Health Care 2004;13:265–271
 14. Am J Health-Syst Pharm. 2010; 67:58-69

 15. Hospital Pharmacy Volume 41, Number 11, pp 1102–1106

16. Hospital Pharmacy Volume 39, Number 5, pp 433–459

## **Peripheral vs. Central infusion**

- Osmolarity is a limiting factor in the ability to infuse an IV peripherally.
  - A hyperosmotic infusion may destroy vascular cells by pulling water out of those cells in an attempt to regain isotonicity.
  - A solution with high osmolarity infused into a small peripheral vein may cause irritation and pain, with damage to the vessel, which may necessitate frequent changes in the IV site.



# **Automation designs**



## **Define data**

|    | A                      | В           | С           | D           | E           | F                | G    | Н            | I.         | J             |
|----|------------------------|-------------|-------------|-------------|-------------|------------------|------|--------------|------------|---------------|
| 1  | ordername              | maxSoftDose | maxHardDose | minSoftDose | minHardDose | dose Calc Type   | conc | concuom      | infuseLine | titrationType |
| 2  | Alprostadil +R+ DRIP   | NULL        | 0.4         | 0.01        | NULL        | microgram/kg/min | 5    | microgram/ml | Р          | Cardiac2      |
| З  | Alprostadil +R+ DRIP   | NULL        | 0.4         | 0.01        | NULL        | microgram/kg/min | 10   | microgram/ml | Р          | Cardiac2      |
| 4  | Alprostadil +R+ DRIP   | NULL        | 0.4         | 0.01        | NULL        | microgram/kg/min | 20   | microgram/ml | Р          | Cardiac2      |
| 5  | Aminocaproic Acid DRIP | NULL        | 35          | 25          | NULL        | mg/kg/hr         | 20   | mg/ml        | Р          | NULL          |
| 6  | Aminophylline DRIP     | 1.5         | NULL        | 0.5         | NULL        | mg/kg/hr         | 4    | mg/ml        | Р          | NULL          |
| 7  | Aminophylline DRIP     | 1.5         | NULL        | 0.5         | NULL        | mg/kg/hr         | 8    | mg/ml        | Р          | NULL          |
| 8  | Amiodarone DRIP        | 0.9         | NULL        | 0.1         | NULL        | mg/kg/hr         | 0.5  | mg/ml        | Р          | Cardiac2      |
| 9  | Amiodarone DRIP        | 0.9         | NULL        | 0.1         | NULL        | mg/kg/hr         | 2    | mg/ml        | Р          | Cardiac2      |
| 10 | Amiodarone DRIP        | 0.9         | NULL        | 0.1         | NULL        | mg/kg/hr         | 6    | mg/ml        | С          | Cardiac2      |
| 11 | Bumetanide DRIP        | 0.02        | 0.04        | 0.001       | NULL        | mg/kg/hr         | 0.1  | mg/ml        | Р          | NULL          |
| 12 | Bumetanide DRIP        | 0.02        | 0.04        | 0.001       | NULL        | mg/kg/hr         | 0.25 | mg/ml        | Р          | NULL          |
| 13 | Calcium Chloride Drip  | 30          | 55          | 5           | NULL        | mg/kg/hr         | 20   | mg/ml        | AC         | NULL          |
| 14 | Calcium Chloride Drip  | 30          | 55          | 5           | NULL        | mg/kg/hr         | 100  | mg/ml        | AC         | NULL          |
| 15 | Calcium Gluconate DRIP | 25          | 90          | 2.5         | NULL        | mg/kg/hr         | 50   | mg/ml        | Р          | NULL          |
| 16 | Calcium Gluconate DRIP | 25          | 90          | 2.5         | NULL        | mg/kg/hr         | 100  | mg/ml        | С          | NULL          |
| 17 | Cisatracurium DRIP     | 5           | NULL        | 0.5         | NULL        | microgram/kg/min | 2    | mg/ml        | Р          | Cardiac       |
| 18 | Dexmedetomidine Drip   | 1           | 3           | 0.2         | NULL        | microgram/kg/hr  | 4    | microgram/ml | Р          | Sedation      |
| 19 | DOBUT amine DRIP       | 25          | 40          | 1           | NULL        | microgram/kg/min | 1    | mg/ml        | Р          | Cardiac       |
| 20 | DOBUTamine DRIP        | 25          | 40          | 1           | NULL        | microgram/kg/min | 4    | mg/ml        | С          | Cardiac       |
| 21 | DOBUTamine DRIP        | 25          | 40          | 1           | NULL        | microgram/kg/min | 8    | mg/ml        | С          | Cardiac       |
| 22 | DOPamine DRIP          | 20          | 50          | 1           | NULL        | microgram/kg/min | 400  | microgram/ml | Р          | Cardiac       |
| 23 | DOPamine DRIP          | 20          | 50          | 1           | NULL        | microgram/kg/min | 800  | microgram/ml | Р          | Cardiac       |
| 24 | DOPamine DRIP          | 20          | 50          | 1           | NULL        | microgram/kg/min | 3200 | microgram/ml | С          | Cardiac       |
| 25 | EPINEPHrine DRIP       | 2           | 5           | 0.01        | NULL        | microgram/kg/min | 10   | microgram/ml | AC         | Cardiac       |
| 26 | EPINEPHrine DRIP       | 2           | 5           | 0.01        | NULL        | microgram/kg/min | 20   | microgram/ml | AC         | Cardiac       |
| 27 | EPINEPHrine DRIP       | 2           | 5           | 0.01        | NULL        | microgram/kg/min | 120  | microgram/ml | AC         | Cardiac       |
| 28 | fentaNYL DRIP          | 10          | NULL        | 0.5         | NULL        | microgram/kg/hr  | 10   | microgram/ml | Р          | Sedation      |
| 29 | fentaNYL DRIP          | 10          | NULL        | 0.5         | NULL        | microgram/kg/hr  | 20   | microgram/ml | Р          | Sedation      |
| 30 | fentaNYL DRIP          | 10          | NULL        | 0.5         | NULL        | microgram/kg/hr  | 50   | microgram/m1 | Р          | Sedation      |
| 31 | Furosemide DRIP        | 0.4         | 1.1         | 0.05        | NULL        | mg/kg/hr         | 0.5  | mg/ml        | Р          | NULL          |
| 32 | Furosemide DRIP        | 0.4         | 1.1         | 0.05        | NULL        | mg/kg/hr         | 2.5  | mg/ml        | Р          | NULL          |
| 33 | Furosemide DRIP        | 0.4         | 1.1         | 0.05        | NULL        | mg/kg/hr         | 10   | mg/ml        | Р          | NULL          |



## **Simplify order selection**

#### Before



#### New ordering process





### **Design the front – order entry form**

| Order:                     | DOPamine DRIP                                       |                         |  |  |  |  |  |
|----------------------------|-----------------------------------------------------|-------------------------|--|--|--|--|--|
| Requested By:<br>Messages: | Chan, Amy                                           | Template Name: DOPamine |  |  |  |  |  |
|                            | ADRENERGIC AGONIST. Do not confuse with DOBUTamine. |                         |  |  |  |  |  |
|                            | Dry Weight:                                         | CrCII                   |  |  |  |  |  |





#### Dose alerts

| Dose: | Dose Unit:       | Important Medication Info                                                      |   |
|-------|------------------|--------------------------------------------------------------------------------|---|
| 21    | microgram/kg/min | Usual Initial Dose: 2 microgram/kg/min<br>Dose Range: 1 to 20 microgram/kg/min | ~ |
|       |                  |                                                                                | - |



#### Soft stop - Out of range dose



#### Hard stop – Out of range, unconfirmed dose



Clinical Meeting & Exhibition



#### Hard stop – when applicable





### 2 Concentration Selection

| Dose:          | Dose Unit:       | Important Medication Info                                                                          |    |  |  |
|----------------|------------------|----------------------------------------------------------------------------------------------------|----|--|--|
| 2              | microgram/kg/min | Usual Initial Dose: 2 microgram/kg/min<br>Dose Range: 1 to 20 microgram/kg/min                     |    |  |  |
| Concentration: | Conc Unit:       | Concentrations (Based on 1× Maint Fluid)                                                           | 10 |  |  |
| 800            | microgram/mi     | 400 microgram/mi provides 9% of daily maintenance fluid                                            |    |  |  |
|                |                  | 800 microgram/ml provides 4.5% of daily maintenance fluid <preferred< td=""><td></td></preferred<> |    |  |  |
|                |                  | 1600 microgram/ml provides 2.3% of daily maintenance fluid                                         |    |  |  |
|                |                  | CENTRAL LINE ONLY: 3200 microgram/ml provides 1.1% of daily maintenance flu                        |    |  |  |

Concentrations (Based on 1X Maint Fluid)

400 microgram/ml provides 9% of daily maintenance fluid

800 microgram/ml provides 4.5% of daily maintenance fluid<--PREFERRED

1600 microgram/ml provides 2.3% of daily maintenance fluid

CENTRAL LINE ONLY: 3200 microgram/ml provides 1.1% of daily maintenance fluid



~

## Concentration Selection

- 24 hour maintenance fluid
- 3-8% of the maintenance fluid load



Concentration Selection – Titration

# Discontinue and re-order

Previous concentration

24 hours

Recalculate concentration



# Concentration Selection – Use preferred

Concentrations (Based on 1X Maint Fluid)

400 microgram/ml provides 11.2% of daily maintenance fluid

800 microgram/ml provides 5.6% of daily maintenance fluider

CENTRAL LINE ONLY: 3200 microgram/ml provides 1.4% of daily maintenance fluid



| Concentrations (Based on 1X Maint Fluid)                                      |  |
|-------------------------------------------------------------------------------|--|
| 400 microgram/ml provides 11.2% of daily maintenance fluid                    |  |
| 800 microgram/ml provides 5.6% of daily maintenance fluid                     |  |
| CENTRAL LINE ONLY: 3200 microgram/ml provides 1.4% of daily maintenance fluid |  |



~

## Infusion Line













#### Solution/Volume/UOM 212 D5W Ş Ş. ml Solution/Volume/UOM 4 250 P. D5₩ ml





#### Default diluent

- > Alternative compatible diluent choices
- Alerts when change to a diluent that is not available for the concentration selected

| Sunrise Clinical Manager |                                                                                     |  |  |
|--------------------------|-------------------------------------------------------------------------------------|--|--|
| <u> </u>                 | Iso-Osmotic Soln is the only base solution available for the current concentration. |  |  |
|                          | ОК                                                                                  |  |  |



# **Data Analysis and Results**



## **Events reported**

#### **Voluntary Reporting System**

#### **Medication Infusion Events**





## **Dosage Data**



## **Concentrations**



**Team Members** 

Adrianne Hewryk, Pharm.D. Amy Chan, MS, Pharm.D. Bobby Lee, Pharm.D. Elena Mendez-Rico, Pharm.D. Ibis Lopez, Pharm.D., BCPS Jason Topolski, Pharm.D. Jessica L. Jacobson, Pharm.D., BCPS Keith Fester, Pharm.D.

Departments

Nursing / Medical staff / Pharmacy / EMT / BioMed / Service Desk Equipment Center / IT



## **Self-Assessment Question 1**

 Implementing clinical decision support in medication order entry process will improve patient safety.

Answer: True



## **Self-Assessment Question 2**

 Using patient's daily fluid maintenance as a guide to determine medication drip concentration can avoid potential fluid overload to a patient.

Answer: True



## **Self-Assessment Question 3**

Pharmacists are not equip to provide input in system design.

Answer: False





- Key Takeaway #1
  - Review and limit existing infusion concentration to 2-3 concentrations
- Key Takeaway #2
  - Systemic approach to identify and involve all impacted departments at the start of the project
- Key Takeaway #3
  - Design logic to record alerts and user decisions that can be used for post deployment analysis and enhancements



### References

- 1. Pharmacy-nursing shared vision for safe medication use in hospitals: executive summary session. Am J Health Syst Pharm. 2003;60(10):1046-2487
- 2. Larsen GY, Parker HB, Cash J. Standard drug concentrations and smart-pump technology reduce continuous-medication-infusion errors in pediatric patients. Pediatrics. 2005 Jul;116(1):e21-5
- 3. Potts MJ, Phelan KW. Deficiencies in calculation and applied mathematics skills in pediatrics among primary care interns. Arch Pediatr Adolesc Med. 1996 Jul;150(7):748-52
- 4. Rolfe S, Harper NJ. Ability of hospital doctors to calculate drug doses.BMJ. 1995 May 6;310(6988):1173-4.
- 5. BMJ. 1995 May 6;310(6988):1173-4. Clinical review: medication errors in critical care. Crit Care. 2008;12(2):208.
- 6. Martin GS, Mangialardi RJ, Wheeler AP. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury.Crit Care Med. 2002 Oct;30(10):2175-82.
- 7. Arikan AA, Zappitelli M, Goldstein SI. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012 May;13(3):253-8
- 8. Foland JA, Fortenberry JD, Warshaw BL. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004 Aug;32(8):1771-6.
- 9. Goldstein SL, Currier H, Graf Cd.Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001 Jun;107(6):1309-12.
- 10. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004 Dec;19(12):1394-9.
- 11. Payen D, de Pont AC, Sakr Y.A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.
- 12. Cerda J, Sheinfeld G, Ronco C. Fluid overload in critically ill patients with acute kidney injury. Blood Purif. 2010;29(4):331-8.
- 13. M Apkon, J Leonard, L Probst, L DeLizio, R Vitale. Design of a safer approach to intravenous drug infusions: failure mode effects analysis. Qual Saf Health Care 2004;13:265–271
- 14. E Hilmas, A Sowan, M Gaffoor, V Vaidya. Implementation and evaluation of a comprehensive system to deliver pediatric continuous infusion medications with standardized concentrations. Am J Health-Syst Pharm. 2010; 67:58-69
- 15. J Sinclair-Pingel, A G. Grisso, F R Hargrove, L Wright.Implementation of Standardized Concentrations for Continuous Infusions Using a Computerized Provider Order Entry System.Hospital Pharmacy Volume 41, Number 11, pp 1102–1106
- 16. A Mitchell, P Sommo, T Mocerine, T Lesar. A Standardized Approach to Pediatric Parenteral Medication Delivery. Hospital Pharmacy Volume 39, Number 5, pp 433–459
- 17. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics 1957;19:823-832

