1	Therapeutic monitoring of vancomycin: A revised consensus guideline and review of
2	the American Society of Health-System Pharmacists, the Infectious Diseases Society of
3	America, the Pediatric Infectious Diseases Society and the Society of Infectious Diseases
4	Pharmacists
5	Rybak, MJ, ¹⁻³ Le J, ⁴ Lodise, TP, ^{5,6} Levine DP, ^{2,3} Bradley, JS, ^{7,8} Liu, C, ^{9,10} Mueller, BA, ¹¹ Pai,
6	MP, ¹¹ Wong-Beringer, A, ¹² Rotschafer, JC, ¹³ Rodvold, KA, ¹⁴ Maples, HD, ¹⁵ Lomaestro, B. ¹⁶
7	
8	Affiliations:
9	Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene
10	Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI. ¹ ,
11	School of Medicine, Wayne State University, Detroit, MI ² , Detroit Receiving Hospital, Detroit,
12	MI. ³ Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San
13	Diego, La Jolla, CA ⁴ , Albany College of Pharmacy and Health Sciences, Albany, New York, ⁵
14	Albany Medical Center Hospital, Albany New York, ⁶ Department of Pediatrics, Division of
15	Infectious Diseases, University of California at San Diego, La Jolla, CA, ⁷ Rady Children's Hospital
16	San Diego, San Diego, CA, ⁸ Division of Allergy and Infectious Diseases, University of Washington,
17	Seattle, WA, ⁹ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center,
18	Seattle, WA, ¹⁰ , University of Michigan College of Pharmacy, Ann Arbor MI, ¹¹ , University of
19	Southern California School of Pharmacy, Los Angeles, CA, ¹² University of Minnesota College of
20	Pharmacy, Minneapolis, MN, ¹³ , University of Illinois College of Pharmacy, Chicago, IL, ¹⁴

21	University of Arkansas for Medical Sciences College of Pharmacy & Arkansas Children's Hospital,
22	Little Rock, AK, ¹⁵ Albany Medical Center, Albany, NY ¹⁶
23	
24	Corresponding author: Michael J. Rybak, Anti-Infective Research Laboratory,
25	Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy, Wayne State
26	University, 259 Mack Avenue, Detroit, MI. 48201
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

39	Background – Vancomycin has been in clinical use since 1958. Despite this vast clinical
40	experience with this agent, there are still major gaps in knowledge regarding the most
41	appropriate approach for optimizing patient therapy and avoiding potential adverse reactions.
42	The area-under-the-curve to minimum inhibitory concentration (AUC/MIC) has been identified
43	as the most appropriate pharmacokinetic/pharmacodynamic (PK/PD) target for all
44	glycopeptides, including vancomycin. However, in recent years, controversies regarding
45	vancomycin susceptibility have called into question the ability of current recommended therapy
46	to achieve the most optimized AUC/MIC ratio. In addition, the current recommendations for
47	higher vancomycin trough concentrations and the potential for elevated nephrotoxicity rates
48	have generated considerable concern. More recent vancomycin PK/PD and toxicodynamic
49	studies enable a reassessment of the current dosing and monitoring guidelines in an attempt to
50	further optimize the efficacy and safety of vancomycin therapy.
50 51	further optimize the efficacy and safety of vancomycin therapy. Methods and Results – This document is an update to the 2009 vancomycin consensus
51	Methods and Results – This document is an update to the 2009 vancomycin consensus
51 52	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American
51 52 53	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric
51 52 53 54 55	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists vancomycin consensus guidelines committee.
51 52 53 54 55 56	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists vancomycin consensus guidelines committee.
51 52 53 54 55 56 57	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists vancomycin consensus guidelines committee. Conclusions – The vast majority of PK/PD data generated on vancomycin has focused on treatment of serious methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections. Therefore,
51 52 53 54 55 56	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists vancomycin consensus guidelines committee.
51 52 53 54 55 56 57	Methods and Results – This document is an update to the 2009 vancomycin consensus guidelines for dosing and monitoring vancomycin therapy and was developed by the American Society of Health Systems Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists vancomycin consensus guidelines committee. Conclusions – The vast majority of PK/PD data generated on vancomycin has focused on treatment of serious methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections. Therefore,

60 serious infections secondary to MRSA are complicated; combination antibiotic therapy and

Therapeutic monitoring of vancomycin: A revised consensus guideline and review

61	multiple medical interventions beyond antibiotic therapy may be necessary to improve patient
62	outcomes. The recommendations provided in this document are intended to assist the clinician
63	in optimizing vancomycin therapy in adult and pediatric patients. However, these
64	recommendations should not circumvent sound clinical judgment in the management of these
65	patients.
66	

- 67 Key Words: vancomycin consensus guidelines, vancomycin, pharmacokinetics and
- 68 pharmacodynamics, target attainment, nephrotoxicity

69

70 Introduction

The first consensus guidelines for therapeutic monitoring of vancomycin in adult 71 72 patients was published in 2009. A committee representing three organizations (American 73 Society for Health-System Pharmacists, Infectious Diseases Society of America and the Society for Infectious Diseases Pharmacists) searched and reviewed all relevant peer-reviewed data on 74 vancomycin as it related to *in vitro* and *in vivo* pharmacokinetic and pharmacodynamic (PK/PD) 75 characteristics including information on clinical efficacy, toxicity and vancomycin resistance as it 76 77 related to serum drug concentration and monitoring. The data were summarized and specific 78 dosing and monitoring recommendations were made. The primary recommendations consisted 79 of eliminating routine serum peak concentrations, emphasizing an area-under-the-curve over 80 24 hours to minimum inhibitory concentration by broth microdilution (AUC/MIC_{BMD}) > 400 as the primary PK/PD predictor of vancomycin activity, and promoting serum trough 81 82 concentrations of 15-20 mg/L as a surrogate marker for the optimal vancomycin AUC/MIC if the MIC was < 1 mg/L in patients with normal renal function. The guidelines also recommended, 83 albeit with limited data, that actual body weight be used to determine the vancomycin dosage 84 and loading doses for severe infections in patients who were seriously ill.[1] 85

Since generating these recommendations, a number of publications have evaluated the impact of these guidelines on clinical efficacy and toxicity in patients receiving vancomycin for the treatment of MRSA infections. It should be noted however, when originally published there were important issues not addressed and gaps in knowledge regarding the recommendations that could not be covered adequately because of inadequate data. These included the lack of specific dosing and monitoring guidelines for pediatric patients outside of the neonatal age

92	group; specific recommendations for vancomycin dosage adjustment and monitoring in
93	morbidly obese patient populations, patients with renal failure, including specific dialysis
94	dosage adjustments; recommendations for the use of prolonged or continuous infusion
95	vancomycin therapy, and safety data on the use of dosages that exceed three grams per day. In
96	addition, there were little to no data on the safety and efficacy of targeted trough
97	concentrations of 15-20 mg/L. This consensus revision re-evaluates the scientific data and
98	controversies associated with vancomycin dosing and serum concentration monitoring for
99	serious methicillin-resistant Staphylococcus aureus (MRSA) infections and provides new
100	recommendations based on recent available evidence.
101	Methods
102	These are the consensus statements and guidelines of the American Society of Health-
103	System Pharmacists (ASHP), the Infectious Diseases Society of America (IDSA), the Pediatric
103 104	System Pharmacists (ASHP), the Infectious Diseases Society of America (IDSA), the Pediatric Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP).
104	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP).
104 105	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP). Consensus committee members were assigned key topics regarding vancomycin dosage and
104 105 106	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP). Consensus committee members were assigned key topics regarding vancomycin dosage and monitoring. A draft document addressing these specific areas was reviewed by all committee
104 105 106 107	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP). Consensus committee members were assigned key topics regarding vancomycin dosage and monitoring. A draft document addressing these specific areas was reviewed by all committee members. After peer review by members of ASHP, IDSA, PIDS and SIDP, the committee met to
104 105 106 107 108	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP). Consensus committee members were assigned key topics regarding vancomycin dosage and monitoring. A draft document addressing these specific areas was reviewed by all committee members. After peer review by members of ASHP, IDSA, PIDS and SIDP, the committee met to review and revise the document based on the submitted comments, suggestions and
104 105 106 107 108 109	Infectious Diseases Society (PIDS) and the Society for Infectious Diseases Pharmacists (SIDP). Consensus committee members were assigned key topics regarding vancomycin dosage and monitoring. A draft document addressing these specific areas was reviewed by all committee members. After peer review by members of ASHP, IDSA, PIDS and SIDP, the committee met to review and revise the document based on the submitted comments, suggestions and recommendations. After careful discussion and consideration, the document was revised and

- and available peer-reviewed studies in the English literature published between 1958 and 2018
- 114 were considered. Studies were rated by their quality of evidence, and the subsequent
- recommendations were graded using the classification schemata of Table 1.
- 116 Potential limitations of this review include the fact that there are few randomized
- 117 clinical trials of vancomycin dosing and monitoring available in the published literature. Most
- studies evaluating vancomycin dosing, adjustment and monitoring are retrospective
- 119 pharmacokinetic or pharmacodynamic clinical assessments or retrospective observational
- 120 studies in patients with MRSA infections.

121 Table 1. Grading of Evidence and Recommendation

Grading Evidence ^{2,3}			
Grade	Description	Assessment of Evidence	Potential Effect of Further Research
High (A)	Large or small well conducted randomized controlled trials or large well conducted observational cohorts	Very confident that estimate of effects lies close to true effect	Unlikely to change estimate of effect
Moderate (B)	Large cohort studies; well conducted case- control studies	Moderately confident that estimate of effect lies close to true effect	May change estimate of effect
Low (C)	Uncontrolled studies not well conducted; conflicting evidence that favors a direction; conflicting or unclear literature	Limited Confidence that estimate of effect lies close to true effect	Likely to change estimate of effect
Insufficient (D)	Expert opinion; extrapolated data	No sufficient evidence to estimate effect	May not permit conclusion

Recommen	dations
Strength	Direction
Strong (I)	For (+)
Weak (II)	Against (-)
No Recommendation (0)	

123

^[2]Owens D., Lohr K., Atkins, D. Grading the strength of a body of evidence when comparing
 medical interventions. Rockville Maryland: AHRQ; 2009.

^[3] Balshem H., Helfand M., Schunemann H.J., et al. GRADE guidelines: 3. Rating the quality of
 evidence. *Journal of Clinical Epidemiology*. 2011; 64(4):401-406.

128

¹²⁹ **PK/PD Efficacy Targets**

130 To optimize the dosing of any antimicrobial agent, a firm understanding of the drug

131 exposure-effect and exposure-toxicity links are required. While a variety of pharmacodynamic

indices have been suggested for vancomycin, an AUC/MIC_{BMD} ratio \geq 400 is the current

accepted critical PK/PD index[1, 4-8]. *In vitro* and *in vivo* assessment of PK/PD models

applicable to human MRSA infection has found that bactericidal activity is achieved (i.e., 1- to 2-

135 log reduction in bacterial inoculum in the animal model) when the vancomycin AUC/MIC_{BMD}

ratio approximates or exceeds 400. There are also mounting clinical data, albeit mostly

retrospective in nature, in support of this PK/PD target for vancomycin.[9-17] A summary of

these investigations and their findings can be found in Supplement Table 1.

139

140 Clinical PK/PD Data: Adults

141 While an AUC/MIC_{BMD} ratio \geq 400 is currently considered the optimal PK/PD "efficacy" 142 target, it is important to recognize that this target has been largely derived from retrospective,

single-center, observational studies of patients with MRSA bloodstream infections[10-16]. It is

144	also important to recognize that most of the landmark clinical studies that established the
145	contemporary efficacy PK/PD target relied on simple vancomycin clearance (CL) formulas based
146	on daily vancomycin dose and estimated renal function to determine AUC values [9, 10, 12]
147	Current evaluation of these data demonstrates that these CL formulas provide imprecise
148	estimates of the AUC [18-20]. This finding is not surprising as there is considerable inter-patient
149	variability in vancomycin exposure profiles in clinical practice and it is not possible to generate
150	valid estimates of exposure variables in a given individual based on CL formulas that are derived
151	from glomerular filtration rate estimation equations alone [9, 10, 12]. In most cases, the
152	formula-based approach will overestimate vancomycin CL by ~40-50% [15].
153	While it is has been cumbersome to estimate AUC in the clinical setting in the past,
154	Neely and colleagues recently demonstrated that Bayesian software programs (refer to
155	Therapeutic Monitoring section) can be used to generate accurate and reliable estimates of the
156	daily AUC values with trough-only PK sampling[18]. However, the accuracy of AUC estimation is
157	higher with peak and trough measurements compared to trough-only PK sampling [18]. Using
158	this validated Bayesian method to estimate the daily AUC in a single-center, retrospective study
159	of patients with MRSA bloodstream infections, Lodise and colleagues found that outcomes
160	were maximized when day 1 and 2 AUC/MIC $_{\text{BMD}}$ ratios exceeded 521 and 650, respectively[15].
161	Employing the same Bayesian approach to estimate daily AUC values, Casapao and colleagues
162	also noted that the risk of vancomycin failure among patients with MRSA infective endocarditis
163	was greatest among those with an AUC/MIC _{BMD} ratio \leq 600 and this exposure-failure
164	relationship persisted after adjusting for factors such as intensive care unit (ICU) admission,
165	presence of hVISA, and other comorbidities[16]. In contrast to the studies by Lodise and

166	Casapao, several other small-scale, retrospective clinical evaluations of vancomycin exposure-
167	response reported lower Bayesian-derived thresholds for AUC/MIC since the AUC was
168	measured at steady-state conditions and indexed to the MIC by the Etest method
169	(AUC/MIC _{Etest})[11, 13, 14]. The MIC _{Etest} value tends to be 1.5-2 fold higher than the MIC _{BMD}
170	value; therefore, it is likely that the AUC threshold needed for response from these three
171	studies[11, 13, 14], if calculated using the MIC_{BMD} , would align with the studies by Lodise and
172	Casapao[15, 16].

In an effort to surmount the limitations associated with previous single-center, 173 retrospective vancomycin exposure-response clinical analyses, a multi-center prospective study 174 was performed to evaluate the relationship between the pre-specified day 2 AUC/MIC ratios 175 176 and outcomes in adult patients (N=265) with MRSA bacteremia. In the multivariate analyses, failure was not significantly different between the pre-specified day 2 AUC/MIC groups. Post-177 178 hoc global outcomes analyses suggested that patients in the two lowest AUC/MIC_{BMD} exposure quintiles (i.e., AUC/MIC_{BMD} \leq 562) experienced the best global outcome (defined as absence of 179 both treatment failure and acute kidney injury), compared with the three highest-exposure 180 quintiles. While global outcomes were similar between the two lowest AUC/MIC_{BMD} exposure 181 quintiles, only 20% of the study population (n=54) had an AUC/MIC_{BMD} \leq 425 and it is unclear if 182 183 efficacy outcomes are maintained at AUC/MIC_{BMD} less than this threshold of 425[21]. 184 Collectively, recent studies highlight the importance of generating valid estimates of the AUC values through Bayesian modeling techniques when conducting vancomycin exposure-185 outcomes analyses in patients. The data also highlight the critical need for large-scale, multi-186

187 centered future randomized, vancomycin dose-optimized outcomes clinical trials. As data from

188	future prospective, multi-center clinical studies become available, it is important that clinicians
189	recognize that our current understanding of the PK/PD target associated with maximal effect
190	and toxicity is subject to change and this may ultimately alter the current way we dose
191	vancomycin to optimize effect and minimize toxicity.
192	
193	Toxicodynamics: Acute Kidney Injury
194	A major concern with vancomycin is the occurrence of acute kidney injury (AKI). While
195	multiple definitions of vancomycin-associated AKI have been employed in the literature, most
196	studies used an increase in SCr level <u>></u> 0.5 mg/dL or 50% increase from baseline in consecutive
197	daily readings, or a decrease in calculated creatinine CL of 50% from baseline on two
198	consecutive days in the absence of alternative explanation.[1] Recently, a more sensitive
199	threshold of an increase in SCr of <u>></u> 0.3 mg/dL over a 48-hour period may be considered as an
200	indicator of vancomycin-associated AKI. This threshold was adopted from the AKI Network and
201	the Kidney Disease Improving Global Outcomes (KDIGO) criteria.[22-24] The incidence of
202	vancomycin-associated AKI has varied across published studies. In a meta-analysis by van Hal
203	and colleagues, the prevalence of vancomycin-associated AKI varied from 5% to 43%. Similarly,
204	a recent meta-analysis of 13 studies by Sinha Ray et al reported that the relative risk of AKI with
205	vancomycin was 2.45 (95% CI 1.69 to 3.55), with an attributable risk of 59%.[25] Most episodes
206	of AKI developed between 4.3 and 17 days after initiation of therapy. Many patients, especially
207	those who are critically-ill, fail to fully recover renal function after acute kidney injury (AKI), [26]

208 and even mild AKI can significantly decrease long-term survival rates, increase morbidity,

209 prolong hospitalizations, and escalate healthcare costs.[27, 28]

Therapeutic monitoring of vancomycin: A revised consensus guideline and review

210	With any drug, an understanding of its toxicodynamic profile is required for optimal
211	dosing. Several studies, largely retrospective in nature, have attempted to quantify the
212	relationship between vancomycin exposure and probability of AKI [29, 30]. Although data are
213	limited, the collective literature suggests that the risk of AKI increases as a function of trough
214	concentration, especially when maintained above 15-20 mg/L[24]. Similarly, there are recent
215	data to suggest that risk of AKI increases along the vancomycin AUC continuum, especially
216	when the daily AUC exceeds 700 –1300 mg-h/L[18, 29, 30].
217	Suzuki et al [29] evaluated the mean vancomycin AUC in relation to AKI. Most patients
218	who developed AKI had AUC values between 600-800 mg*h/L, compared with 400-600 mg*h/L
219	in those without AKI (p = 0.014). Furthermore, Lodise and colleagues showed that the
220	probability of AKI increased 2.5-fold among patients with AUCs above 1300 mg*hr/L compared
221	with those below (30.8% vs. 13.1%, p = 0.02)[30]. Although AUC values above 1300 mg*hr/L
222	were associated with a substantial increase in AKI, an AUC exposure-response relationship
223	appeared to exist, and the probability of a nephrotoxic event increased as a function of the
224	daily AUC and patient's body weight [31]. A study by Zasowski et al also reported similar
225	relationship between Bayesian-estimated vancomycin AUC thresholds and AKI in 323 patients;
226	AUCs ≥ 1,218 mg*hr/L for 0-48 h, ≥ 677 for 0-24 h and ≥ 683 for 24-48 h or troughs ≥ 18.2 mg/L
227	were associated with 3-4 fold increased risk of nephrotoxicity [32]. Similarly, the
228	aforementioned multi-center, prospective study of patients with MRSA bloodstream infections
229	found that AKI increased along the day 2 AUC continuum in a stepwise manner and patients
230	with day 2 AUCs \geq 793 mg*h/L were at the greatest risk for AKI[21].

231	Given the understanding about potential toxic concentrations, there are also data to
232	suggest that AUC-guided vancomycin dosing may reduce the occurrence of vancomycin-
233	associated AKI. In a retrospective, quasi-experimental study of 1,280 hospitalized patients,
234	Finch et al. compared the incidence of nephrotoxicity in patients monitored by individualized
235	AUC versus trough concentration. AUC-guided dosing was found to be independently
236	associated with a significant decrease in AKI (OR, 0.52; 95% CI, 0.34-0.80; P = 0.003)[33].
237	Median Bayesian-estimated AUC was significantly lower in the AUC-guided dosing compared
238	with trough monitoring (474 [360-611] vs. 705 [540-883]; <i>P</i> < 0.001). In the prospective study
239	by Neely et al., 252 patients were monitored via troughs 10-20 mg/L in year 1 versus estimated-
240	Bayesian AUCs of \geq 400 mg*hr/L in years 2 and 3 of the investigation. Nephrotoxicity occurred
241	in 8% of subjects in year 1 compared to 0 and 2% of subjects in years 2 and 3 (P = 0.01). The
242	median trough concentrations and AUC associated with AKI were 15.7 mg/L and 625 mg*hr/L
243	versus 8.7 mg/L and 423 mg*hr/L in those without AKI (P = 0.02).[28]
244	Collectively, the published clinical exposure-response analyses suggest that the daily
245	AUC is the driver of effectiveness and the risk of AKI is related to trough, and potentially AUC.
246	More importantly, these data provide the foundation for the current understanding of the
247	therapeutic window for vancomycin. When evaluating the toxicodynamics of vancomycin, it is
248	important to recognize other factors which may complicate or exacerbate the risk of AKI. Host-
249	related factors associated with nephrotoxicity include increased weight, pre-existing renal
250	dysfunction, and critical illness. Concurrent administration of nephrotoxic agents such as
251	aminoglycosides, loop diuretics, amphotericin B, and vasopressors has been shown to increase
252	the risk of nephrotoxicity. Recently, piperacillin-tazobactam has also been reported to increase

253	the risk of AKI in patients receiving vancomycin[34-38]. It is unclear if the threshold for
254	vancomycin-induced AKI varies according to these covariates, but clinicians should be mindful
255	of the potential for additional risk when prescribing vancomycin to patients when these
256	conditions are present.[30, 34-44]
257	
258	Therapeutic Monitoring
259	Therapeutic monitoring has centered on maintaining trough concentrations between
260	15-20 mg/L for serious infections due to MRSA. Previous expert guidelines recommended
261	monitoring trough concentrations as a surrogate marker for the AUC/MIC ratio based on the

historical difficulty in estimating the AUC in clinical practice[1, 6]. In the past, calculation of
AUC in clinical practice involved collection of multiple vancomycin serum concentrations during
the same dosing interval with subsequent use of a PK software that was not readily available at
all institutions. As such, the guidelines viewed trough-directed dosing as a more practical

alternative to AUC/MIC guided dosing in clinical practice.

267 Although the recommendation to maintain trough values between 15-20 mg/L for serious 268 infections due to MRSA has been well integrated into practice, the clinical benefits of 269 maintaining higher vancomycin trough values have not been well documented [31, 45-49]. 270 From a PK/PD perspective, it is not surprising that there are limited clinical data to support the 271 range of 15–20 mg/L. Recent studies have demonstrated that trough values may not be an 272 optimal surrogate for AUC values [20, 50, 51]. While a trough ensures achievement of a 273 minimum cumulative exposure, a wide range of concentration-time profiles can result in an 274 identical trough value. Patel et al. reported a wide range of AUC values from several different

275	dosing regimens yielding similar trough values [20]. The therapeutic discordance between
276	trough and AUC values is not surprising as the AUC is the integrated quantity of cumulative
277	drug exposure (i.e., the serum drug concentration time curve over a defined interval). In
278	contrast, the trough represents a single exposure point at the end of the dosing interval. In
279	clinical practice, monitoring of trough concentrations will translate into achievement of one
280	specific minimum daily AUC value whereas AUC_{24h} largely represents the average concentration
281	during that time period [AUC _{24h} (mg*hr/L) = average concentration (mg/L)*24 (hours)]. For
282	troughs of 15-20 mg/L, this typically equates to a daily AUC in excess of 400 mg*hr/L. However,
283	there is considerable variability in the upper range of AUC values associated with a given trough
284	value. Although practical, the limitations surrounding trough-only monitoring suggest that
285	trough monitoring may be insufficient to guide vancomycin dosing in all patients.
286	
200	Although the AUC/MIC is considered the PK/PD driver of efficacy for vancomycin,
287	Although the AUC/MIC is considered the PK/PD driver of efficacy for vancomycin, clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections
287	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections
287 288	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC_{BMD90} of 1 mg/L (unless it is
287 288 289	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC_{BMD90} of 1 mg/L (unless it is known to greater than 1 mg/L). The MIC value is of less importance for several reasons. First,
287 288 289 290	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC_{BMD90} of 1 mg/L (unless it is known to greater than 1 mg/L). The MIC value is of less importance for several reasons. First, the range of vancomycin MIC values among contemporary MRSA isolates is narrow and the
287 288 289 290 291	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC_{BMD90} of 1 mg/L (unless it is known to greater than 1 mg/L). The MIC value is of less importance for several reasons. First, the range of vancomycin MIC values among contemporary MRSA isolates is narrow and the BMD MIC ₉₀ in most institutions is 1 mg/L. Second, measurement of MIC values is imprecise with
287 288 289 290 291 292	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC_{BMD90} of 1 mg/L (unless it is known to greater than 1 mg/L). The MIC value is of less importance for several reasons. First, the range of vancomycin MIC values among contemporary MRSA isolates is narrow and the BMD MIC ₉₀ in most institutions is 1 mg/L. Second, measurement of MIC values is imprecise with \pm 1-log ₂ dilution and variation of 10-20% considered acceptable; therefore, the variability of
287 288 289 290 291 292 293	clinicians trying to optimize vancomycin treatment for patients with serious MRSA infections may be best advised to use AUC-guided dosing and assume a MIC _{BMD90} of 1 mg/L (unless it is known to greater than 1 mg/L). The MIC value is of less importance for several reasons. First, the range of vancomycin MIC values among contemporary MRSA isolates is narrow and the BMD MIC ₉₀ in most institutions is 1 mg/L. Second, measurement of MIC values is imprecise with \pm 1-log ₂ dilution and variation of 10-20% considered acceptable; therefore, the variability of reported MIC values encountered in routine clinical practice is likely to reflect measurement

²⁹⁷ current data indicate that the vancomycin AUC/MIC ratio needs to be optimized early in the
 ²⁹⁸ course of infection.

299 Based on the current best available evidence, daily AUCs (assuming a MIC_{BMD90} of 1 mg/L) 300 should be maintained between 400 and 600 mg*hr/L to maximize efficacy and minimize the 301 likelihood of nephrotoxicity. In the past, AUC monitoring required the collection of multiple 302 concentrations over the same dosing interval. With these data, a clinician would calculate the 303 AUC using the linear-trapezoid rule. This approach required precise collection of vancomycin 304 concentrations, making it largely impractical outside of a research setting. However, this is no 305 longer the case. It is now possible to accurately estimate the AUC with limited PK sampling. 306 One such approach involves the use of Bayesian software programs to estimate the vancomycin 307 AUC value with minimal PK sampling (i.e., one or two vancomycin concentrations) and provide 308 AUC-guided dosing recommendations in real-time. An alternative approach involves use of two 309 concentrations (peak and trough) and simple analytic PK equations to estimate AUC values [51, 310 53].

311

³¹² Bayesian-Derived AUC Monitoring

Bayesian-guided dosing is based in part on Bayes' Theorem as it quantifies the sequential relationship between the estimated probability distribution of an individual patient's PK parameter values (e.g. volume [Vd] or CL) prior to administering the drug based on the way the drug behaved in a population of prior patients (Bayesian prior) and the revised probability distribution of a specific patient's PK parameter values using exact dosing and drug concentration data (Bayesian conditional posterior). In short, Bayesian dose optimization software uses a well-developed vancomycin population PK model as the Bayesian prior,
together with the individual patient's observed drug concentrations in the data file to calculate
a Bayesian posterior parameter value distribution for that patient. The dose optimization
software then calculates the optimal dosing regimen based on the specific patient's exposure
profile[54-56].

With the Bayesian approach, vancomycin concentrations can be collected within the 324 first 24 to 48 hours, rather than waiting till steady-state conditions (after the 3rd or 4th dose), 325 326 and this information can be used to inform subsequent dosing (adaptive feedback control). As 327 part of their output, Bayesian dosing programs provide innovative treatment schemes such as front-loading doses with a transition to a lower maintenance dosing regimen to rapidly achieve 328 329 target concentrations within the first 24 to 48 hours among critically-ill patients. The Bayesian 330 approach also provides the ability to integrate covariates, such as creatinine CL, in the 331 structural PK models (Bayesian prior density file) that account for the pathophysiological changes that readily occur in critically-ill patients. Incorporation of covariates that account for 332 these "dynamic" changes serves as a way to identify dosing schemes that optimize effect and 333 predict future dosing in a patient who has an evolving PK profile [56]. 334

Bayesian dose-optimizing software programs are now readily available and can be used in real-time to identify the optimal vancomycin dosage that readily achieves the AUC target (assuming a MIC_{BMD90} of 1 mg/L) [55]. Bayesian programs offer numerous advantages over the traditional first-order equation software programs. Using richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with varying renal function, Neely and colleagues[18], demonstrated that Bayesian software programs, embedded with a PK

341	model based on richly sampled vancomycin data as the Bayesian prior, can be used to generate
342	accurate and reliable estimates of the daily AUC values with trough-only PK sampling. Of note,
343	there were limited specialized populations in this study and it is unclear if this trough-only
344	Bayesian AUC estimation approach can be applied to obese patients, critically-ill patients,
345	pediatrics, and patients with unstable renal function. Until more data are available, it is
346	preferred to estimate the Bayesian AUC on two vancomycin concentrations (peak and trough).
347	

348 First-Order Pharmacokinetic Analytic Equations

Alternatively, the AUC can be accurately estimated based on the collection of two timed steady-state serum vancomycin concentrations and use of first-order PK equations [51]. The equations used to compute AUC from two samples are based in part on an original approach proposed by Begg, Barclay, and Duffull for aminoglycosides[57]and modified by Pai and Rodvold[51]. It is preferred that a near steady-state, post-distributional peak (1-2 hours after end of infusion) and trough concentrations are used when estimating the AUC with the equation-based methods.

The major advantage of this approach is that it is simpler and relies on fewer assumptions than the Bayesian approach. The first-order PK equations used to estimate the AUC are also familiar to most clinicians, facilitating ease of use in practice. Once the AUC₂₄ is estimated, the clinician simply revises the total daily dose to achieve the desired AUC₂₄ as alterations of total daily dose will provide proportional changes in observed AUC_{24.[7, 58-60]} The major limitation of this approach is that it is not adaptive like the Bayesian approach, as it can only provide a snapshot of the AUC for the sampling period. As such, this AUC calculation will

363	not be correct if a physiologic change such as renal dysfunction occurs during or after the
364	sampling period. Furthermore, it is extremely difficult to estimate the vancomycin AUC_{24} with
365	the equation-based method in patients who receive multiple dosing regimens within a 24-hour
366	period. If the vancomycin dosing interval is more frequent than once a day, the AUC $_{24}$ will be a
367	function of the number of identical doses administered during that interval (e.g., AUC must be
368	multiplied by 2 for a 12-hour dosing interval to calculate the true AUC $_{24}$). It is also highly
369	preferred that concentrations are collected near steady-state conditions.
370	Despite its drawbacks, this estimate of AUC is a clear step above trough-only or peak-
371	only concentration interpretation and is familiar to most clinicians. Several large medical
372	centers within the U.S. have already adopted this two post-dose serum concentration estimates
373	of the AUC to perform their routine dosing and monitoring of vancomycin and have
374	demonstrated a considerable improvement over the current trough-only concentration
374 375	demonstrated a considerable improvement over the current trough-only concentration monitoring method.[33, 53]
375	
375 376	monitoring method.[33, 53]
375 376 377	monitoring method.[33, 53] Pharmacokinetic Sampling Time
375 376 377 378	monitoring method.[33, 53] Pharmacokinetic Sampling Time Timing of achievement of targeted AUC values (assuming a MIC _{BMD90} of 1 mg/L) remains
375 376 377 378 379	monitoring method.[33, 53] <i>Pharmacokinetic Sampling Time</i> Timing of achievement of targeted AUC values (assuming a MIC _{BMD90} of 1 mg/L) remains unclear. The early AUC/MIC target ratios derived in animal models were based on the AUC
375 376 377 378 379 380	monitoring method.[33, 53] <i>Pharmacokinetic Sampling Time</i> Timing of achievement of targeted AUC values (assuming a MIC _{BMD90} of 1 mg/L) remains unclear. The early AUC/MIC target ratios derived in animal models were based on the AUC value from 0-24 hours [4, 5]. More recent clinical assessments that identified a link between
375 376 377 378 379 380 381	monitoring method.[33, 53] <i>Pharmacokinetic Sampling Time</i> Timing of achievement of targeted AUC values (assuming a MIC _{BMD90} of 1 mg/L) remains unclear. The early AUC/MIC target ratios derived in animal models were based on the AUC value from 0-24 hours [4, 5]. More recent clinical assessments that identified a link between AUC/MIC and outcomes also assessed the AUC values achieved early in the course of therapy

385	de	pendent on the dosing interval (i.e., every 12 vs. 24 hours) than steady-state conditions.
386	Giv	ven the importance of early, appropriate therapy [61], targeted AUC exposures should be
387	acł	nieved early during the course of therapy, preferably within the first 24 to 48 hours.
388		
389	Su	mmary and Recommendations:
390	1.	Based on the current body of evidence of vancomycin PK/PD and clinical outcomes in
391		patients with serious MRSA infections, a Bayesian-derived AUC/MIC $_{\text{BMD}}$ ratio of 400 to 600
392		(assuming a vancomycin MIC_{BMD90} of 1 mg/L) should be advocated as the target to achieve
393		clinical efficacy while improving patient safety (IA+).
394	2.	Given the potential narrow vancomycin AUC range for maximal effect and minimal AKI, the
395		most accurate and optimal way to manage vancomycin dosing is through AUC-guided
396		dosing and monitoring (IB+). This can be accomplished in one of two ways. One approach
397		relies on the collection of two concentrations (one near steady-state, post-distributional
398		Cmax at 1-2 hours post infusion and trough) during the same dosing interval and utilizing
399		first-order PK equations to estimate the AUC.
400	3.	The preferred approach to monitor AUC involves the use of Bayesian software programs,
401		embedded with a PK model based on richly sampled vancomycin data as the Bayesian prior,
402		to optimize the delivery of vancomycin based on the collection of one or two vancomycin
403		concentrations, with at least one trough. It is preferred to obtain two PK samples (i.e.,
404		shortly after the end of infusion and at end of dosing interval) to estimate the AUC with the
405		Bayesian approach. However, a trough concentration alone may be sufficient to estimate

406		the AUC with the Bayesian approach in some patients, but more data are needed across
407		different patient populations to confirm viability of using trough only data (IIC+).
408	4.	When transitioning to AUC/MIC monitoring, clinicians should conservatively target AUCs for
409		patients with suspected or documented serious infections due to MRSA that provide
410		adequate coverage against the common vancomycin MIC_{BMD} values observed in their
411		practices since exact MIC values are largely unknown until day 3 of therapy. The most
412		common MIC_{BMD} will be 1 mg/L or less at most institutions. Given the importance of early,
413		appropriate therapy, vancomycin targeted exposure should be achieved early during the
414		course of therapy, preferably within the first 24 to 48 hours (IIB+). As such, the use of
415		Bayesian-derived AUC monitoring may be prudent in these cases since it doesn't require
416		steady-state serum vancomycin concentrations to allow for early assessment of AUC target
417		attainment.
417 418	5.	attainment. Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for
	5.	
418		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for
418 419		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-).
418 419 420		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-). Vancomycin monitoring is recommended for patients receiving aggressive dosing for MRSA
418 419 420 421		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-) . Vancomycin monitoring is recommended for patients receiving aggressive dosing for MRSA infections to achieve sustained targeted AUC (assuming a MIC _{BMD90} of 1 mg/L, unless it is
418 419 420 421 422		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-). Vancomycin monitoring is recommended for patients receiving aggressive dosing for MRSA infections to achieve sustained targeted AUC (assuming a MIC _{BMD90} of 1 mg/L, unless it is known to be greater than 1 mg/L) and all patients at high risk of nephrotoxicity (e.g.,
418 419 420 421 422 423		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-). Vancomycin monitoring is recommended for patients receiving aggressive dosing for MRSA infections to achieve sustained targeted AUC (assuming a MIC _{BMD90} of 1 mg/L, unless it is known to be greater than 1 mg/L) and all patients at high risk of nephrotoxicity (e.g., critically-ill patients receiving concurrent nephrotoxins). Monitoring is also recommended
418 419 420 421 422 423 424		Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-). Vancomycin monitoring is recommended for patients receiving aggressive dosing for MRSA infections to achieve sustained targeted AUC (assuming a MIC _{BMD90} of 1 mg/L, unless it is known to be greater than 1 mg/L) and all patients at high risk of nephrotoxicity (e.g., critically-ill patients receiving concurrent nephrotoxins). Monitoring is also recommended for patients with unstable (i.e., deteriorating or significantly improving) renal function and

428

429 Supplement Table 1. Summary of Adult and Pediatric Studies with Outcome Assessment

Author(s)/ year	Study Design/Population	Method to determine AUC _{24h}	MIC method	AUC/MIC Breakpoint/ Target	Outcome measurement	Refer- ence
Moise-Broder et al. 2004	Retrospective/S. aureus lower respiratory infections (n=107)	Dose _{24h} /Clearance	BMD	<u>></u> 350 _{вмд}	Bacterial eradication	7
Kullar et al. 2011	Retrospective/MRSA bacteremia (n=320)	Dose _{24h} /Clearance	BMD/Etest	<u>≥</u> 421 _{BMD}	Composite failure (based on 30-day mortality and persistent signs & symptoms of infection > 7 days of bacteremia)	8
Holmes et al. 2013	Retrospective/MRSA bacteremia (n=182)	Dose _{24h} /Clearance	BMD/Etest	>373 _{вмD} / 271.5 _{Etest} *	30-day all-cause mortality	10
Jung et al. 2014	Retrospective/MRSA bacteremia (n=76)	Dose _{24h} /Clearance	BMD/Etest	<430 _{BMD} / 398.5 _{Etest}	30-day all-cause mortality	12
Brown et al. 2012	Retrospective/MRSA bacteremia (n=50)	Bayesian	Etest	<u>≥</u> 211	Attributable mortality	9
Gawronoski et al. 2013	Retrospective/MRSA bacteremia & Osteomyelitis (n=59)	Bayesian	Etest	>292	Time to bacterial clearance	11
Lodise, et al. 2014	Retrospective/MRSA bacteremia (n=123)	Bayesian	BMD/Etest	521 _{BMD} /303 _{Etest}	Composite failure (based on 30-day mortality, >7 days of bacteremia, and recurrence of bacteremia within 60 days of discontinuation of therapy)	13

Casapao et al. 2015	Retrospective/MRSA bacteremia-endocarditis (n=139)	Bayesian	BMD	>600	Composite failure (based on > 7 days of bacteremia, and/or 30-day attributable mortality)	14
Le et al. 2015	Retrospective/All infection types in pediatrics (n=680)	Bayesian	Not applicable	<u>></u> 800	Nephrotoxicity	
Finch et al. 2017	Retrospective, quasi-study design/All infection types except UTI, SSSI, meningitis, surgical prophylaxis (n=1300)	AUC derived from multiple samples	Not applicable	< 400	Nephrotoxicity	
Zasowski et al. 2017	Retrospective/Pneumonia or bloodstream infection (n=323)	Bayesian	Not applicable	<u>> 700</u>	Nephrotoxicity	
Neely et al. 2017	Prospective/All infection types (n=252)	Bayesian	Not applicable	<u>≥</u> 400	Nephrotoxicity, resolution or improved signs & symptoms, relapse, and mortality	
Lodise et al. 2017	Multi-center Prospective study of adult hospitalized patients with MRSA bloodstream infections	Bayesian	BMD/Etest	No threshold was identified but only 20% of study population had an AUC/MIC _{BMD} ratio <420	Composite failure (based on > 7 days of bacteremia, and/or 30-day mortality)	

430

431 Vancomycin MIC Susceptibility Testing

With the MIC being a component of the vancomycin AUC/MIC targeted surrogate for
efficacy, it is important to be aware of local and national vancomycin susceptibility patterns for
MRSA. Although in some centers there has been a steady increase in the average vancomycin
MIC over several decades, recent national and international studies that have evaluated MRSA
susceptibility to glycopeptides, lipopeptides and beta-lactams have demonstrated that
vancomycin MICs have remained constant over time with more than 90% of isolates

Therapeutic monitoring of vancomycin: A revised consensus guideline and review

demonstrating an MIC \leq 1 mg/L.[62-66] A meta-analysis of 29,234 MRSA strains from 55 studies revealed the MIC performed by BMD, Etest and automated systems was predominately 1 mg/L and that there was no evidence of an MIC creep phenomenon.[67] While there does not seem to be a large number of organisms with a vancomycin MIC \geq 2 mg/L when reference methods are used, there is considerable variability in MIC results between the susceptibility testing methods.

The challenge is that, according to Clinical Laboratory Standards Institute (CLSI), 444 445 acceptable variability for MIC methods is within ± 1 doubling dilution (essential agreement), such that current susceptibility testing methods are unable, with high reproducibility, to 446 distinguish MICs of 1 mg/L from MICs of 0.5 mg/L or 2 mg/L. Most institutions routinely 447 perform MIC testing using automated systems (BD Phoenix, Franklan Lakes, NJ, USA, MicroScan 448 WalkAway; Dade Behring, Deerfield, IL, USA or Vitek 2; bioMeieux, Hazelwook, MO, USA) and, 449 in some cases, the Etest methodology (bioMeieux, Hazelwook, MO, USA). In a study of 161 450 451 MRSA blood isolates, when using the essential agreement definition of $\pm 1 \log_2 d$ ilution error, 452 Vitek-2 and MicroScan demonstrated a 96.3% agreement with BMD whereas Phoenix demonstrated an 88.8% agreement[68]. The Etest method had the lowest agreement (with 453 results consistently higher by 1-2 dilutions) compared with BMD at 76.4%. The Etest will likely 454 455 produce a higher value (0.5-2 dilutions higher) than BMD. In another study, 92% of the strains demonstrated a vancomycin MIC of 1 mg/L by BMD, with over 70% by MicroScan and Etest and 456 457 41% by Vitek-1 [69].

458 Rybak et al. compared MicroScan, Vitek-2, Phoenix and Etest to BMD methods among
459 200 MRSA strains [70]. In contrast to previous studies, these authors used an absolute

Therapeutic monitoring of vancomycin: A revised consensus guideline and review

460	agreement definition of $\pm 0 \log_2 dilution$ error to better characterize the precision. Using this
461	definition, Phoenix (66.2%) and MicroScan (61.8%) produced the highest agreement results
462	with BMD, followed by Vitek-2 (54.3%). As noted above, Etest tended to produce results that
463	were 1-2 dilutions higher (36.7% agreement). However, when compared to BMD, Etest
464	identified an MIC of 2.0 mg/L 80% of the time. When compared to BMD, MicroScan (prompt
465	method) overcalled MIC values of 1 mg/L by 74.1% and Phoenix and Vitek-2 under called MIC
466	values of 2 mg/L by 76 and 20%, respectively.

467 The high variability of MIC results among the four systems compared to BMD clearly poses a challenge to the clinician making treatment decisions based on MIC and questions the 468 469 most relevant MIC method. [71] Given this variability between MIC values and testing methods routinely performed at most institutions, it further supports the use of AUC (assuming a 470 MIC_{BMD90} of 1 mg/L) to guide vancomycin empiric dosing. For non-serious infections, this 471 472 variability may be inconsequential. In a critically-ill patient infected by MRSA who may require prompt achievement of the target AUC/MIC, it is imperative to verify the MIC by a standardized 473 method, either BMD or Etest, as soon as possible to avoid a delay in effective therapy. 474

475 Summary and Recommendations:

476 7. Based on current national vancomycin susceptibility surveillance data, under most

477 circumstances for empiric dosing, the vancomycin MIC can be assumed to be 1 mg/L. When

- 478 the MIC_{BMD90} method is > 1 mg/L, the probability of achieving an AUC/MIC \ge 400 target is
- 479 unlikely with conventional dosing; higher doses may risk unnecessary toxicity. However, it is

480	important to note limitations in automated susceptibility testing methods, including the lack
481	of precision and variability in MIC results depending on method used (IIA+).
482	
483	Vancomycin Continuous Infusion (CI) vs Intermittent Infusion (II)
484	Since the initial guideline publication in 2009, additional clinical studies have provided
485	further support to AUC_{24}/MIC rather than time above the MIC (T>MIC) as the best predictive
486	parameter for efficacy and AUC_{24} rather than serum trough concentration as a better marker of

487 drug exposure for vancomycin-induced AKI. Administration of vancomycin by continuous

488 infusion (CI) has been evaluated as an alternative to intermittent infusion (II) with potential

489 advantages of earlier target attainment, less variability in serum concentrations, ease of drug

490 level monitoring (less dependent on sampling time or multiple concentrations to calculate

491 AUC), and lower risk of nephrotoxicity.

492 *Comparative studies*

Published studies that compared intermittent to continuous administration primarily 493 focused on two distinct populations, adult critically-ill patients in the ICU with suspected or 494 documented infections and those receiving outpatient antimicrobial therapy (OPAT) for bone 495 and joint infections.[72-81] Most studies compared CI to II for the risk of nephrotoxicity and 496 attainment of target serum concentrations; only four studies included other outcome 497 endpoints such as treatment failure and mortality. [72, 76, 79, 81] Measures of vancomycin 498 499 drug exposure reported in clinical trials include trough, steady-state concentration, and AUC₂₄. 500 One challenge when comparing clinical outcomes between CI and II is the lack of consistent

reporting of exposure parameters between groups receiving the two dosing strategies. For CI, the most commonly reported drug exposure parameter was steady-state concentration while for II it was trough. For future investigations it would be beneficial to report AUC and/or steadystate concentration for both CI and II groups to enable direct comparison of drug exposure between groups and correlate with efficacy and safety endpoints.

506 <u>Critically-ill Patients</u>

A total of 7 studies compared CI vs II of vancomycin in critically-ill patients.[72-78] Only 507 one study by Wysocki et al evaluated both efficacy and safety in a prospective randomized trial 508 509 comparing CI (n=61) to II (n=58) of vancomycin in 119 patients.[72] Most patients had 510 pneumonia or bacteremia mostly due to MRSA. Mean serum concentrations attained were steady-state concentration 24 mg/L and trough 15 mg/L for CI and II groups, respectively. AUC₂₄ 511 was comparable between CI and II groups, but with significantly less variability in the CI group 512 513 (p=0.026); only the variance values were shown. Clinical failure was similar between the groups on day 10 (21 vs 26%) and at end of treatment (21 vs 29%), although AUC_{24} was shown to be 514 515 lower in the CI group (596 \pm 159 vs 685 \pm 260, p<0.05). Nephrotoxicity occurred in 20% of 516 patients and was similar between CI and II groups (16% vs 19%). However, dialysis was required more often in those who received CI than II (6/10 vs 3/11 patients). Risk factors for 517 518 nephrotoxicity such as diabetes and concomitant diuretics, aminoglycoside, and iodine were similar between groups. It is notable that the study only had 23% power to detect a difference 519 in clinical outcomes between groups.[1] 520

521	Another study compared mortality among critically-ill burn patients receiving CI (n= 90)
522	vs II (n=81).[76] Mortality rates in-hospital and on days 14 and 28 were numerically higher for
523	those receiving CI, but the difference did not reach statistical significance (10 vs 6.2%; 18.9 vs
524	11%; 32 vs 21%, respectively). However, when mortality was compared by treatment
525	indications, those who received CI for non-gram-positive sepsis had significantly higher
526	mortality (70% vs 16.7%, p=0.001). Nearly half of this subgroup had gram-negative bacteremia
527	or candidemia. It is possible that the difference in outcome may be attributed to differences in
528	the management of those infections and not directly related to vancomycin administration.
529	Nephrotoxicity occurred numerically less frequently in the CI compared to II group (increase of
530	Scr 0.5mg/dL at end of therapy: 6.7% vs 14.8%). While higher mean vancomycin concentrations
531	were noted in the CI group which is expected when comparing steady-state concentration to
532	trough (20 \pm 3.8 vs 14.8 \pm 4.4 ug/ml, p<0.001), AUC ₂₄ was not reported to allow comparison of
533	drug exposure between CI and II groups.

Five other studies compared serum drug concentrations achieved and the risk of 534 nephrotoxicity between CI and II in critically-ill patients. [73-75, 77, 78] As expected, the range 535 of measured vancomycin concentrations from the studies was significantly higher in CI than II 536 group (steady-state concentration 20-25 mg/L vs trough 10-15 mg/L). Another study showed 537 that more patients attained vancomycin concentration > 20 mg/L at least once during the 538 539 treatment course with CI than II administration (63.2% vs 44.9%, p=0.065).[74] One study 540 reported lower AUC₂₄ (529±98 vs 612±213, p-value not stated) with increased respective 541 steady-state concentration compared to trough achieved between CI and II groups (steadystate concentration 25 ± 4 vs trough 17 ± 4.7 mg/L, p=0.42).[75] The discordance observed 542

543	between trough and AUC_{24} relationship underscores the importance of measuring AUC_{24} to
544	compare relative drug exposure between CI and II in future studies.

545	In general, the rate of nephrotoxicity was reported to be similar or numerically lower
546	with CI than II administration (range: 4-16% vs 11-19%); the same trend but higher rates were
547	reported in studies that applied the AKIN criteria for nephrotoxicity (26-28% vs 35-37%).[73-75,
548	77, 78] In addition, Saugel et al noted significantly less frequent need for renal replacement
549	therapy during vancomycin treatment for patients in the CI than II group (7%, 7/94 vs 23%,
550	12/52; p=0.007).[77] Of interest, in the largest retrospective study conducted in 1,430 ICU
551	patients comparing CI vs II, Hanrahan et al. reported a higher rate of nephrotoxicity in those
552	receiving CI vs II (25%, 161/653 vs 20%, 77/390; p=0.001) and that every 1mg/L increase in
553	serum concentration was associated with an 11% increased risk of nephrotoxicity, with lower
554	odds in those receiving II.[78] However, logistic regression analysis indicates the contrary in
555	that II infusion was associated with an 8-fold higher odds of nephrotoxicity (CI: 2.87-23.41). The
556	lack of information provided on confounding variables such as receipt of concomitant
557	nephrotoxins and relative AUCs between treatment groups preclude a definitive conclusion to
558	be drawn regarding safety of CI, in light of the disparate results between bivariate and logistic
559	regression analysis.

560 Patients Receiving OPAT

561 Two studies have been published thus far comparing efficacy of vancomycin by CI vs II in 562 patients whose therapy was initiated in hospital and continued on as OPAT. Duration of 563 therapy ranged between 30 days to 14 weeks.[79, 81] Most patients were treated for bone and

564	joint and skin structure-related infections. In a small prospective study, cure rates for
565	osteomyelitis did not differ between groups defined as remaining asymptomatic 12 months
566	after completion of therapy (94% vs 78%, p=0.3), but only 27 patients were evaluable.[79]
567	Another study retrospectively evaluated the efficacy of vancomycin in patients with MRSA
568	infections; most had bone and joint and skin structure-related infections while 10% had
569	bloodstream infections or endocarditis.[81] Clinical failure was similar between groups (19%,
570	25/133 vs 25%, 9/36, p=0.41) after excluding 29% of study patients who had subtherapeutic
571	serum vancomycin concentrations for more than a week. However, it is not clear how frequent
572	serum concentration was monitored, if treatment duration in hospital before OPAT differs
573	between groups, and whether treatment success differs by type of infection.

In studies that evaluated safety of vancomycin CI as OPAT, treatment duration ranged 574 from 4 to 14 weeks with reported mean steady state average serum concentration at 13 – 30 575 576 mg/L.[79, 80] A retrospective matched cohort study of 80 patients observed a trend towards less frequent occurrence of nephrotoxicity in the CI group (10% vs 25%, p=0.139) and later 577 onset (p=0.036).[80] Patients were matched by age, comorbid conditions, gender, baseline Scr, 578 579 and receipt of concurrent nephrotoxins; those who had $Scr \ge 1.5 mg/dL$ at baseline, developed 580 nephrotoxicity as inpatients prior to OPAT, or experienced hypotension resulting in renal dysfunction were excluded. In another retrospective study[82], the same investigators 581 582 identified steady state average concentration of 28 mg/L as the threshold breakpoint for the development of nephrotoxicity using CART analysis: nephrotoxicity occurred in 71.4% (5/7) 583 compared to 11.6% (11/95) for patients with steady-state concentration \geq 28mg/L vs < 28 mg/L, 584 585 respectively. In one prospective study of an elderly cohort (age 70 years) receiving high dose

vancomycin therapy by CI targeting steady-state concentration of 30-40mg/L for a median
duration of 6 weeks, nephrotoxicity occurred in 32% of patients. Additionally, four patients in
that study developed leukopenia.[83]

589 Dosing and Other Considerations for Use of Continuous Infusion

Most published studies in critically-ill patients receiving vancomycin CI employed a 590 loading dose of 15-20mg/kg, followed by daily maintenance infusion at 30-40mg/kg up to 591 60mg/kg to achieve target steady-state concentration of 20-25mg/L. By simply multiplying 592 steady-state concentration by 24, a target steady-state concentration of 20-25mg/L would 593 594 equate to AUC₂₄/MIC of 480 to 600 assuming MIC of 1 ug/ml. Of note, the PK/PD target for CI 595 has not been established. All of the PK/PD data supporting an AUC_{24}/MIC ratio >400 as the best correlate for clinical outcomes were derived from patients who received II vancomycin dosing. 596 Rapid attainment of target serum concentrations has been cited as a potential 597 598 advantage with CI when treating acute infections, particularly in ICU patients early during the course of infection. In two comparative studies, target steady-state concentration of 20-599 25 mg/L: $36\pm31 \text{ h}$ vs $51\pm39 \text{ h}$, p=0.03[72] and $16\pm8 \text{ h}$ vs $50\pm21 \text{ h}$ was achieved more rapidly in 600 601 the CI group, p<0.001.[75] Importantly, less variability in steady-state concentration and fewer 602 blood samples (single steady-state concentration vs peak and trough concentrations) are required to calculate AUC₂₄ among patients receiving Cl. Timing of blood draw for trough is 603

605 state has been reached during CI. In addition, administration by CI in patients receiving OPAT

critical during II, whereas steady-state concentration can be measured any time after steady

604

has the theoretical advantage of needing less frequent access to the IV catheter and thus lesscomplications resulting from clots or infections.

608 On the other hand, incompatibility of vancomycin with drugs commonly administered in the critical care setting is a notable challenge for vancomycin CI. In particular, all β -lactams with 609 broad spectrum Gram-negative activity (including piperacillin-tazobactam, ceftazidime, 610 611 cefepime, imipenem, cefotaxime, and ceftriaxone) are incompatible with vancomycin along with moxifloxacin, propofol and furosemide.[84] Since a β-lactam agent with Gram-negative 612 613 activity is commonly prescribed with vancomycin for empiric therapy in critically-ill patients, the use of alternative agents (e.g. ciprofloxacin) or independent lines or multiple-catheters should 614 615 be considered if vancomycin is to be administered by CI.

616

617 **Summary and Recommendations:**

618	8.	The pharmacokinetics of continuous infusions suggest that such regimens may be a
619		reasonable alternative to conventional dosing and provide a convenient way to readily
620		achieve the desired vancomycin therapeutic range (i.e., steady-state concentration of 20 –
621		25 mg/L) throughout the entire dosing period. Attaining the desired drug exposure may be
622		more readily accomplished given the ease of sampling time for serum level monitoring and
623		dosage adjustment by changing the rate of infusion which is a highly desirable feature in
624		critically-ill patients. AUC $_{24}$ can be simply calculated when multiplying steady-state
625		concentration by a factor of 24. (IIB+)

626	9.	The risk of developing nephrotoxicity with continuous infusion appears to be similar or
627		lower compared to intermittent dosing when targeting steady-state concentration 15-
628		25mg/L and trough 10-20 mg/L respectively. (IIB+) Definitive studies are needed to compare
629		drug exposure based on measured AUC_{24} and factors that predispose to development of
630		nephrotoxicity such as receipt of concomitant nephrotoxins, diuretics, and/or vasopressor
631		therapy in patients receiving CI vs II of vancomycin.
632	10	. Incompatibility with vancomycin and other drugs commonly co-administered in the ICU
633		such as β -lactam agents with broad spectrum Gram-negative activity requires the use of

634 independent lines or multiple-catheters when vancomycin is being considered for

635 continuous infusion.(IB+)

636 Loading Doses

Loading doses of vancomycin have been evaluated in several studies during the past 637 decade.[85-100] Providing loading doses of 25-30 mg/kg based on actual body weight rapidly 638 639 achieves targeted ranges of serum vancomycin concentrations and decreases the risk of 640 subtherapeutic concentrations during the first days of therapy. Loading doses are recommended in patients who are critically-ill or in the intensive care unit[85-92], requiring 641 dialysis or renal replacement therapy[93-97], or receiving continuous infusion therapy of 642 vancomycin[85-89, 96, 99]. While this approach is not currently supported by evidence from 643 large randomized clinical trials, vancomycin loading doses can be considered in the treatment 644 645 of serious MRSA infections such as sepsis, meningitis, bacteremia, infective endocarditis, pneumonia, and osteomyelitis. Vancomycin should be administered in a dilute solution (e.g., 646 647 concentrations of no more than 5 mg/mL) and infused over a period of not less than 60 minutes

648	or at a rate of 10–15 mg/minute (\geq 1 hour per 1000 mg) to minimize infusion-related adverse
649	events (e.g., red man syndrome, hypotension). An infusion rate of 10 mg/min or less is
650	associated with fewer infusion-related events. Loading doses of 25-30 mg/kg will require
651	infusion times of at least 2–3 hours.[90]
652	Most studies that have employed loading doses were based on actual body weight.
653	While this practice is commonplace, dosing on actual body weight assumes there is a linear
654	relationship between key population PK parameters (i.e., volume of distribution and clearance)
655	and the body size descriptor employed. While a wide variety of actual weight-based estimates
656	of V_D (for example: 0.4 – 1 L/kg) have been reported in the literature[7], mounting data suggest
657	that it is not entirely accurate to describe vancomycin V_D as being proportional to body weight,
658	particularly among obese patients (please refer to Vancomycin Dosing in Obesity section). As
659	noted in several recent articles of vancomycin PK in obesity, as weight increases the coefficient
660	used to calculate volume of distribution decreases.[42, 101, 102] At this point, dosing should
661	be based on actual body weight with doses capped at 3000 mg (please refer to Vancomycin
662	Dosing in Obesity section)[103]. More intensive therapeutic monitoring should also be
663	performed in obese patients.
664	Summary and Recommendations:

In order to achieve rapid attainment of targeted concentrations in critically-ill patients with
 suspected or documented serious MRSA infections, a loading dose of 25-35 mg/kg can be
 considered for intermittent and continuous infusion administration of vancomycin (IC+). [1]

668	12. Loading doses should be based on actual body weight and not exceed 3000 mg (refer to
669	Vancomycin Dosing in Obesity section). More intensive therapeutic monitoring should also
670	be performed in obese patients.

671

672 Vancomycin Dosing in Obesity

The original dosing strategies of vancomycin predate our current definitions of obesity 673 and understanding of drug pharmacokinetics in obesity. Obesity is defined as a body mass index 674 675 (BMI) \geq 30 kg/m² and is currently divided into three tiers: class I obesity (30 – 34.9 kg/m²), class II obesity $(35 - 39.9 \text{ kg/m}^2)$, and class III or morbid obesity $(\geq 40 \text{ kg/m}^2)$.[104] The prevalence of 676 677 obesity has increased from approximately 10.0% in the 1950s to 39.8% in 2015-2016, and the average US adult weighs approximately 83 kg compared to the historical standard of 70 kg.[105, 678 679 106] This shift in the distribution of body size is relevant to the calculation of vancomycin doses 680 based on patient body weight. Obesity may be associated with an increased risk of vancomycininduced nephrotoxicity in part due to supra-therapeutic exposure from maintenance doses 681 calculated using actual body weight.[39, 107] 682

The selection of vancomycin loading dose is dependent on the estimated volume of distribution (Vd). Pharmacokinetic studies have repeatedly demonstrated that the vancomycin Vd increases with actual body weight; however, this pharmacokinetic parameter does not increase in a proportionate manner with actual body weight and is not reliably predicted in obese individuals.[102, 108-112] Blouin and colleagues demonstrated a statistically significant difference in weight-indexed Vd between obese and non-obese patients.[102] Similarly, using data from 704 patients, Ducharme and colleagues found that mean weight-indexed vancomycin

690	Vd decreased with increasing body size.[109] The average weight-indexed Vd in a study by
691	Bauer and colleagues was much lower (0.32 L/kg) in 24 morbidly obese patients compared to
692	24 patients of normal weight (0.68 L/kg, p < 0.001).[110] Recent studies in obese adults
693	corroborate these findings and suggest that lower Vd estimates of approximately 0.5 L/kg, or
694	weight-independent central tendency estimates approaching 75 L are observed in obese adults.
695	[103, 111, 112]The non-linear relationship between vancomycin Vd and body weight can be
696	resolved with piece-wise functions of alternate weight descriptors, allometric scaling, using
697	lower mg/kg doses with increasing body size, or capping the dose at a threshold.[109, 113] The
698	underlying rationale for a loading dose is rapid attainment of therapeutic concentrations.
699	Therefore, using actual body weight loading doses of 20-25 mg/kg (lower than previous
700	recommendations) with consideration for capping doses at 3000 mg is the most practical
701	strategy in obese patients with serious infections. This leads to calculation of 1500-2500 mg
702	(80-99 kg), 2000-3000 mg (100-119 kg), and 2500-3000 mg (≥120 kg) loading doses (rounded to
703	the nearest 250 mg) as examples. The decision of whether or not to employ a loading dose, as
704	well as the magnitude of this dose, should be driven by the severity of infection and the
705	urgency to achieve a therapeutic concentration rather than body size alone.

Empiric maintenance dosing of vancomycin is reliant on estimated clearance (CL). Vancomycin CL is predicted by kidney function that is most commonly estimated as creatinine clearance with the Cockcroft-Gault equation using patient age, sex, serum creatinine, and body size.[114] Considerable controversy exists regarding the optimal body size metric for this calculation in obese patients.[115] The Cockcroft-Gault equation predates the global standardization of serum creatinine measurement traceable to isotopic-dilution mass-

712	spectrometry (IDMS) standards that has been advocated to reduce intra-laboratory and inter-
713	laboratory measurement variability.[115] A recent population pharmacokinetic study by Crass
714	and colleagues of obese patients (n=346) with BMI values between 30.1 to 85.7 kg/m ^{2} and body
715	weights of 70 to 294 kg provides an equation to estimate vancomycin CL based on age, sex,
716	serum creatinine (IDMS traceable), and allometrically scaled body weight.[103] This model or
717	similar approaches to estimating vancomycin CL, such as that defined by Rodvold and
718	colleagues, can be used to estimate the total daily maintenance dose.[116] The population
719	model estimated vancomycin CL multiplied with the target AUC estimates the initial daily
720	maintenance dose.[103, 111, 113] For example, studies report an average vancomycin CL of
721	approximately 6 L/h in obese patients that equates to achieving an AUC of approximately 500
722	hr-mg/L with a daily dose of 3000 mg. Empiric vancomycin maintenance doses above 4500
723	mg/day are not expected in obese adults because vancomycin CL rarely exceeds 9 L/h.[103,
724	111, 113]

725 Population pharmacokinetic models of vancomycin cannot account for more than 50% of the inter-individual variability, which supports TDM in this population. [108, 109, 111, 113] A 726 727 reliable estimate of vancomycin Vd is necessary to estimate AUC when based solely on a trough concentration measurement. [18, 112, 117, 118] This bias is addressed and precision is 728 729 improved by measurement of both a peak (collected at least 1 hour after the end of infusion) 730 and trough concentration to estimate AUC accurately in obese patients. [117] Once a reliable pharmacokinetic estimate of vancomycin is defined by this two sample measurement, 731 732 subsequent vancomycin AUC estimation is achievable with trough only measurements by Bayesian methods in physiologically stable patients.[51] For critically-ill obese patients with 733

734	unstable physiology, additional work to design adaptive feedback models to tailor doses are
735	needed.

736 Summary and Recommendations:

- 13. A vancomycin loading dose of 20-25 mg/kg using actual body weight with a maximum of
- 3000 mg may be considered in obese adult patients with serious infections (IIA+). Initial
- maintenance doses of vancomycin can be computed using a population pharmacokinetic
- estimate of vancomycin clearance and the target AUC in obese patients. Empiric
- 741 maintenance doses ≤4500 mg/day are expected for the majority of obese patients.
- 742 Measurement of peak and trough concentrations is recommended to improve the accuracy
- of vancomycin AUC estimation and maintenance dose optimization in obese patients (IIA+).

744 **Renal Disease and Patients Receiving Renal Replacement Therapies**

745 Intermittent Hemodialysis

746 Despite the common use of vancomycin in patients receiving hemodialysis, few 747 published outcome studies exist to determine the optimal pharmacokinetic/pharmacodynamic 748 targets in this population. Previously published drug dosing recommendations generally targeted a pre-dialysis serum concentration, even though other pharmacodynamic targets may 749 750 be more appropriate. Pre-dialysis vancomycin trough concentrations/MRSA MIC ratios >18.6 have been associated with improved patient outcomes suggesting that serum concentration 751 752 monitoring is essential throughout the course of therapy.[119] Dosing to achieve pre-dialysis 753 vancomycin concentrations of 10-20mg/L, as has been done clinically, [120] results in mean AUC_{24h} ranging from 250-450 mg*h/L, with some values below the AUC/MIC goals 754

755	recommended in other populations.[121] Outcome studies validating the 400-600 mg*h/L
756	AUC_{24h} goal used in other patient populations have not been conducted in the hemodialysis
757	population. Nonetheless, the maintenance doses recommended in this section aim to reach this
758	400-600 mg*h/L AUC _{24h} target as recommended throughout this document.
759	Many dialysis-related factors affect the degree of vancomycin exposure in these
760	patients. These considerations include the amount of time between when the vancomycin dose
761	is given and when the next dialysis session is scheduled,[95] whether the dose is given during
762	dialysis or after hemodialysis has ended, and the dialyzer's permeability if the dose is
763	administered intradialytically.[122] Dialysis frequency also plays a role in dosing decisions. For
764	non-critically-ill patients receiving hemodialysis, two or three days is the most common
765	interdialytic period. Some critically-ill patients with severe catabolism and acute kidney injury
766	may require more than thrice weekly hemodialysis for optimal metabolic control [123]and their
767	maintenance vancomycin doses should be based on serum concentration monitoring.
768	Serum concentration monitoring is a valuable tool to guide vancomycin dosing in
769	patients receiving dialysis, provided serum concentrations are obtained and interpreted
770	correctly. For example, blood sampling for assessment of vancomycin concentrations should
771	not occur during or for at least 1-2 hours after a hemodialysis treatment. These samples will
772	not be reflective of true vancomycin body load because of the dialytic removal of vancomycin.
773	Vancomycin serum concentrations will be quite low immediately following a dialysis treatment,
774	but will rebound substantially as drug redistributes from the tissues back to the blood over the
775	next few hours[124-127].[123][122] Dosing decisions based on serum concentrations obtained
776	during or soon after hemodialysis ends will be inherently incorrect and could result in higher

777	than necessary doses to be administered.[125] Serum concentration monitoring from blood
778	samples obtained prior to the hemodialysis treatment is recommended to guide dosing,
779	although other serum concentration monitoring techniques have been suggested.[126]
780	Vancomycin dosing in patients with acute or chronic kidney failure has transformed over
781	time due to the changes in dialysis technology and techniques.[127] Older (pre-1990s)
782	hemodialyzers were not very permeable to large molecules. Vancomycin (molecular weight
783	1450 Daltons) was not considered "dialyzable" because it poorly crossed the hemodialysis
784	membranes of the era. Indeed, even today's vancomycin package insert, based on
785	pharmacokinetic studies conducted in the 1980s, states "vancomycin is poorly removed by
786	dialysis."[128] As hemodialysis membrane technology has improved, dialyzers have become far
787	more permeable. Vancomycin is cleared substantially by contemporary, high permeability
788	hemodialyzers,[129, 130] consequently vancomycin dosing strategies have changed
789	substantially as well. For example, in spite of the package insert's statement of "In anuria, a
790	dose of 1000 mg every 7 to 10 days has been recommended" and that "vancomycin is poorly
791	removed by dialysis"[128], far more frequent doses are needed to maintain therapeutic serum
792	concentrations in patients receiving hemodialysis. The extent of vancomycin removal by
793	dialysis is dependent on the permeability of the hemodialyzer used;[122] consequently,
794	investigators have developed and published a wide variety of vancomycin dosing protocols in
795	an attempt to compensate for the increase in vancomycin dialytic CL caused by increases in
796	dialyzer permeability.

An added complication of appropriate vancomycin dosing in patients receiving
 hemodialysis is the prevailing practice of administering the drug during the final hours of the

799	hemodialysis process, thus resulting in some of the infused drug removed immediately by the
800	hemodialyzer. This practice started back when low permeability dialyzers were used and little
801	vancomycin was eliminated by hemodialysis. The practice has persisted at most dialysis units
802	because most dialysis units treat three shifts of patients/day, and holding one dialysis chair for
803	60-90 additional minutes while vancomycin infuses into a patient is not cost-effective. Indeed,
804	it is cheaper to infuse "extra" vancomycin during the hemodialysis session to compensate for
805	intradialytic loss than it is to keep a dialysis unit open later to allow vancomycin infusions.
806	Intradialytically infused vancomycin results in a reduced delivery of drug to the patient, similar
807	to a first-pass phenomenon. The extent of intradialytic drug removal is variable and depends on
808	patient and dialysis system factors, the most important of which is dialyzer membrane
809	permeability.[129, 131-133] Approximately 20-40% of an intradialytically administered
810	vancomycin dose is removed by the simultaneous hemodialysis, with the highly permeable
811	dialyzers tending to the higher end of this range.[131, 134, 135]
812	Maintenance dosing strategies that do not provide a dose with every hemodialysis
813	session have been studied (e.g. maintenance dose given with every second or third
814	hemodialysis session),[93, 123, 136] but none have been found to meet vancomycin exposure
815	
	goals in the last day of the dosing interval without giving massive doses that achieve very high
816	goals in the last day of the dosing interval without giving massive doses that achieve very high peak concentrations. Consequently, maintenance vancomycin doses are recommended to be
816 817	
	peak concentrations. Consequently, maintenance vancomycin doses are recommended to be
817	peak concentrations. Consequently, maintenance vancomycin doses are recommended to be administered with each hemodialysis session to ensure therapeutic serum concentrations

821	Dosing that is weight based appears to be superior to standard doses that ignore patient
822	size. Further, doses should be based on actual body weight rather than a calculated body
823	weight (See obesity section for considerations on how to dose morbidly obese patients).
824	Because vancomycin is water soluble, vancomycin dosing in fluid overloaded patients should
825	also be based on actual body weight at the time of dosing rather than on some calculated
826	adjusted weight[94-96].[94][93]
827	Summary and Recommendations
827 828	Summary and Recommendations 14. The following tables outline recommended vancomycin loading doses for patients receiving
828	14. The following tables outline recommended vancomycin loading doses for patients receiving

832	Time of infusion	<u>Dialyzer Permeability</u>	Vancomycin loading dose
833	After dialysis ends	Low	25 mg/kg
834	After dialysis ends	High	25 mg/kg
835	Intradialytic	Low	30 mg/kg
836	Intradialytic	High	35 mg/kg

837 [121, 131, 132, 134]

838

839

840 THRICE WEEKLY HEMODIALYSIS MAINTENANCE DOSE RECOMMENDATION

841	Time of infusion	Dialyzer Permeability	Maintenance dose
842	After dialysis ends	Low	7.5 mg/kg
843	After dialysis ends	High	10 mg/kg
844	Intradialytic	Low	7.5-10 mg/kg
845	Intradialytic	High	10-15 mg/kg
846	[95, 120, 121, 137]		
847			
848	15. Serum concentra	ation monitoring should be performe	d not less than weekly and should

849 drive subsequent dosing rather than a strict weight-based recommendation, although these

850 recommended doses provide a useful starting point until serum concentrations have been

851 determined (IB+).

852 <u>Hybrid Hemodialysis Therapies</u>

Contemporary renal replacement therapies used to treat kidney disease have expanded well beyond thrice weekly, 3 to 4 hour hemodialysis sessions. In the outpatient setting, shorter, more frequent home hemodialysis treatments are used in a growing number of patients. In the inpatient setting, various types of "hybrid" hemodialysis therapies are employed. These hybrid treatments go by many names including; Prolonged Intermittent Renal Replacement Therapy (PIRRT) and Slow-Low Efficiency Dialysis (SLED). Essentially these hybrid therapies use standard

859	hemodialysis machines that run at slower blood and dialysate flow rates and for longer
860	durations (6-12 hours/day). Even hemodialysis itself differs in the inpatient setting from the
861	outpatient setting, as patients with AKI are often hemodynamically unstable and lack sufficient
862	vascular access for robust blood flow through the dialysis vascular access. All these hybrid
863	dialysis therapies clear vancomycin and to a different extent than standard intermittent
864	hemodialysis.[138, 139] The timing of the vancomycin dose in relation to the hybrid
865	hemodialysis session is essential in determining a dosing regimen. If hybrid hemodialysis is
866	started soon after the dose is administered, much of the dose will be removed, whereas the
867	same vancomycin dose given after the dialysis session ends will yield a much larger AUC_{24h} and
868	much higher average serum concentrations. As is the case with any hemodialysis therapy,
869	serum concentrations obtained during or within 1-2 hours from the end of hemodialysis will be
870	artificially low because dialysis will have efficiently removed vancomycin from the blood, and
871	vancomycin located in the tissues will not have had time to redistribute back into the
872	bloodstream. Calculation of maintenance doses based on a peridialytic vancomycin serum
873	concentration may result in doses that are too high. Caution is recommended in basing any
874	maintenance dosing on these serum concentration values.

Little has been published on the patient outcomes achieved when vancomycin is used in patients receiving hybrid dialysis. Authors of one small series of 27 courses of vancomycin given to patients receiving a hybrid hemodialysis therapy reported prescribers have tried a wide variety of dosing schemes.[140] By these authors' criteria, 89% of the prescribed vancomycin doses were under-dosed in their institution. Given the absence of outcome data in patients

- receiving these therapies, it seems prudent to use the same vancomycin AUC goal (400-600
- $mg^{*}h/L$) as is recommended throughout this document.
- 882 Summary and Recommendations
- 16. Loading doses of 20-25 mg/kg actual body weight should be used, recognizing that these
- 884 hybrid dialysis therapies efficiently remove vancomycin. Initial doses should not be delayed
- to wait for a dialysis treatment to end. Maintenance doses of 15 mg/kg should be given
- after hybrid hemodialysis ends or during the final 60-90 minutes of dialysis, as is done with
- standard hemodialysis.[121] Frequent serum concentration monitoring should guide further
- 888 maintenance doses (IIC+).

889 <u>Dosing in Continuous Renal Replacement Therapies</u>

890 The use of continuous renal replacement therapies (CRRT) like continuous venovenous 891 hemofiltration (CVVH), continuous venovenous hemodialysis (CVVHD), and continuous venovenous hemodiafiltration (CVVHDF) have grown in popularity in critically-ill patients with 892 acute kidney injury because of their superior ability to provide fluid and solute balance. 893 894 Provided these therapies operate in an uninterrupted fashion, vancomycin CL is relatively 895 constant over the dosing interval although CL may decline as the hemodiafilter clogs over 896 time.[141] Vancomycin is removed by CRRT and its CL is related closely to the rate of ultrafiltrate/dialysate flow[96] with hemodiafilter type being of lesser importance, because 897 contemporary hemodiafilters are all very permeable to the drug. 898 899 In patients on CRRT, achieving targeted serum concentration often are not met with

900 conventional dosing.[76, 142] Although outcomes studies specific to patients receiving CRRT

901	have not been conducted, it seems prudent to apply the same vancomycin AUC/MIC target (i.e.,
902	400-600) in these critically-ill patients as is recommended throughout this document.
903	Summary and Recommendations
904	17. Loading doses of 20-25 mg/kg by actual body weight should be used in patients receiving
905	CRRT. Maintenance dose and dosing interval should be based on serum concentration
906	monitoring. An initial 12 hour dosing interval has been suggested to achieve trough
907	concentrations of 15-20 mg/L, which will likely achieve the desired 400-600 mg*h/L
908	AUC/MIC target.[143] In fluid overloaded patients, doses may be reduced as patients
909	become euvolemic and drug Vd decreases. The use of Cl of vancomycin in patients receiving
910	CRRT appears to be growing,[76, 96] and could be used in place of intermittent vancomycin
911	dosing, especially when high CRRT ultrafiltrate/dialysate flow rates are employed (IB+).
912	Pediatrics
913	In 2011, prior to the availability of alternative agents for MRSA in pediatrics, vancomycin
914	was recommended as the drug of choice for invasive MRSA infections in children, similar to
915	adults.[6] Although limited prospective, comparative data on the value of vancomycin
916	therapeutic monitoring in adults exist with respect to improving outcomes and decreasing
917	toxicity, virtually no prospectively collected data on outcomes of MRSA infection exist in
918	newborns, infants and children. Further, for newborns, particularly premature infants,
919	immature renal elimination mechanisms and relative increase in Vd per bodyweight, compared
920	with older infants, further complicate dosing guidelines during the first several weeks of life.
921	Additional complexity for dosing strategies during early childhood is based on a continual

maturation of glomerular filtration, which is directly related to vancomycin CL. The glomerular 922 923 filtration rate increases through the first years of life to rates in school-aged children that are greater than adults, with subsequent decline during the teens to adult normal rates. Such a 924 diversity of PK parameter values based on developmental pharmacology from neonates to 925 926 adolescents provides a challenge to develop generalized vancomycin dosing. However, this has 927 improved with the application of population-based PK models using allometric scaling and renal 928 maturation covariates, but careful monitoring in this patient population is prudent. As with 929 adults, comorbidities and concurrent medications can influence vancomycin tissue distribution, 930 elimination and toxicity.

931 Limitation of Outcomes Data

Recent retrospective studies on bacteremic S. aureus infections (both MRSA and 932 methicillin-susceptible strains) in children treated with vancomycin suggest that trough 933 concentrations of > 15 μ g/mL were not associated with improved outcomes, yet an increase in 934 AKI was observed. [144-146] Furthermore, another retrospective pediatric study evaluating 935 936 outcomes of MRSA bacteremia as a function of AUC/MIC_{BMD} ≥ 400 did not show improved 937 outcomes.[147] Similarly, vancomycin trough concentrations < 10 μ g/mL, as compared with > 10 µg/mL, were not associated with increased 30-day mortality and recurrent bacteremia in 938 children, although the lower concentrations were associated with prolonged bacteremia. [148] 939 940 In the absence of prospective outcomes data on serious MRSA infections in children to validate the observations reported in adults, dosing in children should be designed to achieve 941

an AUC of 400 to 600 μ g-hr/mL (assuming MIC of 1 μ g/mL). This pharmacodynamic target,

943	specifically closer to AUC 400, rather than 600, has been used by pediatric investigators to
944	model both dosing and therapeutic monitoring. However, it is possible that in otherwise
945	healthy children with fewer comorbidities than adults, a lower target may yield equivalent
946	outcomes to an AUC of 400 to 600 μ g-hr/mL. Using currently recommended dosages of 45-60
947	mg/kg/day, widespread failures in treatment have not been published for children, which may
948	reflect the younger host with a more robust systemic and immunologic response to infection, a
949	different management approach (surgical and antibiotic) of invasive MRSA infection, lack of
950	associated comorbidities, or publication bias. Prospective comparative clinical trials of
951	documented infections, treated with different dosages of vancomycin, have not been published
952	for children.

953 Empiric Maintenance Regimen

954 Published retrospective PK/PD data in children suggest that current dosing of 45 to 60 mg/kg/day divided every 6 to 8 h may be insufficient to achieve currently recommended targets 955 956 for adults of an AUC 400 to 600 μg-hr/mL (assuming MIC of 1 μg/mL).[1] In fact, higher dosages 957 ranging from 60 to 80 mg/kg/day every 6 h may be needed to achieve these targets for MRSA 958 with an MIC of 1 µg/mL or less to vancomycin, presumably a result of greater CL of vancomycin compared with adults.[1, 149-152] For children infected by MRSA pathogens with a MIC of > 1 959 μ g/mL, it is unlikely that the target exposure can be reliably achieved with previously 960 investigated dosages of vancomycin in children. 961

Le and colleagues utilized population-based PK modeling on 702 children > 3 months old
 with varying comorbidities from two institutions to analyze 1660 vancomycin serum

964	concentrations obtained between 2003 and 2011. They demonstrated that four important
965	factors (including age, weight, renal function as assessed by SCr, and MIC) contributed to
966	vancomycin dosing. Monte Carlo simulations were created using population-based PK
967	modeling with Bayesian estimation and MICs of clinical isolates as determined by Etest with
968	85% of clinical isolates demonstrated to have an MIC _{E-test} of 1 μ g/mL or less. A dose of 80
969	mg/kg/day was necessary to achieve an AUC/MIC _{E-test} \geq 400 in approximately 90% of subjects,
970	particularly those < 12 years of age with normal renal function. At 80 mg/kg/day, the median
971	AUC was 675 µg-hr/mL and trough was 16 µg/mL. As expected, those \ge 12 years of age
972	achieved similar exposure at lower dosages of 60 to 70 mg/kg/day.[152] The clinical
973	applicability of this PK model for vancomyin CL estimation to determine AUC exposure was
974	validated by Ploessl et al. [153]

Other studies corroborated Le and colleagues' findings—the need to use higher dosages 975 976 ranging from 60 to 80 mg/kg/day, depending on age and renal function.[150, 151, 154] Using the literature for vancomyin CL published on or before 2000 and Bayesian estimation for one 977 25-kg base subject, Frymoyer et al evaluated the relationship between AUC and trough 978 concentrations, and showed that 60 mg/kg/day achieved trough concentrations of 7-10 µg/mL 979 and AUC/MIC of \geq 400 in 90% of children, for MRSA pathogens with an MIC of 1 µg/mL.[151] 980 However, their finding may not be extrapolatable to the entire pediatric population with 981 982 varying ages and renal function. In a second study, these investigators demonstrated that 60 mg/kg/day achieved AUC/MIC_{BMD} values between 386 and 583 for MIC_{BMD} of $1 \mu g/mL$ in 983 children 2 to 12 years of age, indicating that some younger children may require higher doses 984

to achieve target AUC/MIC_{BMD}.[150] The probability of target attainment was not provided and
 doses above 60 mg/kg/day were not evaluated in this study.

987 Two retrospective studies, that utilized non-Bayesian methods, evaluated trough 988 concentration targets of 10-20 µg/mL (a higher range than that used by Le and Frymoyer who also assessed AUC) in children 1 month to 18 years of age. An interesting finding of Madigan's 989 study showed that 60 mg/kg/day achieved the target trough concentration in only 17% of 990 preschool-aged children 2 to 5 years old, which was the lowest attainment compared with all 991 992 other pediatric age groups. [154] Eiland and colleagues showed that doses of 70 to 80 993 mg/kg/day were necessary to achieve trough concentrations of 10-20 µg/mL.[149] Another 994 study by Abdel et al demonstrated that doses higher than 60 mg/kg/day were necessary to 995 achieve an AUC/MIC of \geq 400 in children with cancer. Mean age in this study cohort was 6 ± 2.5 years; it is possible that young age with greater CL may have been a contributing factor for the 996 997 need for an increased dose, an observation uncovered in studies by Le and Madigan.[155] 998 As a drug that demonstrates renal elimination, vancomycin requires dosage adjustment in children with acute or chronic renal insufficiency. Le and colleagues conducted a population-999 based PK analysis with Bayesian method that evaluated 63 case-control pairs (matched by age 1000

and weight) with 319 vancomycin serum concentrations. The mean age of this study cohort

1002 was 13 ± 6 years old. The investigators reported that a vancomycin dose of 45 mg/kg/day (i.e.,

1003 15 mg/kg every 8 h) in renally-impaired children achieved similar AUC exposure to 60

1004 mg/kg/day in children with normal renal function. Notably, they showed that in 87% of

1005 children with initial renal impairment, vancomycin CL improved (with a lag in the recovery of

1006 renal function as assessed by SCr) within the first 5 days of therapy, indicating some degree of

1007	renal function recovery, supporting the need for ongoing therapeutic drug monitoring of
1008	vancomycin. [156] In addition, vancomycin CL does not correlate well with creatinine CL in
1009	children, particularly in those who are acutely-ill in the ICU setting with varying degrees of renal
1010	dysfunction. Rapid return of renal function may occur over the first few days after ICU
1011	admission. As such, both therapeutic monitoring of serum concentrations as well as renal
1012	function should be conducted during vancomycin therapy.[157, 158]
1013	Loading Dose

Loading doses of 25 to 30 mg/kg in critically-ill adults have been suggested to achieve 1014 1015 steady-state concentrations more quickly, but preliminary data in pediatrics suggests that the 1016 benefit of a loading dose of 30 mg/kg is quickly lost if the maintenance dose is insufficient to 1017 provide adequate ongoing exposure.[159] However, the concept of a loading dose 1018 accompanied by a sufficient daily maintenance dose required to achieve the target exposure, initiated at a specified time after the loading dose, should be investigated. 1019 1020 Acute Kidney Injury 1021 Similar to adults, the aggregate literature in pediatrics suggests that the risk of AKI 1022 increases as a function of vancomycin exposure, especially when trough concentration exceeds 1023 15-20 µg/mL. In fact, Fiorito and colleagues reported in a recent meta-analysis of 10 pediatric 1024 studies that troughs \geq 15 µg/mL increased AKI by 2.7-fold (95% CI: 1.82–4.05) and AKI was 1025 further correlated with stay in the pediatric ICU. [146] McKamy and colleagues published the

1026 first study that uncovered the association between trough concentrations > 15-20 mg/L and AKI

1027 in pediatric patients. In addition, they showed that children who received concurrent

1028	nephrotoxic drugs (particularly furosemide) and stayed in the pediatric ICU were also more
1029	likely to experience AKI.[160] Four studies published later corroborated these findings in which
1030	the interplay of multiple factors, in addition to vancomycin exposure, contributed to AKI.[161-
1031	164] Interestingly, Sinclair et al reported that a 5 mg/kg dose augmentation or each additional
1032	day of vancomycin use increased the risk of AKI.[162] Knoderer and colleagues evaluated late-
1033	onset AKI (defined as occurring after 7 days of vancomycin therapy) and observed that young
1034	age < 1 year was independently associated with late AKI.[161]

1035 One pediatric study evaluated the relationship between AKI and vancomycin AUC and 1036 trough concentrations, both derived by Bayesian estimation. Le and colleagues conducted a 1037 large population-based PK analysis using 1576 serum concentrations collected from 680 1038 pediatric subjects. A continuous exposure-response relationship was observed, where 10%, 33% and 57% of patients who achieved AUC \geq 400, 800, and 1000 µg-hr/mL, respectively, 1039 1040 experienced AKI. Even after adjusting for ICU stay and concomitant use of nephrotoxic drugs, 1041 AUC \geq 800 µg-hr/mL and trough concentrations \geq 15 µg/mL were independently associated with 1042 a > 2.5-fold increased risk of AKI. The linkage of AUC to AKI, along with the strong correlation 1043 between AUC and trough concentrations (Spearman's coefficient = 0.963, p<0.001), reinforces AUC as a plausible PK/PD parameter for therapeutic monitoring that encompasses both 1044 1045 therapeutic and toxic responses. [165] Vancomycin AUC exposure should be optimally maintained at < 800 μ g-hr/mL to minimize AKI. As such, vancomycin doses \geq 100 mg/kg/day 1046 1047 should be avoided since the projected median AUC and trough concentrations are 843 µg-hr/mL 1048 and 21 µg/mL, respective, for 100 mg/kg/day.[152]

1049 Therapeutic Monitoring

1050 Recent literature on vancomycin in pediatrics focused primarily on PK analysis to 1051 support optimal dosing. Data on vancomycin therapeutic monitoring in pediatrics are limited to 1052 one study. Le and colleagues conducted a population-based PK analysis in 138 pediatric subjects who were > 3 months of age with 712 vancomycin serum concentrations (collected 1053 mostly after the 3rd or 4th dose). They showed that both accuracy and precision for estimating 1054 1055 AUC₂₄ (calculated by total daily dose over vancomycin CL, with the integration of Bayesian 1056 estimation) were improved using two concentrations (peak and trough), compared with trough-1057 only monitoring. Furthermore, the two-concentration approach improved the prediction of 1058 future AUC exposure in patients. [166] Despite the availability of only one study on vancomycin monitoring in pediatrics, the findings appear congruent with adult data supporting AUC-guided 1059 therapeutic monitoring that incorporates the Bayesian method. Furthermore, this AUC-guided 1060 1061 monitoring approach also appears prudent to predict toxicity in light of AKI data in pediatrics. 1062 Overall, limited outcomes data exist in pediatrics to support the AUC target found in adults for drug effectiveness. Some of the differences found between adults and children for 1063 1064 MRSA infections treated with vancomycin include the complexity of vancomycin CL in the various pediatric age groups, and the differences in tissue site-of-infection drug exposure (e.g., 1065 1066 common occurrence of acute hematogenous osteomyelitis in children requiring therapeutic 1067 bone concentrations, but rare occurrence of MRSA endocarditis) suggest that further studies in 1068 children that incorporate prospective assessment of clinical outcomes, are needed to identify 1069 the optimal dosing strategies for MRSA infections in pediatrics. Until additional data are available, the AUC target used in adults of 400 to 600 µg-hr/mL (assuming a MIC of 1 mg/L) 1070 1071 appears to be the most appropriate initial target for vancomycin exposures in all pediatric age

1072	groups. For most children across the pediatric age groups, assuming a vancomycin MIC of 1
1073	ug/mL, published data suggest that 60 to 80 mg/kg/day divided every 6 hours is required to
1074	achieve an AUC target of 400 to 600 μg-hr/mL.
1075	Summary and Recommendations:
1076	18. Based on an AUC target of 400 to 600 μ g-hr/mL (assuming MIC of MRSA of \leq 1 μ g/mL) from
1077	adult data, the initial recommended vancomycin dosage for suspected serious MRSA
1078	infections (including pneumonia, pyomyositis, multifocal osteomyelitis, complicated
1079	bacteremia and necrotizing fasciitis) is:
1080	• 60 to 80 mg/kg/day, divided every 6 h, for children ages 3 months to 12 years and
1081	 60 to 70 mg/kg/day, divided every 6 h, for those ≥ 12 years old.
1082	The Bayesian AUC-guided dosing strategy may be an optimal approach to individualize
1083	vancomycin therapy in pediatrics since it can incorporate varying ages, weights, and renal
1084	function. Dosing adjustment should be made for those with renal insufficiency, are obese
1085	(see Pediatric Obesity), or for those receiving concurrent nephrotoxic drug therapy. The
1086	safety of vancomycin above 80 mg/kg/day has not been prospectively evaluated (IB+).
1087	19. AUC-guided therapeutic monitoring for vancomycin, preferably with Bayesian estimation, is
1088	recommended for all pediatric age groups, based on developmental changes of vancomycin
1089	CL documented from the newborn to the adolescent. Both serum concentrations and renal
1090	function should be monitored since vancomycin CL and creatinine CL are not always well
1091	correlated in pediatrics. Furthermore, aggressive dosing to maintain target AUC exposure
1092	and decrease the risk of potential AKI necessitates drug monitoring. Therapeutic

1093 monitoring should begin within 24 to 48 hours of vancomycin therapy for serious MRSA

1094	infections in children, as in adults. Following the initial dose, dosing adjustment is
1095	important for those with acute renal insufficiency, but subsequent adjustment (particularly
1096	within the first 5 days of therapy) may be necessary for those experiencing recovery of renal
1097	function. Sustained or subsequent decreases in dosage may be needed, particularly for
1098	those with chronic renal insufficiency and those receiving concurrent nephrotoxic drug
1099	therapy (IB+).
1100	20. Vancomycin exposure should be optimally maintained below the thresholds for AUC of 800
1101	μ g-hr/mL and trough concentrations of 15 μ g/mL to minimize AKI. Vancomycin doses \geq 100
1102	mg/kg/day should be avoided since they are likely to surpass these thresholds (IB+).
1103	21. Insufficient data exist on which to base a recommendation for a loading dose. Loading
1104	doses from adult studies may be considered, but further studies are needed to elucidate the
1105	appropriate dose for the various pediatric populations from the neonate to adolescent.

1106

1107 *Pediatric Obesity*

Vancomycin is a large glycopeptide molecule that is hydrophilic, suggesting the distribution into tissues with high lipid concentrations such as adipose tissue, is decreased, as noted above for adults (see Obesity). When vancomycin dosing is based on total body weight (mg/kg) for both obese and non-obese children, serum concentrations have been documented to be higher in obese children, assuming that renal CL is similar between the two populations.[167] Moffett retrospectively compared vancomycin PK in 24 obese children who were matched with 24 control non-obese children.[168] Vancomycin dose administration per

1115	child was slightly higher in the obese children, which resulted in increased trough
1116	concentrations. Similarly, two other retrospective non-Bayesian studies by Heble and Miller et
1117	al documented higher vancomycin trough concentration in overweight and obese children,
1118	compared with normal-weight children, with dosing based on total body weight.[169, 170] No
1119	increase in AKI was noted in the overweight children.[170]
1120	Collectively, non-Bayesian studies of obese children have evaluated maintenance
1121	regimens ranging from 40 to 80 mg/kg/day using total body weight, with some instituting
1122	maximum doses of 1 to 2 grams over 1 to 2 hours.[168, 169, 171, 172] As an alternative to total
1123	body weight, one study recommended the use of body surface area to dose vancomycin, which
1124	necessitates establishing a different dosing regimen and obtaining height measurement that
1125	may not always be readily available in clinical practice. [173] Body surface area is not typically
1126	used for dosing medications, except for chemotherapeutic agents.[174]
1126 1127	used for dosing medications, except for chemotherapeutic agents.[174] Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations
1127	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations
1127 1128	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le
1127 1128 1129	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le and colleagues showed that the Vd was strongly correlated with actual or total body weight and
1127 1128 1129 1130	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le and colleagues showed that the Vd was strongly correlated with actual or total body weight and CL correlated with allometric weight (by 0.75) and body surface area.[175] Using this PK model,
1127 1128 1129 1130 1131	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le and colleagues showed that the Vd was strongly correlated with actual or total body weight and CL correlated with allometric weight (by 0.75) and body surface area.[175] Using this PK model, Nguyen and colleagues concluded, using Monte Carlo simulations with Bayesian estimation,
1127 1128 1129 1130 1131 1132	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le and colleagues showed that the Vd was strongly correlated with actual or total body weight and CL correlated with allometric weight (by 0.75) and body surface area.[175] Using this PK model, Nguyen and colleagues concluded, using Monte Carlo simulations with Bayesian estimation, that vancomycin 60 mg/kg/day dosed by total body weight, as compared with other weight
1127 1128 1129 1130 1131 1132 1133	Using a Bayesian population-based PK analysis of 389 vancomycin serum concentrations collected from 87 pairs of obese and non-obese children (matched by age and baseline SCr), Le and colleagues showed that the Vd was strongly correlated with actual or total body weight and CL correlated with allometric weight (by 0.75) and body surface area.[175] Using this PK model, Nguyen and colleagues concluded, using Monte Carlo simulations with Bayesian estimation, that vancomycin 60 mg/kg/day dosed by total body weight, as compared with other weight measures, resulted in the highest rate of achievement of the target AUC/MIC ≥ 400 in obese

1137	mg/kg/day by total body weight (i.e., 70% vs 84%), an observation identified in non-obese
1138	children.[152, 154] Interestingly, the use of a 20 mg/kg loading dose based on total body weight
1139	in obese children increased achievement of AUC/MIC \geq 400, especially within the first 12 hours
1140	of therapy. In addition, one of every five obese children had AUC \ge 800 µg-hr/mL, indicating
1141	that routine therapeutic and safety monitoring is prudent.[176]
1142	Summary and Recommendations:
1143	22. Published, retrospective data suggest that obese children are likely to have vancomycin
1144	exposures that may be statistically greater than normal weight children when doses are
1145	calculated on a mg/kg basis, but these differences are not known to be of sufficient clinical
1146	importance to suggest different mg/kg empiric vancomycin dosages in obese children at this
1147	time. Similar to non-obese children, obese children < 12 years old, compared with those \geq
1148	12 years, may require higher mg/kg dose. (IIB+)
1149	23. Therapeutic monitoring is likely to be of particular value in obese children, both for
1150	therapeutic response and the risk of AKI. The specific recommendations for therapeutic
1151	monitoring in non-obese children should also apply for obese children (IC+).
1152	24. A loading dose of 20 mg/kg by total body weight may be warranted in obese children (IC+).
1153	
1154	Neonates
1155	Vancomycin therapeutic monitoring is important in neonates, based on developmental
1156	considerations of prominent increasing renal function that occurs over the first several weeks
1157	of life[177], as well as the increased vancomycin Vd seen in the most premature and youngest

1158 infants. Models to predict vancomycin dosing have variously incorporated weight-based

dosing, chronologic age-based dosing, post-menstrual age-based dosing, SCr-based dosing
(except for the first week of life when transplacental maternal creatinine in the neonatal
circulation renders the neonatal SCr values inaccurate in estimating renal function), or
combinations of these strategies. Regardless of which model is used, therapeutic monitoring in
the neonate is essential due to the rapid maturation of renal function over the first weeks of
life.

1165 Mehrotra et al compared four models for predicting vancomycin serum concentrations, 1166 based on their population PK model, using a standard weight-based dose, a postmenstrual age-1167 based dose, a postmenstrual and postnatal age-based dose, and a SCr-based dose. Serum creatinine-based dosing predicted trough concentrations with the smallest variability in both 1168 1169 term and preterm neonates. However, when the target was high trough concentrations within 1170 a narrow range of 15–20 µg/mL, only 13–21% of patients were within this range across the four 1171 dosing regimens. [178] Marqués-Miñana also developed a population PK model, and proposed dosing based on post-menstrual age.[179] SCr-based, rather than post-menstrual or post-1172 1173 conceptional age-based, dosing has been supported by Irikura[180] and Capparelli.[181] However, when evaluating published neonatal PK models, no consensus on an optimal dosing 1174 regimen was achieved by experts on neonatal vancomycin as reported by Zhao et al. After 1175 1176 evaluating the predictive performance of six models, Zhao et al concluded the importance of 1177 evaluating analytical techniques for SCr and vancomycin concentrations best explained the variability of predictions between the models. Zhao et al found the Jaffé method 1178 1179 overestimated SCr concentrations when compared to the enzymatic method and for 1180 vancomycin concentrations, the fluorescence polarization immunoassay method and enzyme1181 multiplied immunoassay method assays showed different predictive performances as well.1182 [182]

With the knowledge that AUC, as compared with trough concentrations, is a more 1183 1184 achievable target in pediatrics, Frymoyer and colleagues evaluated the association between 1185 AUC and trough concentrations in neonates. Using 1,702 vancomycin concentrations 1186 (measured by the homogenous particle-enhanced turbidimetric inhibition immunoassay) 1187 collected from 249 neonates, population PK analysis was conducted to create a model for 1188 vancomycin CL that was based on weight, post-menstrual age, and SCr (measured by a modified 1189 kinetic Jaffe reaction). Monte Carlo simulations with Bayesian estimation demonstrated that trough concentrations ranging from 7 to 11 μ g/mL were highly predictive of an AUC₂₄ of >400 1190 µg-hr/mL in at least 90% of neonates. Doses to achieve this PK/PD target ranged from 15 to 20 1191 1192 mg/kg every 8 to 12 h, depending on post-menstrual age and SCr.[183] Stockmann et al later 1193 supported the predictive performance and generalizability of this model in 243 neonates with 734 vancomycin concentrations. While a trough concentration of 11 μ g/mL predicted the 1194 1195 attainment of an AUC \ge 400 µg-hr/mL in 93% of neonates, Stockmann noted that a trough concentration alone did not precisely predict AUC and concluded the need for Bayesian 1196 approaches to support vancomycin dosing decisions for neonates in the clinical setting.[184] 1197 1198 Furthermore, Cies et al reported differences in vancomycin PK, particularly impacted by rapid 1199 vancomycin CL, in neonates with extracorporeal oxygenation life support, reiterating the need for Bayesian-derived dosing decision support in this vulnerable population.[185] Lastly, Leroux 1200 1201 et al demonstrated the success of the clinical integration of a model-based vancomycin dosing

1202	calculator, developed from a population PK study, in augmenting the attainment of target
1203	trough concentrations from 41% to 72% without any cases of AKI.[186]

1204	The incidence of vancomycin-associated AKI reported in neonates has been low, ranging
1205	from 1 to 9%.[187] Nonetheless, a positive correlation between increasing vancomycin trough
1206	concentrations and AKI has been reported by Bhargava et al.[188] Furthermore, in a large,
1207	retrospective, multi-centered, propensity score-matched cohort study of 533 neonates
1208	receiving vancomycin and gentamicin compared with 533 receiving gentamicin, Constance et al
1209	concluded that AKI was not associated with vancomycin alone, but may occur in the presence
1210	of other recognized risk factors, including patent ductus arteriosus, concomitant non-steroidal
1211	anti-inflammatory drug use, ≥1 positive blood cultures, low birth weight and higher severity of
1212	illness and risk of mortality scores.[189]

1213

1214 Summary and Recommendations:

1215 25. Doses to achieve an AUC of 400 μ g-hr/mL (assuming an MIC of 1 μ g/mL) in neonates may 1216 range from 15 to 20 mg/kg every 8 to 12 hours, depending on post-menstrual age and SCr. 1217 AUC-guided therapeutic dosing and monitoring, preferably with Bayesian estimation, can 1218 best achieve the target vancomycin exposure likely to be required for a successful outcome 1219 from an MRSA infection for all neonates, regardless of gestational and chronologic age. A 1220 lower AUC/MIC target may be reasonable for neonatal coagulase-negative staphylococcal 1221 infections. The specific recommendations for therapeutic monitoring in pediatrics children 1222 should also apply for neonates (IB+).

1223

¹²²⁴ Conclusion

To optimize vancomycin use for the treatment of serious infections caused by MRSA, we 1225 recommend targeting an AUC/MIC_{BMD} ratio of 400-600 (assuming an MIC_{BMD} of 1 mg/L) for 1226 1227 empiric dosing in both adult and pediatric patients to maximize the clinical efficacy and minimize AKI. Furthermore, the AUC should be therapeutically monitored using one or two post 1228 1229 dose concentrations (i.e., a peak after the early vancomycin tissue distribution phase, and trough, prior to the next dose), preferably integrating the Bayesian approach. While valuable 1230 1231 literature in adults, children and neonates have emerged since the last vancomycin guideline, future studies in all patient populations are necessary to address gaps including: 1) efficacy data 1232 1233 to support certain patient populations (including pediatrics, renal disease and obesity) and 1234 other types of infections; 2) efficacy data on specific pathogens, including coagulase-negative 1235 staphylococcus and Streptococcus spp.; 3) robust pediatric efficacy data for MRSA and other Gram-positive pathogens causing different types of serious infections; 4) optimal loading and 1236 1237 maintenance dosing regimens in patients with obesity and renal insufficiency; 5) efficacy 1238 benefit, dosing algorithm (specifically incorporating a loading dose followed by maintenance infusion), and 6) toxicodynamics for continuous infusion in critically-ill patients. 1239

1240 References

- Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult
 patients: a consensus review of the American Society of Health-System Pharmacists, the
 Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J
 Health Syst Pharm **2009**; 66(1): 82-98.
- Owens DK, Lohr KN, Atkins D, et al. Grading the strength of a body of evidence when comparing medical interventions. Methods Guide for Effectiveness and Comparative Effectiveness Reviews.
 Rockville (MD), **2008**.
- 12483.Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of1249evidence. J Clin Epidemiol **2011**; 64(4): 401-6.
- 12504.Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-1251lactams, glycopeptides, and linezolid. Infect Dis Clin North Am **2003**; 17(3): 479-501.
- 12525.Drusano GL. Antimicrobial pharmacodynamics: critical interactions of 'bug and drug'. Nat Rev1253Microbiol **2004**; 2(4): 289-300.
- Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of
 america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and
 children: executive summary. Clin Infect Dis **2011**; 52(3): 285-92.
- Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis
 2006; 42 Suppl 1: S35-9.
- Kullar R, Leonard SN, Davis SL, et al. Validation of the effectiveness of a vancomycin nomogram
 in achieving target trough concentrations of 15-20 mg/L suggested by the vancomycin
 consensus guidelines. Pharmacotherapy **2011**; 31(5): 441-8.
- Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet **2004**; 43(13): 925-42.
- 126510.Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients1266with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines1267suggested targets. Clin Infect Dis **2011**; 52(8): 975-81.
- Brown J, Brown K, Forrest A. Vancomycin AUC24/MIC ratio in patients with complicated
 bacteremia and infective endocarditis due to methicillin-resistant Staphylococcus aureus and its
 association with attributable mortality during hospitalization. Antimicrob Agents Chemother
 2012; 56(2): 634-8.
- Holmes NE, Turnidge JD, Munckhof WJ, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother **2013**; 57(4):
 1654-63.
- Gawronski KM, Goff DA, Brown J, Khadem TM, Bauer KA. A stewardship program's retrospective
 evaluation of vancomycin AUC24/MIC and time to microbiological clearance in patients with
 methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. Clin Ther **2013**; 35(6):
 772-9.
- Jung Y, Song KH, Cho J, et al. Area under the concentration-time curve to minimum inhibitory
 concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant
 Staphylococcus aureus bacteraemia. Int J Antimicrob Agents **2014**; 43(2): 179-83.
- 128215.Lodise TP, Drusano GL, Zasowski E, et al. Vancomycin exposure in patients with methicillin-1283resistant Staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis12842014; 59(5): 666-75.

1285 16. Casapao AM, Lodise TP, Davis SL, et al. Association between vancomycin day 1 exposure profile 1286 and outcomes among patients with methicillin-resistant Staphylococcus aureus infective 1287 endocarditis. Antimicrob Agents Chemother 2015; 59(6): 2978-85. 1288 17. Mogle BT, Steele JM, Seabury RW, Dang UJ, Kufel WD. Implementation of a two-point 1289 pharmacokinetic AUC-based vancomycin therapeutic drug monitoring approach in patients with 1290 methicillin-resistant Staphylococcus aureus bacteremia. Int J Antimicrob Agents 2018. 1291 18. Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal 1292 dosing? Antimicrob Agents Chemother 2014; 58(1): 309-16. 1293 19. Lesar TS, Rotschafer JC, Strand LM, Solem LD, Zaske DE. Gentamicin dosing errors with four 1294 commonly used nomograms. JAMA 1982; 248(10): 1190-3. 1295 20. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get 1296 there from here. Clin Infect Dis 2011; 52(8): 969-74. 1297 21. Lodise TP, S.L. R. Prospective Observational Evaluation of the Association between the Day 2 1298 Vancomycin Exposure and Failure Rates among Adult Hospitalized Patients with MRSA 1299 Bloodstream Infections (PROVIDE). ID Week. San Diego, CA, 2017:S30-1. 1300 22. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to 1301 improve outcomes in acute kidney injury. Crit Care **2007**; 11(2): R31. 1302 23. Roy AK, Mc Gorrian C, Treacy C, et al. A comparison of traditional and novel definitions (RIFLE, 1303 AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated 1304 heart failure. Cardiorenal Med 2013; 3(1): 26-37. 24. 1305 van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 1306 1307 milligrams per liter. Antimicrob Agents Chemother 2013; 57(2): 734-44. 25. Sinha Ray A, Haikal A, Hammoud KA, Yu AS. Vancomycin and the risk of AKI: a systematic review 1308 1309 and meta-analysis. Clin J Am Soc Nephrol 2016; 11(12): 2132-40. 1310 26. Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. 1311 Kidney Int 2012; 81(9): 819-25. 1312 Linder A, Fjell C, Levin A, Walley KR, Russell JA, Boyd JH. Small acute increases in serum 27. 1313 creatinine are associated with decreased long-term survival in the critically ill. Am J Respir Crit 1314 Care Med 2014; 189(9): 1075-81. 1315 28. Neely MN, Kato L, Youn G, et al. A prospective trial on the use of trough concentration versus 1316 area under the curve (AUC) to determine therapeutic vancomycin dosing. Antimicrob Agents 1317 Chemother **2017**. 1318 29. Suzuki Y, Kawasaki K, Sato Y, et al. Is peak concentration needed in therapeutic drug monitoring 1319 of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-1320 resistant staphylococcus aureus pneumonia. Chemotherapy **2012**; 58(4): 308-12. 1321 30. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial 1322 vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin 1323 Infect Dis 2009; 49(4): 507-14. 1324 31. Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among 1325 patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. 1326 Antimicrob Agents Chemother 2008; 52(9): 3315-20. 1327 32. Zasowski EJ, Murray KP, Trinh TD, et al. Identification of vancomycin exposure-toxicity thresholds in hospitalized patients receiving intravenous vancomycin. Antimicrob Agents 1328 1329 Chemother **2018**; 62(1). 1330 33. Finch NA MK, Zasowski EJ, Mynatt RP, Zhaao JJ, Yost R, Pogue JM, Rybak MJ. Impact of area 1331 under the curve-targeted dosing (AUC-TD) on vancomycin-associated nephrotoxicity (VN). 1332 American Society for Microbiology Microbe. Boston, MA, 2016.

1333	34.	Moenster RP, Linneman TW, Finnegan PM, Hand S, Thomas Z, McDonald JR. Acute renal failure
1334		associated with vancomycin and beta-lactams for the treatment of osteomyelitis in diabetics:
1335		piperacillin-tazobactam as compared with cefepime. Clin Microbiol Infect 2014 ; 20(6): O384-9.
1336	35.	Gomes DM, Smotherman C, Birch A, et al. Comparison of acute kidney injury during treatment
1337		with vancomycin in combination with piperacillin-tazobactam or cefepime. Pharmacotherapy
1338		2014 ; 34(7): 662-9.
1339	36.	Burgess LD, Drew RH. Comparison of the incidence of vancomycin-induced nephrotoxicity in
1340		hospitalized patients with and without concomitant piperacillin-tazobactam. Pharmacotherapy
1341		2014 ; 34(7): 670-6.
1342	37.	Navalkele B, Pogue JM, Karino S, et al. Risk of acute kidney Injury in patients on concomitant
1343		vancomycin and piperacillin-tazobactam compared to those on vancomycin and cefepime. Clin
1344		Infect Dis 2017 ; 64(2): 116-23.
1345	38.	Karino S, Kaye KS, Navalkele B, et al. Epidemiology of acute kidney injury among patients
1346	00.	receiving concomitant vancomycin and piperacillin-tazobactam: opportunities for antimicrobial
1347		stewardship. Antimicrob Agents Chemother 2016 ; 60(6): 3743-50.
1348	39.	Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per
1349	55.	day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents
1350		Chemother 2008 ; 52(4): 1330-6.
1350	40.	Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A. Applying new diagnostic criteria
1351	40.	for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated
1352		
	41	patients. Antimicrob Agents Chemother 2011 ; 55(7): 3278-83.
1354	41.	Cano EL, Haque NZ, Welch VL, et al. Incidence of nephrotoxicity and association with
1355		vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the
1356	40	IMPACT-HAP Database. Clin Ther 2012 ; 34(1): 149-57.
1357	42.	Vance-Bryan K, Rotschafer JC, Gilliland SS, Rodvold KA, Fitzgerald CM, Guay DR. A comparative
1358		assessment of vancomycin-associated nephrotoxicity in the young versus the elderly
1359	40	hospitalized patient. J Antimicrob Chemother 1994 ; 33(4): 811-21.
1360	43.	Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible
1361		renal toxicity associated with vancomycin in patients with health care-associated methicillin-
1362		resistant Staphylococcus aureus pneumonia. Clin Ther 2007 ; 29(6): 1107-15.
1363	44.	Fullmer A, McCue D, Feng C. Retrospective review of vancomycin-induced nephrotoxicity in
1364		patients with leukemia. J Oncol Pharm Pract 2014 ; 20(6): 403-8.
1365	45.	Chung J, Oh JM, Cho EM, et al. Optimal dose of vancomycin for treating methicillin-resistant
1366		Staphylococcus aureus pneumonia in critically ill patients. Anaesth Intensive Care 2011; 39(6):
1367		1030-7.
1368	46.	Hermsen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME. Clinical
1369		outcomes and nephrotoxicity associated with vancomycin trough concentrations during
1370		treatment of deep-seated infections. Expert Opin Drug Saf 2010 ; 9(1): 9-14.
1371	47.	Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for
1372		methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med
1373		2006 ; 166(19): 2138-44.
1374	48.	Kralovicova K, Spanik S, Halko J, et al. Do vancomycin serum levels predict failures of
1375		vancomycin therapy or nephrotoxicity in cancer patients? J Chemother 1997 ; 9(6): 420-6.
1376	49.	Zimmermann AE, Katona BG, Plaisance KI. Association of vancomycin serum concentrations with
1377		outcomes in patients with gram-positive bacteremia. Pharmacotherapy 1995 ; 15(1): 85-91.
1378	50.	Mohr JF, Murray BE. Point: Vancomycin is not obsolete for the treatment of infection caused by
1379		methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2007; 44(12): 1536-42.

1380 1381	51.	Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev 2014 ; 77: 50-7.
1382	52.	Mouton JW, Meletiadis J, Voss A, Turnidge J. Variation of MIC measurements: the contribution
1383	-	of strain and laboratory variability to measurement precision. J Antimicrob Chemother 2018 ;
1384		73(9): 2374-9.
1385	53.	Heil EL, Claeys KC, Mynatt RP, et al. Making the change to area under the curve-based
1386		vancomycin dosing. Am J Health Syst Pharm 2018 ; 75(24): 1986-95.
1387	54.	Jelliffe RW, Schumitzky A. Modeling, adaptive control, and optimal drug therapy. Med Prog
1388		Technol 1990 ; 16(1-2): 95-110.
1389	55.	Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring
1390		software: a review of available computer tools. Clin Pharmacokinet 2013 ; 52(1): 9-22.
1391	56.	Bayard DS, Jelliffe RW. A Bayesian approach to tracking patients having changing
1392		pharmacokinetic parameters. J Pharmacokinet Pharmacodyn 2004 ; 31(1): 75-107.
1393	57.	Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J
1394	-	Clin Pharmacol 1995 ; 39(6): 605-9.
1395	58.	Bauer LA. Applied clinical pharmacokinetics. 2nd ed. New York: McGraw-Hill Medical, 2008.
1396	59.	Beringer P. Winter's Basic Clinical Pharmacokinetics. 6th ed. Philadelphia: Wolters Kluwer
1397		Health, 2018 .
1398	60.	Marsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: a review of population
1399		pharmacokinetic analyses. Clin Pharmacokinet 2012 ; 51(1): 1-13.
1400	61.	Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic
1401		treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 2003; 36(11):
1402		1418-23.
1403	62.	Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B. Evaluation of vancomycin MIC Creep in
1404		methicillin resistant Staphylococcus aureus infections - a systematic review and meta-analysis.
1405		Clin Microbiol Infect 2017 .
1406	63.	Diaz R, Ramalheira E, Afreixo V, Gago B. Evaluation of vancomycin MIC Creep in Staphylococcus
1407		aureus infections. J Glob Antimicrob Resist 2017.
1408	64.	Sader HS, Farrell DJ, Flamm RK, Jones RN. Activity of ceftaroline and comparator agents tested
1409		against Staphylococcus aureus from patients with bloodstream infections in US medical centres
1410		(2009-13). J Antimicrob Chemother 2015 ; 70(7): 2053-6.
1411	65.	Pfaller MA, Sader HS, Flamm RK, Castanheira M, Smart JI, Mendes RE. In vitro activity of
1412		telavancin against clinically important Gram-positive pathogens from 69 U.S. medical centers
1413		(2015): potency analysis by U.S. Census Divisions. Microb Drug Resist 2017.
1414	66.	Duncan LR, Sader HS, Smart JI, Flamm RK, Mendes RE. Telavancin activity in vitro tested against
1415		a worldwide collection of Gram-positive clinical isolates (2014). J Glob Antimicrob Resist 2017.
1416	67.	Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B. Evaluation of vancomycin MIC creep in
1417		methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis.
1418		Clin Microbiol Infect 2018 ; 24(2): 97-104.
1419	68.	Kruzel MC, Lewis CT, Welsh KJ, et al. Determination of vancomycin and daptomycin MICs by
1420		different testing methods for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2011;
1421		49(6): 2272-3.
1422	69.	Hsu DI, Hidayat LK, Quist R, et al. Comparison of method-specific vancomycin minimum
1423		inhibitory concentration values and their predictability for treatment outcome of meticillin-
1424		resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents 2008 ; 32(5): 378-85.
1425	70.	Rybak MJ, Vidaillac C, Sader HS, et al. Evaluation of Vancomycin Susceptibility Testing for
1426		Methicillin-Resistant Staphylococcus aureus: Comparison of Etest and Three Automated Testing
1427		Methods. J Clin Microbiol 2013 ; 51(7): 2077-81.

1428	71.	Rybak MJ, Vidaillac C, Sader HS, et al. Evaluation of vancomycin susceptibility testing for
1429		methicillin-resistant Staphylococcus aureus: comparison of Etest and three automated testing
1430		methods. J Clin Microbiol 2013 ; 51(7): 2077-81.
1431	72.	Wysocki M, Delatour F, Faurisson F, et al. Continuous versus intermittent infusion of vancomycin
1432		in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob
1433		Agents Chemother 2001 ; 45(9): 2460-7.
1434	73.	Schmelzer TM, Christmas AB, Norton HJ, Heniford BT, Sing RF. Vancomycin intermittent dosing
1435		versus continuous infusion for treatment of ventilator-associated pneumonia in trauma
1436		patients. Am Surg 2013 ; 79(11): 1185-90.
1437	74.	Tafelski S, Nachtigall I, Troeger U, et al. Observational clinical study on the effects of different
1438		dosing regimens on vancomycin target levels in critically ill patients: Continuous versus
1439		intermittent application. J Infect Public Health 2015 ; 8(4): 355-63.
1440	75.	Hutschala D, Kinstner C, Skhirdladze K, Thalhammer F, Muller M, Tschernko E. Influence of
1441		vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus
1442		intermittent infusion. Anesthesiology 2009 ; 111(2): 356-65.
1443	76.	Akers KS, Cota JM, Chung KK, Renz EM, Mende K, Murray CK. Serum vancomycin levels resulting
1444		from continuous or intermittent infusion in critically ill burn patients with or without continuous
1445		renal replacement therapy. J Burn Care Res 2012 ; 33(6): e254-62.
1446	77.	Saugel B, Nowack MC, Hapfelmeier A, et al. Continuous intravenous administration of
1447		vancomycin in medical intensive care unit patients. J Crit Care 2013 ; 28(1): 9-13.
1448	78.	Hanrahan TP, Harlow G, Hutchinson J, et al. Vancomycin-associated nephrotoxicity in the
1449		critically ill: a retrospective multivariate regression analysis*. Crit Care Med 2014 ; 42(12): 2527-
1450		36.
1451	79.	Vuagnat A, Stern R, Lotthe A, et al. High dose vancomycin for osteomyelitis: continuous vs.
1452		intermittent infusion. J Clin Pharm Ther 2004 ; 29(4): 351-7.
1453	80.	Ingram PR, Lye DC, Fisher DA, Goh WP, Tam VH. Nephrotoxicity of continuous versus
1454		intermittent infusion of vancomycin in outpatient parenteral antimicrobial therapy. Int J
1455		Antimicrob Agents 2009 ; 34(6): 570-4.
1456	81.	Verrall AJ, Llorin R, Tam VH, et al. Efficacy of continuous infusion of vancomycin for the
1457	-	outpatient treatment of methicillin-resistant Staphylococcus aureus infections. J Antimicrob
1458		Chemother 2012 ; 67(12): 2970-3.
1459	82.	Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Fisher DA. Risk factors for nephrotoxicity
1460		associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J
1461		Antimicrob Chemother 2008 ; 62(1): 168-71.
1462	83.	Dubee V, Zeller V, Lhotellier L, et al. Continuous high-dose vancomycin combination therapy for
1463		methicillin-resistant staphylococcal prosthetic hip infection: a prospective cohort study. Clin
1464		Microbiol Infect 2013 ; 19(2): E98-105.
1465	84.	Raverdy V, Ampe E, Hecq JD, Tulkens PM. Stability and compatibility of vancomycin for
1466		administration by continuous infusion. J Antimicrob Chemother 2013 ; 68(5): 1179-82.
1467	85.	De Waele JJ, Danneels I, Depuydt P, Decruyenaere J, Bourgeois M, Hoste E. Factors associated
1468		with inadequate early vancomycin levels in critically ill patients treated with continuous
1469		infusion. Int J Antimicrob Agents 2013 ; 41(5): 434-8.
1470	86.	Ocampos-Martinez E, Penaccini L, Scolletta S, et al. Determinants of early inadequate
1471		vancomycin concentrations during continuous infusion in septic patients. Int J Antimicrob
1472		Agents 2012 ; 39(4): 332-7.
1473	87.	Mohammedi I, Descloux E, Argaud L, Le Scanff J, Robert D. Loading dose of vancomycin in
1474		critically ill patients: 15 mg/kg is a better choice than 500 mg. Int J Antimicrob Agents 2006 ;
1475		27(3): 259-62.

1476	88.	Li J, Udy AA, Kirkpatrick CM, Lipman J, Roberts JA. Improving vancomycin prescription in critical
1477		illness through a drug use evaluation process: a weight-based dosing intervention study. Int J
1478		Antimicrob Agents 2012 ; 39(1): 69-72.
1479	89.	Pea F, Furlanut M, Negri C, et al. Prospectively validated dosing nomograms for maximizing the
1480		pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients.
1481		Antimicrob Agents Chemother 2009 ; 53(5): 1863-7.
1482	90.	Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill
1483		patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents
1484		Chemother 2011 ; 55(6): 2704-9.
1485	91.	Truong J, Levkovich BJ, Padiglione AA. Simple approach to improving vancomycin dosing in
1486		intensive care: a standardised loading dose results in earlier therapeutic levels. Intern Med J
1487		2012 ; 42(1): 23-9.
1488	92.	Wang JT, Fang CT, Chen YC, Chang SC. Necessity of a loading dose when using vancomycin in
1489		critically ill patients. J Antimicrob Chemother 2001 ; 47(2): 246.
1490	93.	Barth RH, DeVincenzo N. Use of vancomycin in high-flux hemodialysis: experience with 130
1491		courses of therapy. Kidney Int 1996 ; 50(3): 929-36.
1492	94.	Brown M, Polisetty R, Gracely EJ, Cuhaci B, Schlecht HP. Weight-based loading of vancomycin in
1493	5.11	patients on hemodialysis. Clin Infect Dis 2011 ; 53(2): 164-6.
1494	95.	Vandecasteele SJ, De Bacquer D, De Vriese AS. Implementation of a dose calculator for
1495	55.	vancomycin to achieve target trough levels of 15-20 microg/mL in persons undergoing
1496		hemodialysis. Clin Infect Dis 2011 ; 53(2): 124-9.
1497	96.	Covajes C, Scolletta S, Penaccini L, et al. Continuous infusion of vancomycin in septic patients
1498	50.	receiving continuous renal replacement therapy. Int J Antimicrob Agents 2013 ; 41(3): 261-6.
1499	97.	Decker BS, Kays MB, Chambers M, Kraus MA, Moe SM, Sowinski KM. Vancomycin
1500	57.	pharmacokinetics and pharmacodynamics during short daily hemodialysis. Clin J Am Soc Nephrol
1500		2010 ; 5(11): 1981-7.
1501	98.	Alfandari S, Levent T, Descamps D, et al. Evaluation of glycopeptide use in nine French hospitals.
1502	50.	Med Mal Infect 2010 ; 40(4): 232-7.
1503	99.	Hochart C, Berthon C, Corm S, et al. Vancomycin serum concentration during febrile neutropenia
1504	55.	in patients with acute myeloid leukemia. Med Mal Infect 2011 ; 41(12): 652-6.
1505	100.	Lemaire X, Loiez C, Valette M, et al. Comparison of vancomycin and teicoplanin trough serum
1500	100.	levels in patients with infected orthopedic devices: new data for old therapies. J Infect
1508	101	Chemother 2011 ; 17(3): 370-4. Grace E. Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we
1509	101.	
1510	102	have learned over the past 30 years. J Antimicrob Chemother 2012 ; 67(6): 1305-10.
1511	102.	Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO, Jr. Vancomycin pharmacokinetics in
1512	102	normal and morbidly obese subjects. Antimicrob Agents Chemother 1982 ; 21(4): 575-80.
1513	103.	Crass RL, Dunn R, Hong J, Krop LC, Pai MP. Dosing vancomycin in the super obese: less is more. J
1514	101	Antimicrob Chemother 2018 ; 73(11): 3081-6.
1515	104.	Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in
1516		adults: executive summary. Expert Panel on the Identification, Evaluation, and Treatment of
1517	105	Overweight in Adults. Am J Clin Nutr 1998 ; 68(4): 899-917.
1518	105.	Pastor PN MD, Reuben C, Xia H. Chartbook on Trends in the Health of Americans. Health, United
1519	400	States, Hyattsville, Maryland: National Center for Health Statistics 2002 .
1520	106.	Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth:
1521	4.67	United States, 2015-2016. NCHS Data Brief 2017 ; (288): 1-8.
1522	107.	Choi YC, Saw S, Soliman D, et al. Intravenous vancomycin associated with the development of
1523		nephrotoxicity in patients with class III obesity. Ann Pharmacother 2017 ; 51(11): 937-44.

1524	100	Vance Price K. Cuey P. Cilliand CC. Deducid KA. Detechator IC. Effect of abovity on vancemy vin
1524	108.	Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC. Effect of obesity on vancomycin
1525		pharmacokinetic parameters as determined by using a Bayesian forecasting technique.
1526	100	Antimicrob Agents Chemother 1993 ; 37(3): 436-40.
1527	109.	Ducharme MP, Slaughter RL, Edwards DJ. Vancomycin pharmacokinetics in a patient population:
1528		effect of age, gender, and body weight. Ther Drug Monit 1994 ; 16(5): 513-8.
1529	110.	Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol
1530		1998 ; 54(8): 621-5.
1531	111.	Adane ED, Herald M, Koura F. Pharmacokinetics of vancomycin in extremely obese patients with
1532		suspected or confirmed Staphylococcus aureus infections. Pharmacotherapy 2015; 35(2): 127-
1533		39.
1534	112.	Hong J, Krop LC, Johns T, Pai MP. Individualized vancomycin dosing in obese patients: a two-
1535		sample measurement approach improves target attainment. Pharmacotherapy 2015 ; 35(5):
1536		455-63.
1537	113.	Pai MP. Drug dosing based on weight and body surface area: mathematical assumptions and
1538		limitations in obese adults. Pharmacotherapy 2012 ; 32(9): 856-68.
1539	114.	Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron
1540		1976 ; 16(1): 31-41.
1541	115.	Matzke GR, Aronoff GR, Atkinson AJ, Jr., et al. Drug dosing consideration in patients with acute
1542		and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes
1543		(KDIGO). Kidney Int 2011 ; 80(11): 1122-37.
1544	116.	Rodvold KA, Blum RA, Fischer JH, et al. Vancomycin pharmacokinetics in patients with various
1545		degrees of renal function. Antimicrob Agents Chemother 1988 ; 32(6): 848-52.
1546	117.	Pai MP, Hong J, Krop L. Peak measurement for vancomycin AUC estimation in obese adults
1547		improves precision and lowers bias. Antimicrob Agents Chemother 2017; 61(4).
1548	118.	Carreno JJ, Lomaestro B, Tietjan J, Lodise TP. Pilot study of a Bayesian approach to estimate
1549		vancomycin exposure in obese patients with limited pharmacokinetic sampling. Antimicrob
1550		Agents Chemother 2017 ; 61(5).
1551	119.	Fu CF, Huang JD, Wang JT, Lin SW, Wu CC. The ratio of pre-dialysis vancomycin trough serum
1552		concentration to minimum inhibitory concentration is associated with treatment outcomes in
1553		methicillin-resistant Staphylococcus aureus bacteremia. PLoS One 2018 ; 13(3): e0193585.
1554	120.	Zelenitsky SA, Ariano RE, McCrae ML, Vercaigne LM. Initial vancomycin dosing protocol to
1555		achieve therapeutic serum concentrations in patients undergoing hemodialysis. Clin Infect Dis
1556		2012 ; 55(4): 527-33.
1557	121.	Lewis SJ, Mueller BA. Contemporary vancomycin dosing in chronic hemodialysis patients does
1558		not meet AUC targets: Development of a new dosing model using Monte Carlo Simulation.
1559		Infectious Diseases Week. New Orleans LA, 2016 .
1560	122.	Scott MK, Mueller BA, Clark WR. Vancomycin mass transfer characteristics of high-flux cellulosic
1561	122.	dialysers. Nephrol Dial Transplant 1997 ; 12(12): 2647-53.
1562	123.	Pollard TA, Lampasona V, Akkerman S, et al. Vancomycin redistribution: dosing
	125.	recommendations following high-flux hemodialysis. Kidney Int 1994 ; 45(1): 232-7.
1563	124	
1564	124.	Clark WR, Mueller BA, Kraus MA, Macias WL. Extracorporeal therapy requirements for patients
1565	4.25	with acute renal failure. J Am Soc Nephrol 1997 ; 8(5): 804-12.
1566	125.	Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review.
1567	400	Semin Dial 2008 ; 21(1): 63-70.
1568	126.	Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm. Am J
1569		Health Syst Pharm 2004 ; 61(17): 1812-6.

1570	127.	Mueller BA, Smoyer WE. Challenges in developing evidence-based drug dosing guidelines for
1571		adults and children receiving renal replacement therapy. Clin Pharmacol Ther 2009 ; 86(5): 479-
1572		82.
1573	128.	Package Insert. Vancomycin hydrochloride for injection Hospira, Onc., Lake Forest, IL, March
1574		2017. Available at: http://labeling.pfizer.com/ShowLabeling.aspx?id=4645 . Accessed 8-20-18.
1575	129.	Lanese DM, Alfrey PS, Molitoris BA. Markedly increased clearance of vancomycin during
1576		hemodialysis using polysulfone dialyzers. Kidney Int 1989 ; 35(6): 1409-12.
1577	130.	Quale JM, O'Halloran JJ, DeVincenzo N, Barth RH. Removal of vancomycin by high-flux
1578		hemodialysis membranes. Antimicrob Agents Chemother 1992 ; 36(7): 1424-6.
1579	131.	Scott MK, Macias WL, Kraus MA, Clark WR, Carfagna MA, Mueller BA. Effects of dialysis
1580		membrane on intradialytic vancomycin administration. Pharmacotherapy 1997 ; 17(2): 256-62.
1581	132.	Mason NA, Neudeck BL, Welage LS, Patel JA, Swartz RD. Comparison of 3 vancomycin dosage
1582		regimens during hemodialysis with cellulose triacetate dialyzers: post-dialysis versus intradialytic
1583		administration. Clin Nephrol 2003 ; 60(2): 96-104.
1584	133.	Ariano RE, Fine A, Sitar DS, Rexrode S, Zelenitsky SA. Adequacy of a vancomycin dosing regimen
1585		in patients receiving high-flux hemodialysis. Am J Kidney Dis 2005 ; 46(4): 681-7.
1586	134.	Lucksiri A, Scott MK, Mueller BA, Hamburger RJ, Sowinski KM. CAHP-210 dialyzer influence on
1587	-	intra-dialytic vancomycin removal. Nephrol Dial Transplant 2002 ; 17(9): 1649-54.
1588	135.	Nyman HA, Agarwal A, Senekjian HO, Leypoldt JK, Cheung AK. Removal of vancomycin
1589		administered during dialysis by a high-flux dialyzer. Hemodial Int 2018 .
1590	136.	Crawford BS, Largen RF, Walton T, Doran JJ. Once-weekly vancomycin for patients receiving
1591		high-flux hemodialysis. Am J Health Syst Pharm 2008 ; 65(13): 1248-53.
1592	137.	Maxson R, Pate J, Starr J. Evaluation of weight-based vancomycin dosing for hospitalized
1593	10/1	hemodialysis patients. Ren Fail 2016 ; 38(10): 1677-82.
1594	138.	Kielstein JT, Czock D, Schopke T, et al. Pharmacokinetics and total elimination of meropenem
1595	100.	and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit Care Med
1596		2006 ; 34(1): 51-6.
1597	139.	Scoville BA, Mueller BA. Medication dosing in critically ill patients with acute kidney injury
1598	100.	treated with renal replacement therapy. Am J Kidney Dis 2013 ; 61(3): 490-500.
1599	140.	Harris LE, Reaves AB, Krauss AG, Griner J, Hudson JQ. Evaluation of antibiotic prescribing
1600	140.	patterns in patients receiving sustained low-efficiency dialysis: opportunities for pharmacists. Int
1601		J Pharm Pract 2013 ; 21(1): 55-61.
1602	141.	Pasko DA, Churchwell MD, Salama NN, Mueller BA. Longitudinal hemodiafilter performance in
1602	141.	modeled continuous renal replacement therapy. Blood Purif 2011 ; 32(2): 82-8.
1603	142.	Frazee EN, Kuper PJ, Schramm GE, et al. Effect of continuous venovenous hemofiltration dose on
1605	142.	achievement of adequate vancomycin trough concentrations. Antimicrob Agents Chemother
1605		2012 ; 56(12): 6181-5.
1607	143.	Chaijamorn W, Jitsurong A, Wiwattanawongsa K, Wanakamanee U, Dandecha P. Vancomycin
	145.	
1608		clearance during continuous venovenous haemofiltration in critically ill patients. Int J Antimicrob
1609	1 4 4	Agents 2011 ; 38(2): 152-6.
1610	144.	McNeil JC, Kok EY, Forbes AR, et al. Healthcare-associated Staphylococcus aureus bacteremia in
1611		children: evidence for reverse vancomycin creep and impact of vancomycin trough values on
1612	4.45	outcome. Pediatr Infect Dis J 2016 ; 35(3): 263-8.
1613	145.	McNeil JC, Kaplan SL, Vallejo JG. The influence of the route of antibiotic administration,
1614		methicillin susceptibility, vancomycin duration and serum trough concentration on outcomes of
1615		pediatric Staphylococcus aureus bacteremic osteoarticular infection. Pediatr Infect Dis J 2017 ;
1616		36(6): 572-7.

1617	146.	Fiorito TM, Luther MK, Dennehy PH, LaPlante KL, Matson KL. Nephrotoxicity with vancomycin in
1618		the pediatric population: a systematic review and meta-analysis. Pediatr Infect Dis J 2018; 37(7):
1619		654-61.
1620	147.	Hahn A, Frenck RW, Jr., Allen-Staat M, Zou Y, Vinks AA. Evaluation of target attainment of
1621		vancomycin area under the curve in children with methicillin-resistant Staphylococcus aureus
1622		bacteremia. Ther Drug Monit 2015 ; 37(5): 619-25.
1623	148.	Yoo RN, Kim SH, Lee J. Impact of initial vancomycin trough concentration on clinical and
1624		microbiological outcomes of methicillin-resistant Staphylococcus aureus bacteremia in children.
1625		J Korean Med Sci 2017 ; 32(1): 22-8.
1626	149.	Eiland LS, English TM, Eiland EH, 3rd. Assessment of vancomycin dosing and subsequent serum
1627		concentrations in pediatric patients. Ann Pharmacother 2011 ; 45(5): 582-9.
1628	150.	Frymoyer A, Hersh AL, Benet LZ, Guglielmo BJ. Current recommended dosing of vancomycin for
1629		children with invasive methicillin-resistant Staphylococcus aureus infections is inadequate.
1630		Pediatr Infect Dis J 2009 ; 28(5): 398-402.
1631	151.	Frymoyer A, Guglielmo BJ, Hersh AL. Desired vancomycin trough serum concentration for
1632		treating invasive methicillin-resistant Staphylococcal infections. Pediatr Infect Dis J 2013 ; 32(10):
1633		1077-9.
1634	152.	Le J, Bradley JS, Murray W, et al. Improved vancomycin dosing in children using area under the
1635		curve exposure. Pediatr Infect Dis J 2013 ; 32(4): e155-63.
1636	153.	Ploessl C, White C, Manasco K. Correlation of a vancomycin pharmacokinetic model and trough
1637		serum concentrations in pediatric patients. Pediatr Infect Dis J 2015; 34(10): e244-7.
1638	154.	Madigan T, Sieve RM, Graner KK, Banerjee R. The effect of age and weight on vancomycin serum
1639		trough concentrations in pediatric patients. Pharmacotherapy 2013 ; 33(12): 1264-72.
1640	155.	Abdel Hadi O, Al Omar S, Nazer LH, Mubarak S, Le J. Vancomycin pharmacokinetics and
1641		predicted dosage requirements in pediatric cancer patients. J Oncol Pharm Pract 2016; 22(3):
1642		448-53.
1643	156.	Le J, Vaida F, Nguyen E, et al. Population-based pharmacokinetic modeling of vancomycin in
1644		children with renal insufficiency. J Pharmacol Clin Toxicol 2014 ; 2(1): 1017-26.
1645	157.	Avedissian SN, Bradley E, Zhang D, et al. Augmented renal clearance using population-based
1646		pharmacokinetic modeling in critically-ill pediatric patients. Pediatr Crit Care Med 2017 ; 18(9):
1647		e388-e94.
1648	158.	Zhang H, Wang Y, Gao P, et al. Pharmacokinetic characteristics and clinical outcomes of
1649		vancomycin in young children with various degrees of renal function. J Clin Pharmacol 2016 ;
1650		56(6): 740-8.
1651	159.	Demirjian A, Finkelstein Y, Nava-Ocampo A, et al. A randomized controlled trial of a vancomycin
1652		loading dose in children. Pediatr Infect Dis J 2013 ; 32(11): 1217-23.
1653	160.	McKamy S, Hernandez E, Jahng M, Moriwaki T, Deveikis A, Le J. Incidence and risk factors
1654		influencing the development of vancomycin nephrotoxicity in children. J Pediatr 2011 ; 158(3):
1655		422-6.
1656	161.	Knoderer CA, Gritzman AL, Nichols KR, Wilson AC. Late-occurring vancomycin-associated acute
1657		kidney injury in children receiving prolonged therapy. Ann Pharmacother 2015 ; 49(10): 1113-9.
1658	162.	Sinclair EA, Yenokyan G, McMunn A, Fadrowski JJ, Milstone AM, Lee CK. Factors associated with
1659		acute kidney injury in children receiving vancomycin. Ann Pharmacother 2014 ; 48(12): 1555-62.
1660	163.	Matson KL, Shaffer CL, Beck GL, Simonsen KA. Assessment of initial serum vancomycin trough
1661		concentrations and their association with initial empirical weight-based vancomycin dosing and
1662		development of nephrotoxicity in children: a multicenter retrospective study. Pharmacotherapy
1663		2015 ; 35(3): 337-43.

1664	164.	Ragab AR, Al-Mazroua MK, Al-Harony MA. Incidence and predisposing factors of vancomycin-
1665		induced nephrotoxicity in children. Infect Dis Ther 2013 ; 2(1): 37-46.
1666	165.	Le J, Ny P, Capparelli E, et al. Pharmacodynamic characteristics of nephrotoxicity associated with
1667		vancomycin use in children. J Pediatric Infect Dis Soc 2015 ; 4(4): e109-16.
1668	166.	Le J, Ngu B, Bradley JS, et al. Vancomycin monitoring in children using bayesian estimation. Ther
1669		Drug Monit 2014 ; 36(4): 510-8.
1670	167.	Kendrick JG, Carr RR, Ensom MH. Pharmacokinetics and drug dosing in obese children. J Pediatr
1671		Pharmacol Ther 2010 ; 15(2): 94-109.
1672	168.	Moffett BS, Kim S, Edwards MS. Vancomycin dosing in obese pediatric patients. Clin Pediatr
1673		(Phila) 2011 ; 50(5): 442-6.
1674	169.	Heble DE, Jr., McPherson C, Nelson MP, Hunstad DA. Vancomycin trough concentrations in
1675		overweight or obese pediatric patients. Pharmacotherapy 2013 ; 33(12): 1273-7.
1676	170.	Miller M, Miller JL, Hagemann TM, Harrison D, Chavez-Bueno S, Johnson PN. Vancomycin dosage
1677	_/ 01	in overweight and obese children. Am J Health Syst Pharm 2011 ; 68(21): 2062-8.
1678	171.	Nassar L, Hadad S, Gefen A, et al. Prospective evaluation of the dosing regimen of vancomycin in
1679	1,1.	children of different weight categories. Curr Drug Saf 2012 ; 7(5): 375-81.
1680	172.	Eiland LS, Sonawane KB. Vancomycin dosing in healthy-weight, overweight, and obese pediatric
1681	172.	patients. J Pediatr Pharmacol Ther 2014 ; 19(3): 182-8.
1682	173.	Camaione L, Elliott K, Mitchell-Van Steele A, Lomaestro B, Pai MP. Vancomycin dosing in children
1683	175.	and young adults: back to the drawing board. Pharmacotherapy 2013 ; 33(12): 1278-87.
1684	174.	Natale S, Bradley J, Nguyen WH, et al. Pediatric obesity: pharmacokinetic alterations and effects
	1/4.	
1685	175	on antimicrobial dosing. Pharmacotherapy 2017 ; 37(3): 361-78.
1686	175.	Le J, Capparelli EV, Wahid U, et al. Bayesian estimation of vancomycin pharmacokinetics in
1687	170	obese children: matched case-control study. Clin Ther 2015 ; 37(6): 1340-51.
1688	176.	Nguyen WN BJ, Capparelli EV, et al. Optimal weight-based vancomycin dosing in obese children
1689		using Bayesian estimation. In: Interscience Conference on Antimicroial Agents and
1690	4 7 7	Chemotherapy. San Diego, CA, 2015.
1691	177.	Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative
1692		description using weight and postmenstrual age. Pediatric nephrology 2009 ; 24(1): 67-76.
1693	178.	Mehrotra N, Tang L, Phelps SJ, Meibohm B. Evaluation of vancomycin dosing regimens in
1694		preterm and term neonates using Monte Carlo simulations. Pharmacotherapy 2012 ; 32(5): 408-
1695		19.
1696	179.	Marques-Minana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin
1697		in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol 2010 ; 70(5): 713-20.
1698	180.	Irikura M, Fujiyama A, Saita F, et al. Evaluation of the vancomycin dosage regimen based on
1699		serum creatinine used in the neonatal intensive care unit. Pediatrics international : official
1700		journal of the Japan Pediatric Society 2011 ; 53(6): 1038-44.
1701	181.	Capparelli EV, Lane JR, Romanowski GL, et al. The influences of renal function and maturation on
1702		vancomycin elimination in newborns and infants. Journal of clinical pharmacology 2001 ; 41(9):
1703		927-34.
1704	182.	Zhao W, Lopez E, Biran V, Durrmeyer X, Fakhoury M, Jacqz-Aigrain E. Vancomycin continuous
1705		infusion in neonates: dosing optimisation and therapeutic drug monitoring. Archives of disease
1706		in childhood 2013 ; 98(6): 449-53.
1707	183.	Frymoyer A, Hersh AL, El-Komy MH, et al. Association between vancomycin trough
1708		concentration and area under the concentration-time curve in neonates. Antimicrob Agents
1709		Chemother 2014 ; 58(11): 6454-61.
1710	184.	Stockmann C, Hersh AL, Roberts JK, et al. Predictive Performance of a Vancomycin Population
1711		Pharmacokinetic Model in Neonates. Infect Dis Ther 2015 ; 4(2): 187-98.

1712 1713 1714	185.	Cies JJ, Moore WS, 2nd, Nichols K, Knoderer CA, Carella DM, Chopra A. Population pharmacokinetics and pharmacodynamic target attainment of vancomycin in neonates on extracorporeal life support. Pediatr Crit Care Med 2017 ; 18(10): 977-85.	
1715	186.	Leroux S, Jacqz-Aigrain E, Biran V, et al. Clinical Utility and Safety of a Model-Based Patient-	
1716		Tailored Dose of Vancomycin in Neonates. Antimicrob Agents Chemother 2016 ; 60(4): 2039-42.	
1717	187.	Lestner JM, Hill LF, Heath PT, Sharland M. Vancomycin toxicity in neonates: a review of the	
1718		evidence. Current opinion in infectious diseases 2016 ; 29(3): 237-47.	
1719	188.	Bhargava V, Malloy M, Fonseca R. The association between vancomycin trough concentrations	
1720		and acute kidney injury in the neonatal intensive care unit. BMC pediatrics 2017 ; 17(1): 50.	
1721	189.	Constance JE, Balch AH, Stockmann C, et al. A propensity-matched cohort study of vancomycin-	
1722		associated nephrotoxicity in neonates. Arch Dis Child Fetal Neonatal Ed 2016; 101(3): F236-43.	
1723			
1724			
1725	Q:\ppd\Policy Development\Guidelines and Statements\Clinical Practice Guidelines\VAN-Consensus-2019-for-Comment.docx		
1726			