2016 Pharmacotherapy Specialty Examination Review Course: Cardiovascular Disease: Secondary Prevention Case #1

Snehal H. Bhatt, Pharm.D., BCPS
Associate Professor of Pharmacy Practice
Massachusetts College of Pharmacy and Health Sciences
Clinical Pharmacist
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Learning Objectives:

At the conclusion of this session, given a patient case, the participant should be able to

1. Select the appropriate treatment and monitoring of a complex patient-case with multiple conditions, including acute decompensated heart failure/electrolyte disturbances, acute coronary syndromes (ACS), and gastroesophageal reflux disease (GERD).
2. Develop a plan to address continuity of care issues.
3. Formulate a medication therapy plan for smoking cessation.
5. Discuss quality of life in this population
7. Identify and recommend appropriate resource organizations/groups to assist a specific patient.

Format: Today’s session will be a highly interactive discussion of the attached case studies.

Premise: You are a clinical pharmacy specialist working in a large tertiary care academic medical center. Your job is to recommend and critically evaluate the response to cardiovascular medications prescribed for these patients for acute coronary syndromes and related cardiovascular diseases that require admission to the hospital. You are also responsible for assisting in optimizing medication therapies to ensure safe and effective transition of care from the hospital to home.
BA is a 63-year-old man who was awakened from sleep at 5 am with what he describes as 9/10 sharp, shooting substernal chest pain that radiates up to his jaw. He has never experienced anything like this and immediately called 911. While being transported in the ambulance, he was given two 0.3-mg sublingual nitroglycerin tablets and four baby aspirin (81-mg chewable tablets) as a single dose.

Upon arrival at the emergency department at his local hospital, he was stable, but still complained of 2/10 chest pain. An ECG was immediately performed and a blood sample was sent to the laboratory for urgent assay of cardiac enzymes. The ECG revealed > 1 mm ST-segment depressions in the anterior leads. Minutes later, cardiac enzymes were noted to be positive. BA was deemed a candidate for early revascularization via cardiac catheterization, and a decision was made to transfer BA to a hospital with those capabilities. Immediately prior to transfer, he was given a single 300-mg oral clopidogrel dose.

Past Medical History (major illnesses and surgeries)
From Medical Record
Hypertension
Dyslipidemia
Type 2 diabetes mellitus
Coronary artery disease, s/p balloon angioplasty many years ago
Osteoarthritis

Current Prescription/OTC Medications

<table>
<thead>
<tr>
<th>Start Date</th>
<th>Drug Name/Strength/Regimen</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aspirin 81 mg orally once daily</td>
<td>ASCVD Prevention</td>
</tr>
<tr>
<td></td>
<td>Ibuprofen 600 mg orally three times a day</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td></td>
<td>Lisinopril 20 mg orally once daily</td>
<td>Hypertension, Diabetes</td>
</tr>
<tr>
<td></td>
<td>Amlodipine 5 mg orally once daily</td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Atorvastatin 20 mg orally once daily</td>
<td>Dyslipidemia</td>
</tr>
<tr>
<td></td>
<td>Metformin 500 mg orally twice a day</td>
<td>Type 2 diabetes mellitus</td>
</tr>
</tbody>
</table>

Vaccinations: Influenza vaccine: Fall annually

Pharmacy(ies) Used:
Neighborhood Pharmacy
RX Payment: Private Insurance (prefers generic medications, unsure of what his copays are) Meds Admin by: Self

Drug Allergies/Adverse Effects: NKDA

Family Medical History: Non-contributory

<table>
<thead>
<tr>
<th>Social History</th>
<th>Residence: lives at home w/ wife</th>
<th>Occupation: Engineer</th>
</tr>
</thead>
</table>

Smoking: Smokes cigarettes 1 ppd x 20 years EtOH: He drinks 2-3 beers most days of the week

Illicit Drugs: Never Diet: Reports eating 3 meals per day mostly whatever his wife cooks. Has not really kept track of how much salt he consumes daily.

Education: College graduate Family/Social Environment: Lives with wife; has one son and one daughter)

Review of Systems: Per HPI:

Objective Data (observations/vital signs/physical examination/labs)

BP= 157/78 mm Hg Pulse= 77 bpm, regular RR = 20/min T = 97.6 °F

Height = 5’ 11” Weight = 215 lb BMI =30 kg/m² Waist Circumference: 38 inches

Remarkable physical exam findings:

Gen: Pleasant male in acute distress from chest pain

Chest: 2/10 radiating substernal chest pain

Lungs: Mild inspiratory and expiratory crackles ¼ of the way up both lung fields bilaterally

Extremities: Trace bilateral edema of both lower extremities

Laboratory Tests

<table>
<thead>
<tr>
<th>Chem Panel</th>
<th>CBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na = 138 mEq/L</td>
<td>WBC = 7.8 x 10⁹/L</td>
</tr>
<tr>
<td>K = 4.4 mEq/L</td>
<td>Hgb = 12.0 g/dL</td>
</tr>
<tr>
<td>Cl = 100 mEq/L</td>
<td>Hct = 37.2%</td>
</tr>
<tr>
<td>CO₂ = 20 mg/dL</td>
<td>Platelets = 175 x 10⁹/L</td>
</tr>
<tr>
<td>BUN = 17 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Scr = 0.8 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Glucose = 134 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Ca = 9.4 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Mg = 1.6 mg/dL</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous (obtained in the emergency department)

Troponin T: 1.85 ng/mL

CK-MB: 28 ng/mL

CK: 210 ng/mL

ECG: > 1 mm ST-depresssion in V2-V4
Summary of 2014 ACC/AHA NSTE-ACS Pharmacotherapy Recommendations:

Antiplatelet Therapy to Support Primary Percutaneous Coronary Intervention (PCI) for Non-ST-Elevation Acute Coronary Syndromes (NSTE-ACS)

Class I
1. Non-enteric-coated, chewable aspirin (162 mg to 325 mg) should be given to all patients with NSTE-ACS without contraindications as soon as possible after presentation. (Level of Evidence: A).
2. A maintenance daily dose of aspirin (81–162 mg/day) should be continued indefinitely. (Level of Evidence: B).
3. A loading dose of a P2Y12 receptor inhibitor should be given to all patients with NSTE-ACS without contraindications who are treated with either an early invasive or ischemia-guided strategy. Options include:
 a. Clopidogrel 600 mg orally (Level of Evidence: B)
 b. Ticagrelor 180 mg orally (Level of Evidence: B)
4. Oral P2Y12 inhibitor therapy should be given for 1 year to patients with NSTE-ACS who receive a stent (bare-metal or drug-eluting), using the following maintenance doses:
 a. Clopidogrel 75 mg daily (Level of Evidence: B)
 b. Prasugrel 10 mg daily (Level of Evidence: B)
 c. Ticagrelor 90 mg twice a day (Level of Evidence: B) (Note: aspirin should be dosed at 81 mg daily when used with ticagrelor)

Class IIa
1. It is reasonable to use 81 mg/day of aspirin in preference to larger maintenance doses (Level of Evidence: B).
2. It is reasonable to start treatment with an intravenous glycoprotein (GP) IIb/IIIa receptor antagonist in selected patients with NSTE-ACS who are receiving unfractionated heparin (UFH). Examples include:
 a. Abciximab: 0.25-mg/kg IV bolus, then 0.125 mcg/kg/min (maximum 10 mcg/min) IV (Level of Evidence: A)
 b. High bolus-dose tirofiban: 25-mcg/kg IV bolus, then 0.15 mcg/kg/min IV (Level of Evidence: B). In patients with CrCl <30 mL/min, reduce infusion rate by 50%
 c. Double-bolus eptifibatide: 180-mcg/kg IV bolus, then 2 mcg/kg/min IV; a second 180-mcg/kg bolus is administered 10 min after the first bolus (Level of Evidence: B). In patients with CrCl <30 mL/min, reduce infusion rate by 50%

Class III: Harm
Prasugrel should not be administered to patients with a history of prior stroke or transient ischemic attack. (Level of Evidence: B).
Anticoagulant Therapy to Support Primary PCI for NSTE-ACS

Class I

1. For patients with NSTEMI, the following supportive anticoagulant regimens are recommended:

 a. UFH, with additional boluses administered as needed to maintain a therapeutic activated clotting time (ACT), taking into account whether a GP IIb/IIIa receptor antagonist has been administered. (Level of Evidence: C).
 Dosing: 50–70 units/kg IV bolus (with GP IIb/IIIa antagonist), or 70–100 units/kg IV bolus (without GP IIb/IIIa antagonist). Repeat UFH bolus doses as needed to achieve a therapeutic ACT (200–250 seconds with GP IIb/IIIa antagonist, 250–300 seconds without GP IIb/IIIa antagonist).

 b. Bivalirudin with or without prior treatment with UFH. (Level of Evidence: B).
 Dosing: 0.75 mg/kg IV bolus, followed by 1.75 mg/kg/hr IV infusion.

Class III: Harm

Fondaparinux should not be used as the sole anticoagulant because of the risk of catheter thrombosis. (Level of Evidence: B).

Summary of routine pharmacotherapy medications after NSTE-ACS:

Beta Blockers

Class I

1. Oral beta blockers should be initiated within the first 24 hours in patients who do not have any of the following: signs of heart failure (HF), evidence of a low-output state, increased risk for cardiogenic shock, or other contraindications to use of oral beta blockers (PR interval more than 0.24 seconds, second- or third-degree heart block, active asthma, or reactive airways disease). (Level of Evidence: A).

2. Patients with initial contraindications to the use of beta blockers within the first 24 hours should be reevaluated to determine their subsequent eligibility. (Level of Evidence: C)

Class IIa

1. It is reasonable to administer intravenous beta blockers at the time of presentation to patients with NSTEMI and no contraindications to use of the drugs who are hypertensive or have ongoing ischemia. (Level of Evidence: B).

Class III (harm)

1. Administration of intravenous beta blockers is potentially harmful in patients with NSTE-ACS who have risk factors for shock. (Level of Evidence: B)
Renin-Angiotensin-Aldosterone System Inhibitors

Class I
1. Angiotensin converting-enzyme (ACE) inhibitors should be started and continued indefinitely in all patients with a left ventricular ejection fraction (LVEF) less than 0.40 and in those with hypertension, diabetes mellitus, or stable chronic kidney disease (CKD) (Section 7.6), unless contraindicated. (Level of Evidence: A).

2. Angiotensin receptor blockers (ARBs) are recommended in patients with HF or myocardial infarction (MI) with a LVEF less than 0.40 who are ACE inhibitor intolerant. (Level of Evidence: A).

3. Aldosterone blockade is recommended in patients post–MI without significant renal dysfunction (creatinine >2.5 mg/dL in men or >2.0 mg/dL in women) or hyperkalemia (K >5.0 mEq/L) who are receiving therapeutic ACE inhibitor and beta blocker doses and have a LVEF 0.40 or less, diabetes mellitus, or HF. (Level of Evidence: A).

Lipid Management

Class I
1. High-intensity statin therapy should be initiated or continued in all patients with NSTEMI and no contraindications to its use. (Level of Evidence: A).

2. Examples of high-intensity and moderate-intensity statins, as defined in the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol:

<table>
<thead>
<tr>
<th>High Intensity Statin</th>
<th>Moderate Intensity Statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 40–80 mg daily</td>
<td>Atorvastatin 10–20 mg daily</td>
</tr>
<tr>
<td>Rosuvastatin 20–40 mg daily</td>
<td>Rosuvastatin 5–10 mg daily</td>
</tr>
<tr>
<td></td>
<td>Pravastatin 40–80 mg daily</td>
</tr>
<tr>
<td></td>
<td>Fluvastatin 40 mg twice daily</td>
</tr>
<tr>
<td></td>
<td>Fluvastatin XL 80 mg daily</td>
</tr>
<tr>
<td></td>
<td>Lovastatin 40 mg daily</td>
</tr>
<tr>
<td></td>
<td>Pitavastatin 2–4 mg daily</td>
</tr>
<tr>
<td></td>
<td>Simvastatin 20–40 mg daily</td>
</tr>
</tbody>
</table>

Presentation Questions

1. Which of the following represents the best initial anticoagulant pharmacotherapy?
 a. Unfractionated heparin
 b. Enoxaparin
 c. Fondaparinux
 d. Bivalirudin

2. Based on clinical trial data, which of the following medications probably is responsible for BA’s thrombocytopenia?
 a. UFH
 b. Eptifibatide
 c. Clopidogrel
 d. Aspirin

3. Based on clinical trial data, which of the following P2Y12 inhibitors is associated with a reduction in all-cause mortality when given in combination with aspirin for the treatment of ACS?
 a. Ticagrelor
 b. Prasugrel
 c. Clopidogrel
 d. Ticlopidine

4. Based on current clinical data, which of the following represents the optimal dose of aspirin for BA?
 a. Enteric-coated aspirin 81 mg daily indefinitely
 b. Enteric-coated aspirin 325 mg daily for 6 months followed by 81 mg daily indefinitely
 c. Aspirin 81 mg daily indefinitely
 d. Aspirin 325 mg daily indefinitely

5. Which of the following represents the most appropriate duration of dual antiplatelet therapy (DAPT)?
 a. 1 month
 b. 6 months
 c. 12 months
 d. 30 months

6. Which of the following therapies should be initiated to reduce all-cause mortality?
 a. Valsartan/sacubitril
 b. Eplerenone
 c. Losartan
 d. Furosemide
7. Which of the following represents the best outpatient monitoring regimen to minimize the risk of hyperkalemia?
 a. Check serum potassium 4 weeks after hospital discharge
 b. Check serum creatinine and serum potassium within 1 week after hospital discharge and again 4 weeks later
 c. Check serum potassium and serum creatinine within 4 weeks after hospital discharge
 d. Check serum creatinine 4 weeks after hospital discharge

8. BA is encouraged to stop smoking. Which of the following changes in his quality of life (QOL) are likely since BA experienced an MI?
 a. It will worsen if he continues to smoke cigarettes
 b. It will not change if he continues to smoke cigarettes
 c. It will improve if he changes to smoking e-cigarettes
 d. It will not change if he switches to smoking e-cigarettes

9. Which of the following NSAIDs is most appropriate for BA’s osteoarthritis?
 a. Ibuprofen 600 mg po three times daily
 b. Naproxen 220 mg po twice daily
 c. Celecoxib 200 mg po twice daily
 d. Diclofenac 75 mg po twice daily

10. Which of the following represents the best acid suppressive therapy recommendation to minimize both bleeding risk and interactions with dual antiplatelet therapy (DAPT) in this patient?
 a. Pantoprazole 40 mg daily
 b. Esomeprazole 20 mg daily
 c. Omeprazole 20 mg daily
 d. Ranitidine 150 mg twice daily

11. If BA was interested in a support group that allowed him to meet with other MI survivors, which of the following would be the best to recommend?
 a. American Heart Association Support Network
 b. Ironheart Foundation
 c. American College of Cardiology
 d. Mended Hearts

12. Which of the following represents the most appropriate beta-blocker therapy at this time?
 a. Continue carvedilol 6.25 mg po twice daily
 b. Decrease carvedilol to 3.125 mg po twice daily
 c. Increase carvedilol to 12.5 mg po twice daily
 d. Withhold carvedilol while BA is volume overloaded

13. In addition to diuretic therapy, which of the following represents the best approach to managing hyponatremia in this patient?
 a. Start oral tolvaptan
 b. Give 3% sodium chloride IV
 c. Give 0.9% sodium chloride IV
 d. Use fluid restriction
References and Recommended Reading:

Acute Coronary Syndromes:

Heart Failure:

Hyponatremia:

Smoking Cessation:

University of California San Francisco Center for Tobacco Control Research and Education. Smoking cessation leadership center. http://tobacco.ucsf.edu/content/rx-change-clinician-assisted-tobacco-cessation

Patient resource organizations:

Mended Hearts: a national and community non-profit support group for patients and families with heart disease. http://mendedhearts.org

American Heart Association patient tools and resources for cardiovascular diseases. http://www.heart.org/HEARTORG/Conditions/Conditions_UCM_001087_SubHomePage.jsp

Drug-induced thrombocytopenia:

Cardiovascular Disease: Secondary Prevention Case # 1

Snehal H. Bhatt, Pharm.D., BCPS
Associate Professor of Pharmacy Practice
Massachusetts College of Pharmacy and Health Sciences
Clinical Pharmacist
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Learning Objectives

• Select the appropriate treatment and monitoring of a complex patient with multiple conditions, including, acute decompensated heart failure/electrolyte disturbances, acute coronary syndromes (ACS), and gastroesophageal reflux disease (GERD).
• Develop a plan to address continuity of care issues.
• Formulate a medication therapy plan for smoking cessation.
• Determine how to manage drug – drug and drug-disease interactions in a patient with ischemic heart disease.
• Discuss quality of life in this population.
• Discuss national benchmarking standards and implications to patient care.
• Identify and recommend appropriate resource organizations/groups to assist a specific patient.

Case

• BA: 63 year-old Caucasian man
 – Presents with crushing sub-ternal chest pain radiating to his jaw
 – Awakened from sleep with 9/10 pain
 – Called 911 who quickly arrived to his home:
• At an outside hospital:
 – Nitroglycerin 0.3 mg SL x 2 dose
 – Aspirin 324 mg (4 x 81mg tablets) chewed po x 1 dose
 – Clopidogrel 300 mg po x 1 dose
• ECG: ST-depressions suggestive of ischemia
• Transfer to hospital with catheterization laboratory arranged.

Disclosure

• I declare that I have served on the advisory board and speaker’s bureau for Janssen Pharmaceuticals, Inc.

Premise

• You are a clinical pharmacy specialist working in a tertiary care academic medical center.
• Your job is to recommend and critically evaluate the response to cardiovascular medications prescribed for this patient for ACS management, along with optimizing his medication regimen after hospital discharge.
• The medical team will rely on your expertise to optimize drug therapy for multiple chronic cardiovascular conditions.

Case

• Past Medical History:
 – Hypertension
 – Osteoarthritis
 – Dyslipidemia
 – Diabetes
 – Coronary artery disease (CAD)
 – History of prior Percutaneous Coronary Intervention (PCI) with balloon angioplasty
• Social history:
 – (+) smoking 1 pack per day

• Current Medications:
 – Aspirin 81 mg once daily
 – Lisinopril 20 mg once daily
 – Amlodipine 5 mg once daily
 – Atorvastatin 20 mg once daily
 – Metformin 500 mg twice a day
 – Ibuprofen 600 mg three times a day

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Case: NSTEMI

- **Physical Exam:**
 - Mild inspiratory and expiratory crackles ¼ of the way up both lung fields bilaterally
 - Trace bilateral edema of both lower extremities
- **ECG:** > 1 mm ST-depressions V1-V4
- **Laboratory Data:**
 - Troponin T: 1.85 ng/mL
 - CK-MB: 28 ng/mL
 - CK: 210 ng/mL
 - Calcium: 9.4 mg/dL
 - Magnesium: 1.6 mEq/dL

Question #1
Which of the following represents the best initial anticoagulant pharmacotherapy?

A. Unfractionated heparin
B. Enoxaparin
C. Fondaparinux
D. Bivalirudin

Initial Parenteral Anticoagulant Therapy in Patients With Definite NSTE-ACS

Anticoagulation, in addition to antiplatelet therapy, is recommended for all patients irrespective of initial treatment strategy. Treatment options include:

- UFH, with additional boluses administered as needed to maintain therapeutic activated clotting time levels, taking into account whether a glycoprotein (GP) IIb/IIIa inhibitor has been administered or
- Bivalirudin: 0.10 mg/kg loading dose followed by 0.25 mg/kg per hour (only in patients managed with an early invasive strategy), continued until diagnostic angiography or PCI, with only provisional use of GP IIb/IIIa inhibitor (GPI), provided the patient is also treated with dual antiplatelet therapy (DAPT).

ACUITY: Study Design

- Moderate-high risk ACS
- UFH or Enoxaparin + GPI
- Bivalirudin + GPI
- Bivalirudin Alone
- PCI
- CABG
- Medical management

Results: UFH/enox + GPI vs. Bivalirudin + GPI

<table>
<thead>
<tr>
<th>Outcome</th>
<th>UFH/Enoxaparin + GPI (N=4603)</th>
<th>Bivalirudin + GPI (N=4604)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day events (%)</td>
<td>11.7%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Net clinical outcome</td>
<td>11.7%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Ischemic composite</td>
<td>7.3%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>5.7%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Results: UFH/enox + GPI vs. Bivalirudin Alone

<table>
<thead>
<tr>
<th>Study</th>
<th>UFH Dose</th>
<th>Ischemic Endpoints</th>
<th>Major Bleeding</th>
<th>Stent Thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT – PPCI</td>
<td>70 units/kg</td>
<td>UFH: 5.7% Bival: 8.7%</td>
<td>UFH: 3.1% Bival: 3.5% (no significant difference)</td>
<td>UFH: 0.9% Bival: 3.4%</td>
</tr>
<tr>
<td>BRIGHT</td>
<td>100 units/kg</td>
<td>UFH: 13.2% Bival: 8.8%</td>
<td>UFH: 0.9% Bival: 0.6% (significantly different)</td>
<td>UFH: 0.9% Bival: 0.6% (significantly different)</td>
</tr>
</tbody>
</table>

Bivalirudin: Conflicting data!

Incidence of major Bleeding

<table>
<thead>
<tr>
<th>Study</th>
<th>Bivalirudin</th>
<th>Heparin (UFH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONS-AMI</td>
<td>89/1800 (5%)</td>
<td>149/1802 (8%)</td>
</tr>
<tr>
<td>EUROMAX</td>
<td>28/1089 (3%)</td>
<td>67/1109 (6%)</td>
</tr>
<tr>
<td>BRIGHT</td>
<td>4729 (1%)</td>
<td>14724 (2%)</td>
</tr>
<tr>
<td>HEAT PPCI</td>
<td>32/905 (4%)</td>
<td>28/907 (3%)</td>
</tr>
<tr>
<td>OVERALL</td>
<td>308/10600 (3%)</td>
<td>593/10900 (5%)</td>
</tr>
</tbody>
</table>

Incidence of acute stent thrombosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Bivalirudin</th>
<th>Heparin (UFH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONS-AMI</td>
<td>21/1571 (1.3%)</td>
<td>4/1553 (0.2%)</td>
</tr>
<tr>
<td>EUROMAX</td>
<td>12/1089 (1.1%)</td>
<td>2/1109 (0.2%)</td>
</tr>
<tr>
<td>HEAT PPCI</td>
<td>20/697 (2.8%)</td>
<td>6/682 (0.8%)</td>
</tr>
<tr>
<td>OVERALL</td>
<td>53/3357 (1.5%)</td>
<td>12/3344 (0.3%)</td>
</tr>
</tbody>
</table>

Dosing of Anticoagulants: NSTEMI with Primary PCI

<table>
<thead>
<tr>
<th>Drug</th>
<th>In Patients Who Have Received Prior Anticoagulant Therapy</th>
<th>In Patients Who Have Not Received Prior Anticoagulant Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enoxaparin</td>
<td>• For prior treatment with enoxaparin, if last SC dose was administered 8–12 hr earlier or if <1 therapeutic SC doses of enoxaparin have been administered, an IV dose of enoxaparin 0.3 mg/kg should be given.</td>
<td>• 0.5 mg/kg–0.75 mg/kg IV loading dose</td>
</tr>
<tr>
<td></td>
<td>• If the last SC dose was administered within prior 8 hr, no additional enoxaparin should be given.</td>
<td></td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>• For patients who have received UFH, wait 80 min, then give 0.75 mg/kg IV loading dose, then 1.75 mg/kg/hr IV infusion.</td>
<td>• 0.75 mg/kg loading dose, 1.75 mg/kg/hr IV infusion.</td>
</tr>
<tr>
<td></td>
<td>• For patients already receiving bivalirudin infusion, give additional loading dose 0.5 mg/kg and increase infusion to 1.75 mg/kg/hr during PCI.</td>
<td></td>
</tr>
</tbody>
</table>
Dosing of Parenteral Anticoagulants During PCI

<table>
<thead>
<tr>
<th>Drug</th>
<th>In Patients Who Have Received Prior Anticoagulant Therapy</th>
<th>In Patients Who Have Not Received Prior Anticoagulant Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFH</td>
<td>For prior treatment with fondaparinux, administer additional IV treatment with anticoagulant possessing anti-factor Xa activity, considering whether GPI have been administered</td>
<td>N/A</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>IV GPI planned: additional UFH as needed (e.g., 2,000–5,000 units) to achieve ACT of 200–250 s</td>
<td>IV GPI planned: 50–70 units/kg loading dose to achieve ACT of 200–250 s</td>
</tr>
<tr>
<td></td>
<td>No IV GPI planned: additional UFH as needed (e.g., 2,000–5,000 units) to achieve ACT of 250–300 s for HemoTec, 300–350 s for Hemochron</td>
<td>No IV GPI planned: 70–100 unit/kg loading dose to achieve target ACT of 250–300 s for HemoTec, 300–350 s for Hemochron</td>
</tr>
</tbody>
</table>

Case Continues

• While in the lab, BA receives UFH and eptifibatide.

• After PCI, UFH is discontinued, and the plan is to continue eptifibatide for a total of 18 hours.

• Team to decide about additional antiplatelet therapy tomorrow morning on rounds.

Question #2

Based on clinical trial data, which of the following medications probably is responsible for BA’s thrombocytopenia?

A. UFH
B. Eptifibatide
C. Clopidogrel
D. Aspirin

Antiplatelet and Anticoagulant Therapy: GP Ib/IIa Inhibitors (GPI)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) and not adequately pretreated with clopidogrel or ticagrelor, it is useful to administer a GPI (abiximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) treated with UFH and adequately pretreated with clopidogrel, it is reasonable to administer a GPI (abiximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI.</td>
<td>IIIa</td>
<td>B</td>
</tr>
</tbody>
</table>

Case Continues: Platelet count drop

• The next morning while on rounds, the team raises concerns about BA’s platelet count:
 – 10 x 10^9/L
 – down from baseline of 175x 10^9/L
 – Hematocrit/Hemoglobin are stable from admission (Hgb 12 g/dL, HCT: 35%)

• No evidence of bleeding or thrombosis is noted during physical exam

Thrombocytopenia

• Can be broken down into 3 categories
 – Underproduction
 – Bone marrow disorders (so other cell lines also affected)
 – Destruction/Consumption
 – Antibody mediated clearance
 – Consumption within thrombi
 – Redistribution

Thrombocytopenia

<table>
<thead>
<tr>
<th>Underproduction</th>
<th>Destruction/consumption</th>
<th>Redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient deficiencies</td>
<td>Primary ITP</td>
<td>Splenomegaly</td>
</tr>
<tr>
<td>Myelodysplastic syndromes</td>
<td>Secondary ITP</td>
<td>Drug-induced</td>
</tr>
<tr>
<td>Infections</td>
<td>TTP</td>
<td>DIC</td>
</tr>
</tbody>
</table>

DIC: Disseminated intravascular coagulation; TTP: Thrombotic thrombocytopenic purpura; ITP: Immune thrombocytopenic purpura

Mechanisms of Drug-induced thrombocytopenia

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
<th>Clinical Consequence</th>
<th>Prototype Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin-dependent</td>
<td>Binds to platelet membrane glycoprotein Ib-IX-V complex</td>
<td>Hemorrhage</td>
<td>Pennicillins, Cephalosporins</td>
</tr>
<tr>
<td>Drug-glycoprotein complex</td>
<td>Noncovalent interaction with platelet membrane</td>
<td>Hemorrhage</td>
<td>Quinines, Quinolines, NSAIDs</td>
</tr>
<tr>
<td>Ligand-induced binding site</td>
<td>Binds to GPIIb/IIIa complex</td>
<td>Hemorrhage</td>
<td>Eptifibatide, Tirofiban</td>
</tr>
<tr>
<td>Drug-specific antibody</td>
<td>Chimeric Fab fragments against GPIIb/IIIa complex</td>
<td>Hemorrhage</td>
<td>Abciximab</td>
</tr>
<tr>
<td>Autoantibody</td>
<td>Autoantibody that reacts with platelet surface in the absence of drug</td>
<td>Hemorrhage</td>
<td>Gold salts, Procainamide</td>
</tr>
<tr>
<td>Immune complex</td>
<td>Fibrin complex to produce antigenic complex</td>
<td>Thrombosis</td>
<td>Heparins, low-molecular-weight heparins</td>
</tr>
</tbody>
</table>

TTP

- Most commonly presents with:
 - Abdominal pain, weakness, nausea, vomiting
- Can also present with:
 - Hemolytic anemia
 - Neurologic changes
 - Renal injury
- Laboratory abnormalities:
 - Anemia, thrombocytopenia (with leukopenia)
 - ↑ lactate dehydrogenase (LDH), indirect bilirubin
 - Negative Coombs test

Clopidogrel-induced TTP

- Time-course: usually 2-3 weeks after starting therapy (range 3 – 21 days)
- Platelet count < 20 x 10⁹/L
- Hematocrit < 27%

Heparin-induced thrombocytopenia

<table>
<thead>
<tr>
<th>4Ts Score</th>
<th>2 points</th>
<th>1 point</th>
<th>0 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>Platelet count falls < 50 to baseline (75% or 100%)</td>
<td>Platelet count falls < 50 to baseline (75% or 100%)</td>
<td>Platelet count falls < 50 to baseline (75% or 100%)</td>
</tr>
<tr>
<td>Timing</td>
<td>One week to 1 week after heparin</td>
<td>Consistent with full dose heparin</td>
<td>Platelet count falls < 50 to baseline (75% or 100%)</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>New thrombosis confirmed</td>
<td>Progressive increase in heparin dose</td>
<td>None evident</td>
</tr>
<tr>
<td>Other causes</td>
<td>None evident</td>
<td>None evident</td>
<td>None evident</td>
</tr>
</tbody>
</table>

Pre-test probability: High (score 6-8), Intermediate (score 4-5), Low (score 0-3)

*Figure 2.4 from Kenney B et al. Arch Pathol Lab Med. 2009;133:199-14.
Figure 2.5 from Kenney B et al. Arch Pathol Lab Med. 2009;133:199-14.*

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Question #3

Based on clinical trial data, which of the following P2Y₁₂ inhibitors is associated with a reduction in all-cause mortality when given in combination with aspirin for the treatment of ACS?

A. Ticagrelor
B. Prasugrel
C. Clopidogrel
D. Ticlopidine
Case Continues

- Offending drug was discontinued, and BA’s platelet count recovers within 48 hours
 - Platelet count: $10^9/L \rightarrow 124 \times 10^9/L$

Question # 4
Based on current clinical data, which of the following represents the optimal dose of aspirin for BA?

A. Enteric-coated aspirin 81 mg daily indefinitely
B. Enteric-coated aspirin 325 mg daily for 6 months followed by 81 mg daily indefinitely
C. Aspirin 81 mg daily indefinitely
D. Aspirin 325 mg daily indefinitely

Recommendations COR LOE

Aspirin should be continued indefinitely. The maintenance dose should be 81 mg daily in patients treated with ticagrelor and 81 mg to 325 mg daily in all other patients.

2014 ACC/AHA NSTEMI Guidelines: Aspirin

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin should be continued indefinitely. The maintenance dose should be 81 mg daily in patients treated with ticagrelor and 81 mg to 325 mg daily in all other patients.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is reasonable to use an aspirin maintenance dose of 81 mg per day in preference to higher maintenance doses in patients with NSTE-ACS treated either invasively or with coronary stent implantation.</td>
<td>IIa</td>
<td>B</td>
</tr>
</tbody>
</table>

*The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily.

Enteric-Coated Aspirin

- 400 healthy volunteers screened for response to 325 mg x 1 dose
 - Either enteric-coated or plain aspirin
- All patients in plain aspirin group responded pharmacologically
- 17-49% were non-responders in the enteric-coated aspirin group
 - Required multiple doses to convert non-responders.

Question # 5
Which of the following represents the most appropriate duration of dual antiplatelet therapy (DAPT)?

A. 1 month
B. 6 months
C. 12 months
D. 30 months
2014 ACC/AHA NSTEMI Guidelines

Recommendations

<table>
<thead>
<tr>
<th>Option</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel: 75 mg daily</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Prasugrel*: 10 mg daily</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Ticagrelor: 90 mg twice daily</td>
<td>1</td>
<td>B</td>
</tr>
</tbody>
</table>

*Patients should receive a loading dose of prasugrel, provided that they were not pretreated with another P2Y12 receptor inhibitor.

The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily.

Dual antiplatelet therapy (DAPT) Study

- **Objectives:**
 - In patients with DES: whether DAPT beyond 12 months is associated with:
 - reduction in stent thrombosis and/or
 - major adverse cardiovascular and cerebrovascular events (MACCE)

 - Defined as a composite of Death, MI, stroke
 - To determine the impact of prolonged DAPT on moderate or severe bleeding

DAPT Study Design

- **12 Month observational period:** Open label ASA +
 - Clopidogrel (n: 5020)
 - Prasugrel (n: 4917)
 - Placebo (n: 4840)

- **3 Month observational period:** On ASA, off
 - Thienopyridine
 - Placebo

Results: MACCE Endpoint

- **Primary Analysis Period**
 - 12-30 Months: HR 0.71 (0.59 - 0.85)
 - 4.3% vs. 5.9% P<0.001
 - Thienopyridine Placebo

Results: Stent Thrombosis

- **Primary Analysis Period**
 - 12-30 Months: HR 0.29 (0.17 - 0.48)
 - 0.4% vs. 1.4% P<0.001
 - Thienopyridine Placebo

Results: Myocardial Infarction

- 55% of these events were NOT RELATED to stent thrombosis

DAPT: Safety results

DAPT Score: New risk tool to help?

- Objective:
 - To develop a decision tool to identify whether a patient is more or less likely to benefit from prolonged DAPT beyond 1 year
 - Account for risks of recurrent ischemia and bleeding simultaneously
- Derived from patients in DAPT trial
 - Those who tolerated DAPT for at least 1 year
 - Remember DAPT exclusion criteria
 - The risk scoring system would not apply to these patients

DAPT Score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Characteristics</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>≥ 75 years-old</td>
<td>-2</td>
</tr>
<tr>
<td>65 – 74</td>
<td>-1</td>
</tr>
<tr>
<td>≤ 64</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
</tr>
<tr>
<td>Current cigarette smoker</td>
<td>1</td>
</tr>
<tr>
<td>Prior PCI or prior MI</td>
<td>1</td>
</tr>
<tr>
<td>CHF or LVEF < 30%</td>
<td>2</td>
</tr>
<tr>
<td>Index Procedure Characteristic</td>
<td></td>
</tr>
<tr>
<td>MI at presentation</td>
<td>1</td>
</tr>
<tr>
<td>Vein graft PCI</td>
<td>1</td>
</tr>
<tr>
<td>Stent Diameter < 3 mm</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SCORE</td>
<td>-2 – 10 points</td>
</tr>
</tbody>
</table>

Low DAPT Score

NNT to prevent ischemia = 15
NNT to cause bleeding = 64

High DAPT Score

NNT to prevent ischemia = 34
NNT to cause bleeding = 272

DAPT score may help identify patients where:
- Ischemic benefits outweigh the risks of bleeding
- Bleeding risk outweighs ischemic benefits

For BA: DAPT Score = 4

P2Y12 Inhibitors: Clinical Pearls

- Prasugrel:
 - should not be administered to patients with a history of prior stroke or transient ischemic attack.
 - Generally not recommended in patients with age ≥ 75 years old
- Ticagrelor:
 - the recommended maintenance dose of aspirin to be used with is 81 mg daily.

2014 ACC/AHA NSTEMI Guidelines: Cholesterol Management

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-intensity statin therapy should be initiated or continued in all patients with NSTE-ACS and no contraindications to its use.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is reasonable to obtain a fasting lipid profile in patients with NSTE-ACS, preferably within 24 hours of presentation.</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>

Effient (prasugrel) prescribing information. Indianapolis, IN: Eli Lilly and Company; 2013 Nov.
2013 ACC/AHA Cholesterol Guidelines

• Statin therapy recommended in 4 groups:
 1. Adults with clinical atherosclerotic cardiovascular disease (ASCVD)
 2. Adults with LDL-C ≥190 mg/dL
 3. Adults 40 to 75 years of age with diabetes
 4. Adults with ≥7.5% estimated 10-year risk of ASCVD

• ASCVD:
 - Inclusion criteria for secondary prevention statin trials:
 - Acute Coronary Syndromes, hx MI, unstable angina
 - Stroke/transient ischemic attack (TIA)
 - Peripheral artery disease

2013 ACC/AHA Cholesterol Guidelines

• High-Intensity statins: (reduce LDL ≥ 50%)
 - Atorvastatin 80 mg daily
 - Atorvastatin 40 mg daily
 - Down-titration in the IDEAL trial
 - Rosuvastatin 20 mg (40mg) daily

PROVE IT - TIMI 22: Study Design

4,162 patients with an Acute Coronary Syndrome < 10 days

Double-blind
ASA + Standard Medical Therapy
 - "Standard Therapy"
 Pravastatin 40 mg daily
 - "Intensive Therapy"
 Atorvastatin 80 mg daily

2x2 Factorial: Gatifloxacin vs. placebo
Duration: Mean 2 year follow-up (>925 events)
Primary Endpoint: Death, MI, Documented unstable angina requiring hospitalization, Stroke

Components of the Primary Endpoint

<table>
<thead>
<tr>
<th></th>
<th>Atorvastatin</th>
<th>Pravastatin</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death due to CHD, MI, or revascularization*</td>
<td>0.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, MI or urgent revascularization*</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from any cause (%)</td>
<td>2.2</td>
<td>3.2</td>
<td>NS</td>
</tr>
<tr>
<td>Death from CHD (%)</td>
<td>1.1</td>
<td>1.4</td>
<td>NS</td>
</tr>
<tr>
<td>MI (%)</td>
<td>6.6</td>
<td>7.4</td>
<td>NS</td>
</tr>
<tr>
<td>Stroke (%)</td>
<td>1.0</td>
<td>1.0</td>
<td>NS</td>
</tr>
<tr>
<td>Revascularization (%)</td>
<td>16.1</td>
<td>18.8</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Unstable angina requiring hospitalization (%)</td>
<td>3.8</td>
<td>5.1</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Improve-It

Patients stabilized post ACS ≤ 10 days:
LDL-C 50–125 mg/dL (or 50–100 mg/dL if prior lipid-lowering Rx)

N=18,144

Follow-up Visit Day 30, every 4 months
Duration: Minimum 2 ½-year follow-up (at least 5250 events)
Primary Endpoint: CV death, MI, hospital admission for UA, coronary revascularization (≥ 30 days after randomization), or stroke

Improve-It: Results

- 90% power to detect 8% difference
- 0.6 1.0 1.4
- 2015 ACC/AHA/ASE/SCAI/SCCT/SCMR/SCDS/SVIT/TSRA guidelines updated per FDA label 2011
- Clinical or statistical significance
- SU=Simvastatin, EZ=Ezetimibe
- No significant difference in rate of death (p=0.782)
- MI (p=0.997)
- Stroke (p=0.002)
- Ischemic stroke (p=0.002)
- UA (p=0.618)
- CVD/MI/stroke (p=0.003)

Case Continues:

- Patient experiences worsening shortness of breath post PCI, attributed to volume overload
- ECHO:
 - Ejection Fraction (EF): 30 – 35%
 - Global LV hypokinesis

Question # 6
Which of the following therapies should be initiated to reduce all-cause mortality?

A. Valsartan/Sacubitril
B. Eplerenone
C. Losartan
D. Furosemide

Current Medications

- Aspirin 81 mg po daily
- Clopidogrel 75 mg po once daily
- Lisinopril 20 mg po daily
- Atravastatin 80 mg po daily
- Carvedilol 0.125 mg po twice daily
- Docusate 100 mg po twice daily PRN constipation
- Nitroglycerin 0.3 mg SL PRN chest pain
- Acetaminophen 500 mg po four times daily PRN pain

- Medication changes:
 - D/C Amiodapine - to allow for the addition of Carvedilol
 - Ticagrelor switched to clopidogrel due to cost concerns
 - Temporarily withholding Metformin and ibuprofen, contrast dye exposure during PCI

2014 ACC/AHA NSTEMI Guidelines:
Inhibitors of Renin-Angiotensin-Aldosterone System

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors should be started and continued indefinitely in all patients with LVEF less than 0.40 and in those with hypertension, diabetes mellitus, or stable CKD (Section 7.6), unless contraindicated.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>ARBs are recommended in patients with HF or MI with LVEF less than 0.40 who are ACE inhibitor intolerant.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Aldosterone blockade is recommended in patients post–MI without significant renal dysfunction (creatinine >2.5 mg/dL in men or >2.0 mg/dL in women) or hyperkalemia (K >5.0 mEq/L) who are receiving therapeutic doses of ACE inhibitor and beta blocker and have a LVEF 0.40 or less, diabetes mellitus, or HF.</td>
<td>I</td>
<td>A</td>
</tr>
</tbody>
</table>

EPHESUS Trial

6,632 patients with acute MI complicated by heart failure and systolic left ventricular dysfunction

- Acute MI in prior 3-14 days
- Left ventricular dysfunction (EF <40%)
- Heart failure (in non-diabetics but not required for diabetics)

Optimal medical therapy
(ACE inhibitors, angiotensin receptor blockers, diuretics, and beta-blockers, coronary reperfusion therapy)

<table>
<thead>
<tr>
<th>Eplerenone (n = 3,313)</th>
<th>Placebo (n = 3,319)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoints (at mean of 16 month follow-up):</td>
<td></td>
</tr>
<tr>
<td>Primary – 1) death from any cause and 2) death or hospitalisation from CV causes</td>
<td></td>
</tr>
</tbody>
</table>

Question # 7
Which of the following represents the best outpatient monitoring regimen to minimize the risk of hyperkalemia?

A. Check serum potassium 4 weeks after hospital discharge
B. Check serum creatinine and serum potassium within 1 week after hospital discharge and again 4 weeks later
C. Check serum potassium and serum creatinine within 4 weeks after hospital discharge
D. Check serum creatinine 4 weeks after hospital discharge

EPHESUS Trial: Serious Adverse Events

<table>
<thead>
<tr>
<th>Serum hyperkalemia</th>
<th>Gynecomastia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eplerenone</td>
<td>Placebo</td>
</tr>
<tr>
<td>5.5% p=0.002</td>
<td>0.5% p=0.70</td>
</tr>
</tbody>
</table>

Outpatient Potassium Monitoring

- Heart Failure Society of America (HFSA) Guidelines:
 - It is recommended that serum potassium concentration be monitored frequently following initiation or change in an aldosterone antagonist.

- Monitoring should reflect protocols followed in clinical trials (Strength of Evidence: A)

Potassium Monitoring: Clinical Trials

- Clinical trials of aldosterone antagonists
 - EPHESUS:
 - The serum potassium concentration was measured 48 hours after the initiation of treatment, at 1, 4, and 5 weeks, at all scheduled study visits, and within 1 week after any change of dose
 - EMPHASIS-HF
 - Similar recommendations

Question # 8
BA is encouraged to stop smoking. Which of the following changes in his quality of life (QOL) are likely since BA experienced an MI?

A. It will worsen if he continues to smoke cigarettes
B. It will not change if he continues to smoke cigarettes
C. It will improve if he changes to smoking e-cigarettes
D. It will not change if he switches to smoking e-cigarettes

Encouragement and advice to stop smoking and to avoid secondhand smoke should be provided to patients with STEMI.

Multivariable analyses of the association of 1-year smoking status with health-related quality of life domains at 1 year after acute myocardial infarction.

Never smoker (reference)

<table>
<thead>
<tr>
<th>Smoking Status</th>
<th>1-Year QoL Domain</th>
<th>Coefficient (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former smoker</td>
<td></td>
<td>-0.30 (1.73 – 1.14)</td>
</tr>
<tr>
<td>Recent Quitter</td>
<td></td>
<td>-2.68 (-4.47 – -0.89)</td>
</tr>
<tr>
<td>Persistent smoker</td>
<td></td>
<td>-3.46 (-5.21 – -1.69)</td>
</tr>
</tbody>
</table>

Multivariable analyses of the association of 1-year smoking status with angina at 1 year after acute myocardial infarction.

Never smoker (reference)

<table>
<thead>
<tr>
<th>Smoking Status</th>
<th>1-Year Angina</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former smoker</td>
<td></td>
<td>1.28 (0.98 – 1.66)</td>
</tr>
<tr>
<td>Recent Quitter</td>
<td></td>
<td>1.46 (1.14 – 1.87)</td>
</tr>
<tr>
<td>Persistent smoker</td>
<td></td>
<td>2.10 (0.89 – 4.47)</td>
</tr>
</tbody>
</table>

Smoking Cessation Counseling

- The 5 A's
 - Ask patient if they smoke
 - Advise tobacco users to quit
 - Assess the patient’s readiness to quit
 - Assist the patient with quitting
 - Arrange follow-up care

Smoking Cessation Pharmacotherapy

- First-line therapy: Many options!
 - Nicotine replacement therapies (NRT)
 - Patch
 - Gum
 - Lozenge
 - SL Tablets
 - Sprays
 - Inhaler
 - Bupropion SR
 - Varenicline

- Second-line options: many more!
 - Tricyclic antidepressants (TCAs)
 - Clonidine
 - Anxiolytics: Buspirone, Benzodiazepines, Beta-Blockers

Tailoring Pharmacotherapy: Long + Short Acting

Long Acting

- Pick 1 or 2 from here
 - Nicotine patch
 - Bupropion

Short Acting

- Plus 1 or 2 from here
 - Nicotine gum
 - Nicotine lozenge
 - Nicotine nasal spray

*Combination of varenicline and NRT is exploratory, no trials to support its efficacy to date but initial evidence indicates well tolerated

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Smoking Cessation Resources

Internet based Resources:
- Smoking cessation leadership center – http://smokingcessationleadership.ucsf.edu
- Treatobacco.net

Nonpharmaceutical Cessation Support
- ASPIRE: MD Anderson Cancer Center
- Become an Ex – http://www.becomeanex.com
- Quit Key – handheld device for gradual reduction
- Quit Net – online comprehensive support program – http://www.quitnet.com

Pharmaceutical Company Aids:
- Nicorette: http://www.nicorette.com
- NicoDerm CQ: http://www.nicodermcq.com
- Chantix: http://www.chantix.com
- Nicotrol: http://www.nicotrol.com

University of California San Francisco Center for Tobacco Control Research and Education. Smoking cessation leadership center. URL in ref list.

Question # 9

Which of the following NSAIDs is most appropriate for BA's osteoarthritis?

A. Ibuprofen 600 three times daily
B. Naproxen 220 mg twice daily
C. Celecoxib 200 mg twice daily
D. Diclofenac 75 mg twice daily

2014 ACC/AHA Guidelines: NSAIDs

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before hospital discharge, the patient's need for treatment of chronic musculoskeletal discomfort should be assessed, and a stepped-care approach should be used for selection of treatments. Pain treatment before consideration of NSAIDs should begin with acetaminophen, nonacetylated salicylates, tramadol, or small doses of narcotics if these medications are not adequate.</td>
<td>Ia</td>
<td>C</td>
</tr>
<tr>
<td>It is reasonable to use nonselective NSAIDs, such as naproxen, if initial therapy with acetaminophen, nonacetylated salicylates, tramadol, or small doses of narcotics is insufficient.</td>
<td>Ilb</td>
<td>C</td>
</tr>
<tr>
<td>NSAIDs with increasing degrees of relative cyclooxygenase-2 selectivity should not be administered to patients with NSTE-ACS and chronic musculoskeletal discomfort when therapy with acetaminophen, nonacetylated salicylates, tramadol, small doses of narcotics, or nonselective NSAIDs provide acceptable pain relief.</td>
<td>IIIc</td>
<td>Harm</td>
</tr>
</tbody>
</table>

NSAIDs and Cardiovascular Risk

- All NSAIDs appear to increase risk for:
 - MI
 - Heart Failure
 - Gastrointestinal Bleeding

- Are all NSAIDs equal in terms of risk?

NSAIDs and risk of MI/Death

![Graph showing risk of MI/Death](https://via.placeholder.com/150)

Type of NSAID: Death/MI events

![Graph showing Type of NSAID](https://via.placeholder.com/150)

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Question #10
Which of the following represents the best acid suppressive therapy recommendation to minimize both bleeding risk and interactions potential dual antiplatelet therapy (DAPT) in this patient?

A. Pantoprazole 40 mg daily
B. Esomeprazole 20 mg daily
C. Omeprazole 20 mg daily
D. Ranitidine 150 mg twice daily

Algorithm to Assess GI Risk With Antiplatelet Therapy

More than one risk factor:
- Age ≥ 80 years or more
- Cerebrovascular use
- Dyspepsia or GERD symptoms

Clopidogrel – PPI Drug Interaction

- VERY controversial!!!

- Studies associated with interaction:
 - Case-control, cohort studies (retrospective)
 - Platelet reactivity studies

- Studies that suggest no interaction exists:
 - Case-control, cohort studies (retrospective)
 - COGENT trial
COGENT Trial: Methods

- Multicenter, international, randomized, double-blind, double-dummy, placebo-controlled, parallel group, phase 3 efficacy and safety study of CGT-2168, a fixed-dose combination of clopidogrel (75 mg) and omeprazole (20 mg), compared with clopidogrel.
- Patients were stratified based on two baseline factors: H. pylori serology (positive or negative) and concomitant use of any NSAID.
- All patients were to receive enteric coated aspirin at a dose of 75 to 325 mg/day.

COGENT Trial: Endpoints

- The GI endpoint:
 - Upper GI bleeding.
- Bleeding of presumed GI origin with decrease in hemoglobin ≥ 2 g/dl, or decrease in hematocrit ≥ 10%.
 - Asymptomatic gastrointestinal ulcer confirmed by endoscopy or radiography.
- Pain of presumed GI origin with underlying multiple erosive disease confirmed by endoscopy, obstruction, or perforation.
- The cardiovascular endpoint:
 - Composite of cardiovascular death, non-fatal MI, CAGB or PCI, or ischemic stroke.
- The initial planned sample size was 3200 patients, an accrual period of 1 year, and maximum follow up of 2 years. Because a low rate of gastrointestinal events was observed as the trial was ongoing, the sample size was increased to 4200 and then “5000 (143 GI events). The study ended when the sponsor declared bankruptcy.

COGENT Trial: Enrollment and Results

- Enrollment:
 - 3873 patients (Below the modified target of 4200, and then 5000)
 - Median follow-up 106 days (essentially 3.5 months)
 - 109 adjudicated cardiovascular events
 - 55 adjudicated GI events (below the 143 that had been planned)
- Cardiovascular endpoint results:
 - 55 events (clopidogrel + PPI group) vs. 54 events (p=0.98)
 - 180 day event rate: 4.9% (clopidogrel + PPI) vs. 5.7% (HR: 0.99 (95% CI: 0.68 – 1.44, p=0.98)

FDA Label Change: Clopidogrel

- Avoid clopidogrel + omeprazole
- Separating the time of administration will not avoid the interaction
- Additional medications that should be avoided with clopidogrel:
 - Esomeprazole
 - Cimetidine
 - Fluconazole, Ketoconazole, Voriconazole
 - Etravirine
 - Felbamate
 - Fluoxetine, Fluvoxamine
 - Ticlopidine

U.S. Food and Drug Administration. Information for healthcare professionals: update to the labeling of clopidogrel (marketed as Plavix) to alert healthcare professionals about a drug interaction with omeprazole (marketed as Prilosec and Prilosec OTC). November 17, 2009. URL in ref list.

Question # 11

If BA was interested in a support group that allowed him to meet with other MI survivors, which of the following would be the best to recommend?

A. American Heart Association Support Network
B. Ironheart Foundation
C. American College of Cardiology
D. Mended Hearts

Additional Patient Resources

- American Heart Association patient tools and resources for cardiovascular diseases. http://www.heart.org/HEARTORG/Conditions/Conditions_UCM_001087_SubHomePage.jsp

©2016 American Society of Health-System Pharmacists, Inc. All rights reserved.
Additional Patient Resources

- Ironheart Foundation
 - http://www.ironheartfoundation.org/
 - On-line community for multiple heart disease patients
 - Hold many athletic events for disease awareness

Case Continues

- Pertinent Laboratory data:
 - Na: 130 mEq/L
 - K: 4.8 mEq/L
 - Serum creatinine: 1.4 mg/dL
- ECG: no ischemic changes
- ECHO: EF 30 – 35%
- Physical exam:
 - 3 + pitting edema up to the calves
 - Crackles: ½ way up lung fields bilaterally
 - Weight: increased 15 lb over past week
- Chest X-Ray: Pulmonary edema
- NT-pro-BNP: 5800 ng/mL

Case Continues

- 2 years later, patient is now admitted for acute decompensated heart failure
- Past Medical History:
 - Hypertension
 - Dyslipidemia
 - NSTEMI
 - CAD
 - Diabetes
 - GERD (diagnosed 6 months ago, after he did not respond to over-the-counter options)
 - a/o Total Knee Replacement 18 months ago
- Current Medications:
 - Aspirin 81 mg po daily
 - Clopidogrel 75 mg po daily
 - Lisinopril 20 mg po daily
 - Eplerenone 25 mg po daily
 - Atorvastatin 80 mg po daily
 - Carvedilol 6.25 mg po twice daily
 - Metformin 1000 mg po twice daily
 - Pantoprazole 40 mg po daily
 - Nitroglycerin 0.3 mg SL PRN chest pain

Question # 12:
Which of the following represents the most appropriate beta-blocker therapy at this time?
A. Continue carvedilol 6.25 mg po twice daily
B. Decrease carvedilol to 3.125 mg po twice daily
C. Increase carvedilol to 12.5 mg po twice daily
D. Withhold carvedilol while BA is volume overloaded

Beta blockers during acute hospitalization: Continue therapy or not?

- One randomized trial
 - 147 patients with systolic dysfunction heart failure
- Hospitalized for acute heart failure based on:
 - Pulmonary edema
 - Dyspnea
 - Radiologic evidence of edema
- Randomized to:
 - Continue current Beta blocker therapy uninterrupted
 - Stop Beta blocker for a minimum of 3 days

Endpoints

- Primary:
 - % patients whose well being and dyspnea improved at 72 hours and 8 days
 - As determined by a physician blinded to treatment assignment
- Secondary:
 - % patients whose well being and dyspnea improved at 72 hours
 - As determined by the patient
 - Plasma BNP levels at 72 hours
 - Duration of hospitalization
 - Re-hospitalization rate at 3 months
 - Proportion of patients receiving a Beta Blocker at 3 months

Results

Primary and Secondary Endpoints: Improved dyspnea

![Graph showing improved dyspnea percentage over time for physicians and patients.]

<table>
<thead>
<tr>
<th>Continue Group N = 69</th>
<th>Hold Group N = 78</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death during hospitalization 1</td>
<td>2</td>
<td>p> NS</td>
</tr>
<tr>
<td>BNP Levels at 72 hours 882 ± 950 pg/mL</td>
<td>876 ± 1382 pg/mL</td>
<td>p> NS</td>
</tr>
<tr>
<td>Hospitalization for heart failure: 3 mos 22%</td>
<td>32%</td>
<td>p> NS</td>
</tr>
<tr>
<td>Receiving Beta Blocker: 3 mos* 90%</td>
<td>76%</td>
<td>p= 0.04</td>
</tr>
<tr>
<td>Target dose* 3 mos 26%</td>
<td>11%</td>
<td>p= 0.03</td>
</tr>
<tr>
<td>At least half target dose* 80%</td>
<td>38%</td>
<td>p= 0.01</td>
</tr>
</tbody>
</table>

* = significant difference
NS = not significant

Beta blocker management

- HFSA Guidelines:
 - It is recommended that beta blocker therapy be continued in most patients experiencing a symptomatic exacerbation of HF during chronic maintenance treatment. (Strength of Evidence: C)
 - Exceptions: (Strength of Evidence: C)
 - Development of cardiogenic shock
 - Refractory volume overload
 - Symptomatic bradycardia

Question # 13
In addition to diuretic therapy, which of the following represents the best approach to managing hyponatremia?

A. Start oral tolvaptan
B. Give 3% sodium chloride IV
C. 0.9% sodium chloride IV
D. Use fluid restriction

Hyponatremia Expert Panel Recommendations: Heart Failure

- For patients with mild to moderate hyponatremia symptoms, begin with fluid restriction (1 L/day total):
 - If signs of volume overload are present, administer loop diuretics.
- For severely symptomatic patients with very low or rapidly falling sodium:
 - Treatment should consist of hypertonic saline (3%) combined with loop diuretics to prevent fluid overload.
- If the serum sodium does not correct to the desired level:
 - Lift the fluid restriction and start either conivaptan or tolvaptan

HFSA Guidelines: Hyponatremia

- Fluid restriction (2 L/day) is recommended in patients with moderate hyponatremia (serum sodium < 130 mEq/L) and should be considered to assist in treatment of fluid overload in other patients.
 - Strength of Evidence: C

Arginine Vasopressin Antagonists (AVP)

In patients hospitalized with volume overload, including HF, who have persistent severe hyponatremia and are at risk for or having active cognitive symptoms despite water restriction and maximization of guideline-directed medical therapy (GDMT), vasopressin antagonists may be considered in the short term to improve serum sodium concentration in hypervolemic, hyponatremic states with either a V2 receptor selective or a nonselective vasopressin antagonist.

Inpatient and Transitions of Care

Throughout the hospitalization as appropriate, before hospital discharge, at the first post discharge visit, and in subsequent follow-up visits, the following should be addressed:

a. Initiation of GDMT if not previously established and not contraindicated
b. Precipitant causes of HF, barriers to optimal care transitions, and limitations in post-discharge support
c. Assessment of volume status and supine/upright hypotension with adjustment of HF therapy, as appropriate
d. Titration and optimization of chronic oral HF therapy
e. Assessment of renal function and electrolytes, where appropriate
f. Assessment and management of comorbid conditions
g. Reinforcement of HF education, self-care, emergency plans, and need for adherence
h. Consideration for palliative care or hospice care in selected patients.

Recent Tolvaptan Warning

- Risk of liver injury has been described in those with preexisting liver disease when exposed to AVP antagonists